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A good missing-data method…• Makes use of partial information on incomplete cases, for reduced bias, increased efficiency• Is frequency valid (“calibrated”) inferences under plausible model for missing data (e.g. confidence intervals have nominal coverage) E.g. Little (2011, 2012)• Propagates missing-data uncertainty, both within and between imputation models• Focus here on likelihood based approaches– Maximum Likelihood (ML)– Bayes/Multiple Imputation 
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Broad historical overview• <1970: ad hoc imputation, ML for simple problems• 1970-1985: ML for harder problems – EM algorithm and extensions; and multiple imputation• 1985-2000: Bayes via MCMC; multiple imputation; Inverse Probability Weighting (IPW) methods and extensions• >2000: diagnostics, robust modeling• Literature applies to surveys!
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Likelihood methods• Statistical model + data   ⇒ Likelihood• Three general likelihood-based approaches:– Large-sample maximum likelihood inference– Bayesian inference: posterior = prior x likelihood– Parametric multiple imputation – essentially a simulation approximation to Bayes– Parameter estimates or draws are used to (in effect) create predictions of non-sampled or missing values • Likelihood does not require rectangular data, so likelihood methods can be applied to incomplete data – but first consider complete data
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Parametric Likelihood• Data Y• Statistical model yields probability density for Y with unknown parameters• Likelihood function is then a function of 
• Loglikelihood is often easier to work with:

Constants can depend on data but not on parameter
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Example: Normal sample• univariate iid normal sample
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Computing the ML estimate• In regular problems, the ML estimate can be found by solving the likelihood equation
where S is the score function.Explicit solutions for some models (normal regression, multinomial, …)Iterative methods – e.g. Newton-Raphson, Scoring, EM algorithm -- required for other problems (logistic regression, repeated measures models, non-monotone missing data)
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Properties of ML estimates• Under assumed model, ML estimate is:– Consistent– Asymptotically efficient – Asymptotically normal
• Model checks are important – model should fit the observed data 
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Forms of precision matrix • The precision of the ML estimate or posterior distribution is measured by      . Some forms for this are:– Observed information (respects ancillarity)
– Expected information (inferior, may be simpler)
– Sandwich/bootstrap.  Some robustness features, provided ML estimate is consistent
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Finite population inference• Modeling takes a predictive perspective on statistical inference – predict the non-sampled values– ML models for the sampling/nonresponse weights lie outside this perspective• Inference about parameters is intermediate step in predictive superpopulation model inference about finite population parameters• Dependence on model makes this approach unpopular in the survey sampling world (though it is pervasive in other areas of statistics)– However, the degree of model dependence varies, and is reduced by probability sampling – for example, the “design-based” and “model-dependent” answers are the same in some basic problems.
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Finite population inference• Models can and should reflect important design features such as stratification, weighting and clustering:• Stratifying variables and weights are covariates in the model, from a prediction perspective• Clustering: random effects• Software: mixed models that allow fixed and random effects
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Bayes inference
• Given a prior distribution for the parameters, inference can be based on the posterior distribution using Bayes’ theorem:
• In surveys, weak priors are often preferred so that the inferences are data-driven• For small samples, Bayes’ inferences with weak priors based on the posterior distribution have better frequency properties than the large sample ML approximation, and provide credibility intervals that incorporate estimates of precision.
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Simulating Draws from Posterior Distribution• With problems with high-dimensional      , it is often easier to draw values from the posterior distribution, and base inferences on these draws • For example, if is a set of draws from the posterior distribution for a scalar parameter    , then 

These draws are a stepping stone to simulating the posterior predictive distribution of finite population quantities
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Likelihood methods with missing data• Statistical model + incomplete data ⇒ Likelihood• Statistical models needed for:– data without missing values– missing-data mechanism• Model for mechanism not needed if it is ignorable –MAR is the key condition• With likelihood, proceed as before:– ML estimates, large sample standard errors– Bayes posterior distribution– Little and Rubin (2002, chapter 6)
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Example: bivariate normal monotone datacomplete-data model:
model for mechanism:

Model for Y and M
f Y M( , | , )θ ψ = f Y( | )θ × f M Y( | , )ψ
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Two likelihoods• Full likelihood - involves model for M

• Likelihood ignoring the missing-data mechanism M
• simpler since it does not involve model for M
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Ignoring the missing-data mechanism
• Note that if:

where                           does not depend on then inference about    can be based on • The missing-data mechanism is then called ignorablefor likelihood inference

ignfull ob obsos bs( | , )( , ( | )| , ) LL ML Y M Y Yθψθ ψ = ×
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ign obs( | )L Yθ
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Ignoring the md mechanism continued• Rubin (1976) showed that sufficient conditions for ignoring the missing-data mechanism are:

• If MAR holds but not distinctness, ML based on ignorable likelihood is valid but not fully efficient, so MAR is the key condition• For frequentist inference, need MAR for all(Everywhere MAR, see Seaman et al. 2013)
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Auxiliary data can weaken MAR 
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Computational tools• Tools for monotone patterns– Maximum likelihood based on factored likelihood – Draws from Bayesian posterior distribution based on factored posterior distributions• Joint distribution is factored into sequence of conditional distributions• ML/Bayes is then a set of complete data problems (at least under MAR)
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Monotone Data, Three blocks
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+ +
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ML: computational tools for general patterns• ML usually requires iterative algorithms –general optimization methods like Newton Raphson and scoring, the EM algorithm and extensions (ECM, ECME, PXEM, etc.), or combinations• Software – mixed model software like PROC MIXED, NLMIXED can handle missing values in outcomes, under MAR assumption• This does not handle missing data in predictors• MI has some advantages over this approach, as discussed later
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Bayes: computational tools for general patterns• Iterative algorithms are usually needed• Bayes based on Gibbs’ sampler (which also provides multiple imputations of missing values)• Gibbs’ is essentially a stochastic version of ECM algorithm, yielding draws from posterior distribution of the parameters• These draws from an intermediate step for creating multiple imputations from the posterior predictive distribution of the missing values• Chained equation MI: logic of the Gibbs’ sampler, with flexible modeling of sequence of conditional distributions. Trades rigor for practical flexibility
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Bayesian Theory of MI (Rubin, 1987)

Theory relates these two distributions ...

Prior distribution: ;  md mechanism: MARπ θ( )

For simplicity assume MAR -- MNAR also allowed
Model:  ( | ) Likelihood ( | ) ( | )f Y L Y f Yθ θ θ⇒ ∝
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• The posterior is related to the complete-data posterior by:
Relating the posteriors

The accuracy of the approximation increases with D and the 
fraction of observed data 
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MI approximation to posterior mean• Similar approximations yield MI combining rules:
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MI approximation to posterior variance
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Refinements for small D
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Why MI for surveys?• Software is widely available (IVEware, MICE, etc.)• MI based on Bayes for a joint model for the data has optimal asympotic properties under that model.• Propagates imputation uncertainty in a way that is practical for public use files• Flexible, using models that fully condition on observed data – makes MAR assumption “as weak as possible”• Applies to general patterns – weighting methods do not generalize in a compelling way beyond monotone patterns
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Why MI for surveys?• Allows inclusion of auxiliary variables in the imputation model that are not in the final analysis• “Design-based” methods can be applied to multiply-imputed data, with MI combining rules: model assumptions only used to create the imputations (where assumptions are inevitable).
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Arguments against MI for surveys• It’s model-based, and I don’t want to make assumptions – but there is no assumption-free imputation method!• Lack of congeniality between imputer model and analyst model – advice is to be inclusive of potential predictors, leading to at worst conservative inferences –parametric models allow main effects to be prioritized over high order interactions– Congeniality problem also applies to other methods that falsely claim to be assumption free– Perfection is the enemy of the good – in simulation studies, MI tends to work well, because it is propagating imputation uncertainty
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Arguments against MI for surveys• Misspecified parametric models can lead to problems with the imputes – for example, imputing log-transformed data and then exponentiating can lead to wild imputations• So, important to plot the imputations to check that they are plausible• With large samples, chained equations with predictive mean matching hot deck has some attractions, since only actual values are imputed• But hot deck methods are less effective in small samples where good matches are lacking (Andridge & Little, 2010)
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Making MI’s under MAR more robust• Aim to reduce sensitivity of parametric MI’s to model misspecification, particularly when data are not MCAR• Hot deck methods like predictive mean matching• Weaken regression assumptions of parametric MI’s are potentially sensitive to model misspecification, particularly if data are not MCAR
True regression

Linear fit to observed data

X

Y
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Penalized Spline of Propensity Prediction (PSPP) 
• PSPP (Little & An 2004, Zhang & Little 2009, 2011).• Regression imputation that is

– Non-parametric (spline) on the propensity to respond– Parametric on other covariates 
• Exploits the key property of the propensity score that 

conditional on the propensity score and assuming 
missing at random, missingness of Y does not depend 
on other covariates

• This property leads to a form of double robustness.
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PSPP method
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Missing Not at Random Models• Difficult problem, since information to fit non-MAR is limited and highly dependent on assumptions• Sensitivity analysis is preferred approach – this form of analysis is not appealing to consumers of statistics, who want clear answers• Selection vs Pattern-Mixture models– Prefer pattern-mixture factorization since it is simpler to explain and implement– Offsets, Proxy Pattern-mixture analysis• Missing covariates in regression– Subsample Ignorable Likelihood
36
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A simple pattern-mixture model
Giusti & Little (2011) extends this idea to a PM model 
for income nonresponse in a rotating panel survey:

* Two mechanisms (rotation MCAR, income nonresponse NMAR)
* Offset includes as a factor the residual sd, so smaller 
   when good predictors are available

* Complex problem, but PM model is easy to interpret and fit
Readily implemented extension of chained equation MI to 
MNAR models
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An Alternative: Proxy Pattern-Mixture Analysis
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Conclusion• Likelihood-based methods are flexible, and place the emphasis on the underlying imputation model rather than estimation formulae• Model-based multiple imputation methods are attractive: practical, make use of all the data, and propagate imputation error – more in Joe Schafer’s talk
Likelihood methods. NISS workshop 39



Likelihood methods. NISS workshop

ReferencesAndridge, R.H. & Little, R. J. (2010). A Review of Hot Deck Imputation for Survey Nonresponse. 
International Statistical Review, 78, 1, 40-64. _____  & Little, R.J. (2011). Proxy Pattern-Mixture Analysis for Survey Nonresponse. Journal of 
Official Statistics, 27, 2, 153-180.Little, R.J. (2011). Calibrated Bayes, for Statistics in General, and Missing Data in Particular (with Discussion and Rejoinder). Statistical Science 26, 2, 162-186.____ (2012). Calibrated Bayes: an Alternative Inferential Paradigm for Official Statistics (with discussion and rejoinder).  Journal of Official Statistics, 28, 3, 309-372.____ & An, H. (2004). Robust Likelihood-Based Analysis of Multivariate Data with Missing Values. 
Statistica Sinica, 14, 949-968.____ & Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley._____ & Zangeneh, S. (2014). Partially Missing At Random And Ignorable Inferences For Parameter Subsets With Missing Data. Submitted.Rubin, D.B. (1976). Inference and Missing Data. Biometrika 63, 581-592._____ (1987). Multiple imputation for Nonresponse in Surveys. WileySeaman, S., Galati, J., Jackson, D. and Carlin, J. (2013). What Is Meant by “Missing at Random?” 

Statistical Science, 28, 2, 257–268.Zhang, G. & Little, R. J. (2009). Extensions of the Penalized Spline of Propensity Prediction Method of Imputation. Biometrics, 65, 3, 911-918..Zhang, G. & Little, R. J. (2011). A Comparative Study of Doubly-Robust Estimators of the  Mean with Missing Data. Journal of Statistical Computation and Simulation, 81, 12, 2039-2058. Giusti, C. & Little, R.J. (2011). A Sensitivity Analysis of Nonignorable Nonresponse to Income in a Survey with a Rotating Panel Design. Journal of Official Statistics, 27, 2, 211-229. West, B. and Little, R.J. (2013). Nonresponse Adjustment Based on Auxiliary Variables Subject to Error. Applied Statistics, 62, 2, 213–231.
40


	Likelihood-based methods with missing data
	A good missing-data method…
	Broad historical overview
	Likelihood methods
	Parametric Likelihood
	Example: Normal sample
	Computing the ML estimate
	Properties of ML estimates
	Forms of precision matrix 
	Finite population inference
	Finite population inference
	Bayes inference
	Simulating Draws from Posterior Distribution
	Likelihood methods with missing data
	Model for Y and M
	Two likelihoods
	Ignoring the missing-data mechanism
	Ignoring the md mechanism continued
	Auxiliary data can weaken MAR 
	Computational tools
	Monotone Data, Three blocks
	ML: computational tools for general patterns
	Bayes: computational tools for general patterns
	Bayesian Theory of MI (Rubin, 1987)
	Relating the posteriors
	MI approximation to posterior mean
	MI approximation to posterior variance
	Refinements for small D
	Why MI for surveys?
	Why MI for surveys?
	Arguments against MI for surveys
	Arguments against MI for surveys
	Making MI’s under MAR more robust
	Penalized Spline of Propensity Prediction (PSPP) 
	PSPP method 
	Missing Not at Random Models
	A simple pattern-mixture model
	An Alternative: Proxy Pattern-Mixture Analysis
	Conclusion
	References

