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I. The Use of Bayesian Approaches

in the Regulatory Setting 
[1] [2] [8]
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Sources
• Phase 2 trials

• Adult prior extrapolated to pediatric [7]

• Safety data for different indications of same drug [4]

• Information on same control group used in other trials

• Natural history studies used to augment control group

• Prior from other clinical trials [5]

• Information on subgroups from different trials

• Priors derived from pharmacological or engineering models [6]

1. Prior information

• Increase power and precision of clinical trials

• Reduce the size and duration 

• Synthesize and express the totality of prior evidence [3]
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• Agreement to be reached in advance between sponsor and 

FDA (suitability of the prior; exchangeability)

• Avoid selection bias: unfavorable prior may have been 

omitted (treatment group)  or selected (control group)

• Avoid subjective priors (expert opinion)

• Clinicians:  often unsure about suitability of prior

• Caution: future advisory panel experts could disagree

Important Considerations
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Priors might be too informative: discount

Static Discount

• Direct discount (%)

• Power priors

• Maximum effective sample size

• Increase the stringency of the success criterion

• Increase the sample size of the pivotal trial 

Important Considerations
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Multi-site trials: borrowing strength across different sites  

(large variability across sites: e.g. medical devices)

Ex: Bayesian Hierarchical Models

Borrowing         as Variability among studies 

New study sample size         as Borrowing

Dynamic Discount 

Discount is based on similarity between prior and current data
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• Can reduce the size (length) of a trial ➔ faster decision

• Can increase the size (length) of a trial when needed 

• Interim analyses to decide to stop or continue recruiting based on 

predictive distributions ➔ sample size decided and optimized 

during the trial

• Modeling: results at early follow-up times (“surrogates”) predict 

final follow-up result. Model refined at interim looks based on all 

follow-up results from patients recruited early

• Adaptive randomization

✓ Probability of assignment to treatment depends on data obtained thus far

✓ May be ethically appealing if allocates more patients to best treatments

2. Bayesian Adaptive Designs 
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• Treatment vs. Control at 24 months

• Follow-up times: 6, 12, 18 and 24 months

• Interim looks

➢ For sample size adaptation

➢ For effectiveness

➢ For futility 

• Constant or varying accrual rate

• Model: earlier visits are used to predict 24-month results of 

patients that have not yet reached the 24-month follow-up

Ex: Bayesian Adaptive Design + Modeling [9]
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• Increase the probability of trial success (insurance)

• Achieve almost optimal sample size

• Advantageous when there is no prior information

• Crucial when using prior information (e.g. hierarch. model): 

amount of strength to be borrowed is uncertain ➔ avoid failure 

for lack of power

• Very advantageous when Bayesian modeling is used to predict 

an endpoint from earlier follow up visits – increases in power 

and savings in sample size

Important Considerations
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• Stopping early occurs when surprises arise:

✓ Treatment is better (success) or worse (futility) than 

predicted

✓ Sample variability is smaller than predicted

✓ Bayesian model makes good predictions

• Simulations: 

✓ needed to assess operating characteristics of the trial 

design

✓mathematical formulas for Bayesian adaptive designs 

are not available

Important Considerations
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• Estimate error probabilities 

• Increase trial predictability 

• Estimate expected sample size, trial duration, cost

• Optimize clinical trial design features

• Prepare and budget for different scenarios and surprises

• Readily understood by clinicians: what will happen under 

various scenarios

3. Simulations

Simulate the trial thousands of times making assumptions about the 

true value of the endpoints and look at the average performance: 

How often does it get the right answer?

How often does it lead to an erroneous conclusion?
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• Simulations are conducted at the design stage

• Devise a comprehensive number of scenarios to generate data 

(need clinicians input)

• Make assumptions to generate data

• Assess and control error probabilities (type I and II) under 

“all plausible scenarios and assumptions”

• May be more difficult for the FDA to review 

• May take more effort to reach agreement with the FDA at the 

design stage

• Sponsor’s documentation including the simulation code is 

useful to facilitate the review

Important Considerations
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Design features to be optimized

• Stopping rules for success and futility

• Number and timing of interim analyses

• Prior probabilities; hierarchical model parameters; discount 

factors

• Predictive model

• Minimum sample size (should also consider safety)

• Maximum sample size

• Randomization ratio

• Accrual rate (not too fast and not too slow)

• Dose/treatment selection

• Number of sites

• Use of covariates or subgroup analysis
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4. Predictive Probabilities

• Probability of future events given observed data

• Probability of results for missing patients

• Help decide when to stop a trial or recruiting

• Help decide whether to stop or to continue recruiting

• Labeling [9] 

• Predict a clinical outcome from a valid surrogate (modeling)
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• Use of prior distribution and strict control of type I error 

probability at traditional a are incompatible

✓ If a fixed at traditional level (e.g. 0.05), all prior distribution is 

discounted

✓Discount factors are arbitrary and difficult for clinicians to 

provide input on

• Factors to consider for selecting a: 

✓Rare disease

✓Unmet medical need

✓Decision analysis

✓Patient input: See [10] Patient Centered Clinical Trials (Drug 

Discovery Today)

II. Lessons Learned
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• Possible Strategy for success criterion: 

✓ Full Bayesian approach using posterior probability 

(Ebola trial - Clinical Trials [11])

✓ Threshold could be determined via full decision analysis

• Hierarchical models:

✓ Hyperparameters: difficult to assess due to scarcity of 

clinical input (hard to understand)

✓ Problematic when used with only 2 studies (variability 

between 2 studies cannot be estimated)

II. Lessons Learned (continued)
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II. Lessons Learned (continued)

• Adaptive Bayesian Design:

✓ A must when prior distributions are used: avoid near misses

• Simulations: 

✓ Helpful at the design stage to strategize and optimize trial 

designs
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III Opportunities

• Borrowing information when is difficult to recruit

➢ rare conditions

➢ pediatric studies  [7] 

• Borrowing information, when relevant data are available and hard 
to ignore

➢ pediatric trials [7]

➢ safety for other indications of the same drug [4]

• Synthesizing information across multiple 
➢ trials
➢ programs
➢ sites
➢ subgroups
➢ countries
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• Update knowledge or make decisions as information accumulates:

➢ safety monitoring 

➢ CV safety trials [3]

➢ Ebola-type trial with limited drug supply and critical unmet 

need [11]

• Need for efficient trials: 

➢ unmet needs for life threatening and severely debilitating 

diseases 

• Use modeling where early follow up results can predict later 

follow up results

➢ Bayesian adaptive designs are much more efficient

➢ long follow up trials (survival)

III Opportunities (continued)
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IV. The Value of Bayes in the Regulatory Setting

1. Account for the totality of external evidence via prior info

2. Interpretability of posterior distribution

3. Likelihood principle: flexible clinical trial designs

4. Use modeling to build likelihood functions

5. Decision analysis to develop rational / transparent decision rules:

• Rational thresholds for approval

• Use patients’ and physicians’ input

6. Required strength of evidence can be rationally determined by:

• Medical need

• Patient tolerance for risk and perspective on benefit

• Severity and chronicity of the disease
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