

MEDICAL SCHOOL

Using short term endpoint data in interrupted clinical trials

Nigel Stallard

Statistics & Epidemiology, Division of Health Sciences Warwick Medical School, University of Warwick, Coventry, UK *n.stallard@warwick.ac.uk*

Interrupted trials

Over 2,500 COVID clinical trials started in 2020 650 in April 2020 alone Around 5,000 ongoing clinical trials in other disease areas

Many of these are disrupted due to

- cancellation of non-essential medical procedures
- restrictions on face-to-face assessments
- non-attendance due to restrictions or illness

Continue if possible, but early stopping may be necessary

www.covid-trials.org, www.clinicaltrials.gov V EMA Points to consider on implications of COVID-19 on methodological aspects of ongoing clinical trials FDA Guidance: Statistical considerations for clinical trials during the COVID-19 public health emergency

Interrupted trials

Trials may be impacted differently

time

time

time

Kunz et al (2020) Statistics in Biopharmaceutical Research, 12, 461-77.

Interrupted trials

Early endpoint data might be available

time

Using early endpoint data – change of endpoint

Criteria similar to those for surrogate endpoint

Clinical plausibility

Correlations within and between groups

Power will depend on effect size on early endpoint

Using early endpoint data – gaining precision

Similar to using early endpoint data in interim analysis

Idea: Specify model for early and final endpoints Obtain likelihood for early and late data Obtain MLEs for final endpoint parameters

Van Lancker et al (2020) Pharmaceutical Statistics, 12, 461-77.

Using early endpoint data – binary data

Estimate p = pr(death by time t) in single group of n patients Death No death Total

Final: $d \qquad n-d \qquad n$

Likelihood =
$$p^d (1-p)^{n-d}$$

 $\hat{p} = d/n$ E(\hat{p}) Var(\hat{p}) = $p(1-p)/n$

Marschner, Becker (2001) Statistics in Medicine, 20, 177-92.

Using early endpoint data – binary data

Observe death by t_1 (< t) or t for n patients Death No death Total Early: e + (d-e) n-e n + n + d n

Likelihood = $p_1^e (p - p_1)^{d-e} (1 - p)^{n-d}$ $\hat{p} = d/n$ E(\hat{p}) Var(\hat{p}) = p(1 - p)/n $p = pr(\text{death at } t_1) + pr(\text{death at } t \mid \text{alive at } t_1) pr(\text{alive at } t_1)$ $\hat{p} = e/n + ((d - e)/(n - e)) \times ((n - e)/n)$

Marschner, Becker (2001) Statistics in Medicine, 20, 177-92.

Using early endpoint data – binary data

Observe death by t_1 for additional *m* patients

 $\begin{aligned} p &= \frac{p}{q} \frac{p}{q} \frac{p}{p} \frac{p}{q} \frac{p}{$

Marschner, Becker (2001) Statistics in Medicine, 20, 177-92.

Single group example:

Patients 1 to n: primary endpoint Y_i early endpoint X_i

$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_X \\ \mu \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \rho \sigma \sigma_X \\ \rho \sigma \sigma_X & \sigma^2 \end{pmatrix} \right)$$

Patients n+1 to m: early endpoint X_i only

$$X_i \sim N(\mu_X, \sigma_X^2)$$

 \sim

'Double regression'

Fit regression model $E(Y) = \alpha + \beta X$ using *n* patients

Estimate μ by $\tilde{\mu} = \hat{\alpha} + \hat{\beta}\bar{x}$ where \bar{x} is mean from all n + m patients

$$E(\tilde{\mu}) = \mu$$
$$Var(\tilde{\mu}) = \left(1 - \frac{\rho^2 m}{n+m}\right) \frac{\sigma^2}{n}$$

Galbraith, Marschner (2003) Statistics in Medicine, 22, 1787-1805. Engel, Walstra (1991) Biometrics, 47, 13-20.

Using early endpoint data – gaining precision

Notes:

Gain in precision comes from correlation within group Does not depend on treatment effect on early endpoint

'Effective sample size' is $n \leq \frac{n(n+m)}{n+(1-\rho^2)m} \leq n+m$ $(\rho^2 = 0) \qquad (\rho^2 = 1)$

A missing data problem

$$\hat{p} = \left(d + f + (m - f)\frac{(d - e)}{(n - e)}\right) / (n + m)$$

A missing data problem

primary outcome

Open questions

Generalisation to other models and data types including time to event data

Link to methods for missing data

Regulatory issues

. . .