
NISS DATA SCIENCE
ESSENTIALS FOR BUSINESS
TUTORIAL: DEEP LEARNING

Ming Li
Amazon & U. of Washington

Disclaimer: the opinions expressed in this short 
course is presenter’s own and do not represent the 
view of presenter’s employers.



INTENDED AUDIENCE

• Statisticians or practitioners who are exploring data science applications
• Graduate students who are looking for data science opportunities
• University professors who are expanding their data science course 

scopes
• Scientist or analysts who are trying to deal with un-structured data such 

as text and image in their day to day work

• This tutorial is more focusing on introduction of basic concepts and basic 
applications using R keras. Due to limited time, many of important 
mathematic details are not covered. 



LIST OF MATERIALS

• Coursera course: Deep Learning Specialization by Andrew Ng 
et al: a great in-depth introduction of deep learning series 

• UFLDL Deep Learning Tutorial: a self-paced tutorial of deep 
learning basic and applications

• Deep learning with R by François Chollet with J. J. Allaire (a 
great book of introduction of using keras library in R to train 
deep learning models, specifically for statisticians)

• Dive into deep learning: interactive deep learning book with 
code, math and discussion

https://www.coursera.org/specializations/deep-learning
http://ufldl.stanford.edu/tutorial/
https://keras.rstudio.com/
https://d2l.ai/index.html


DATA SCIENCE
RECAP



=
Data Science

Science Engineering

Physics Electrical 
Engineering

Statistical
EngineeringStatistics

+ 
Big Data & Software

*Statistical engineering

http://asq.org/divisions-forums/statistics/quality-information/statistical-engineering


Relatively focus on 
modeling (i.e. science)

Bring data to model

Data is relatively small 
in size and clean in text 
file formats

Usually structured data

Usually isolated from 
production system

Statis-
tician Mainly focus on 

business problem & 
result (i.e. engineering)

Bring models to data

Need to work with 
messy and large 
amount data in various 
formats

Both structured & 
unstructured data

Usually embedded in 
production system

Data 
Scientist



How to Bridge the Gaps?

• Engineering aspects of big data, data pipeline and 
production system: 

• Modeling aspects to expand toolsets to deal with text and 
image data more efficiently:

R/Python in laptop à Cloud Environment

Traditional machine learning methods (such as regression, 
random forest, gradient boosting tree, …)

+
Deep learning models:

• Standard feedforward neural network for typical data frames
• Convolutional neural network for image data
• Word embedding and Recurrent neural network for text data



DEEP LEARNING
A BRIEF INTRODUCTION

THE NEW TOOL IN DATA
SCIENTIST’S TOOL BOX



A Little Bit of History – Perceptron 
• Fun video: https://www.youtube.com/watch?v=cNxadbrN_aI
• Classification of N points into 2 classes: -1 and +1 (i.e. two different colors in the picture below )
• In this example below, only two features to use (X1 and X2)

* From Sebastian Python Machine Learning

Key features of perceptron
• It is a linear classification function and the weight is updated 

after each data points are used to the algorithm (concept 
similar to stochastic gradient descent).

• The algorithm continues to update when we use the same 
dataset again and again (i.e. epochs)

• It is not going to converge for none-linearly-spreadable 
problems. 

• We have define training stop criteria such as accuracy of the 
model or the number of times using the data set to train.

X1

X2

• Linear functions to separate classes, to find (𝒘𝟎, 𝒘𝟏, 𝒘𝟐 ) such that:

• How to find a good line? Perceptron algorithm:
• Start with random weights
• For each data point

1. Predict class label
2. Update weights when prediction is not correct using a 

preset learning rate and the value of features of that data 
point, for example for 𝑤!:

𝜙$ = 𝑤% + 𝑤&𝑥&,$ + 𝑤(𝑥(,$

𝑃𝑟𝑒𝑑$ = +
1, 𝑖𝑓 𝜙$ > 0
−1, 𝑖𝑓 𝜙$ ≤ 0

𝑤& = 𝑤&+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙$ − 𝑃𝑟𝑒𝑑$ 𝑥&,$

https://www.youtube.com/watch?v=cNxadbrN_aI


𝜙! = 𝑤" + 𝑤#𝑥#,! + 𝑤%𝑥%,!

For j in 1:N:

𝑃𝑟𝑒𝑑! = *
1, 𝑖𝑓 𝜙! > 0
−1, 𝑖𝑓 𝜙! ≤ 0

𝑤" = 𝑤"+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙! − 𝑃𝑟𝑒𝑑!
𝑤# = 𝑤#+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙! − 𝑃𝑟𝑒𝑑! 𝑥#,!
𝑤% = 𝑤%+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙! − 𝑃𝑟𝑒𝑑! 𝑥%,!

For i in 1:M:

For every data point, 
we update the weight 
based on the 
prediction correctness, 
learning rate and 
feature values.

Calculate accuracy for the entire dataset to see 
whether the criteria has meet.

For not linearly separable 
dataset, we need to use 
some accuracy threshold or 
number of epochs to stop 
the algorithm. 

We set a maximum of epochs of M to run.

A Little Bit of History – Perceptron 

Perceptron R notebook: link

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/2761297084239405/1806228006848429/latest.html


A Little Bit of History – Adaline

* From Sebastian Python Machine Learning
𝑤" = 𝑤"+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙! − 𝜙!
𝑤# = 𝑤#+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙! − 𝜙! 𝑥#,!
𝑤% = 𝑤%+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙! − 𝜙! 𝑥%,!

• Very similar to Perceptron and the 
only difference is that the error is 
calculated based on  ;

<
!

"

𝐴𝑐𝑡𝑢𝑎𝑙= −

𝜙=
<

, i.e. the square error. 

• With the square error, which is 
differentiable, now we can use 
stochastic gradient descent method 
to update the weights:

• When calculating prediction 
accuracy, we still based on 
whether  𝜙= is larger than zero or 
not with the final weight learned 
from the data.

• We can use the error for the entire dataset as 
the loss function (i.e. SSE): ∑=>;? !
"

𝐴𝑐𝑡𝑢𝑎𝑙= −
𝜙=

<
, and update the weight using gradient 

descent. 
• If we use a logistic function as the activation, 

then it becomes logistic regression.

Adaline R notebook: link

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/2761297084239426/1806228006848429/latest.html


Types of NNs

A direct extension of Adaline is to 
add more neurons in a layer, non-
linear activation function, and add 
more intermedia layers to make it a 
feed forward neural network.

2D, 3D or higher 
dimension data

* Figure adapted from slides by Andrew NG:
Deep Learning Specialization

…
…

……In
pu

t

O
ut

pu
t

Each neuron is fully connected to 
the neurons on the next layer.

https://www.coursera.org/specializations/deep-learning?utm_source=deeplearningai&utm_medium=institutions&utm_campaign=WebsiteCoursesDLSTopButton


FEED FORWARD
NEURAL NETWORK



Simple Feed Forward Neural Network (FFNN)

𝑥!

𝑥"

𝑥#

𝑦!

𝑦"

ℎ!

ℎ"

ℎ#

ℎ$

ℎ% = 𝑓! 𝑏%& +(
'(!

#

𝑏%'𝑥' , 𝑗 = 1,2,3,4

𝑦) = 𝑓" 𝑏)& +(
%(!

$

𝑏)%ℎ% , 𝑘 = 1,2

𝑥!, 𝑥", 𝑥# : Input features vector for one observation 
𝑦, 𝑦" : Actual output outcome for one observation 

𝑓! 1 , 𝑓" 1 : Activation functions, usually non-linear

Total number of parameters (i.e. size of a NN): (3+1)*4 + (4+1)*2 = 26

Concepts stated as early as 1940s!

𝐿 𝑦, 3𝑦 𝒃, 𝒙 : Loss function where 3𝑦 is the model forecast responses 
and 𝑦 is actual observed responses

𝒚 = 𝑓" 𝑓! 𝒙, 𝒃! , 𝒃𝟐 Vector representation



Typical Loss Functions
q Two-class binary responses

ü Binary cross-entropy:

,
@>;

?

−𝑦@𝑙𝑜𝑔 𝑝@ − 1 − 𝑦@ 𝑙𝑜𝑔 1 − 𝑝@

where 𝑦@ is actual value of 1 or 0, 𝑝@ is the predicted probability of being 1, and 𝑁 is the 
total number of observations in the training data.

q Multiple-class responses
ü Categorical cross-entropy for 𝑀 classes:

,
@>;

?

−,
=>;

A

𝑦@,=𝑙𝑜𝑔 𝑝@,=

where 𝑦@,= is actual value of 1 or 0 for a class of 𝑗, 𝑝@,= is the predicted probability of being 
at class 𝑗 and 𝑁 is the total number of observations in the training data.

q Continuous responses
ü Mean square error
ü Mean absolute error
ü Mean absolute percentage error



From Slow Progress to Wide Adoption
1940s – 1980s,  very slow progress due to:
q Computation hardware capacity limitation
q Number of observations with labeled results in the dataset
q Lack efficient algorithm to estimate the parameters in the model

1980s – 2010, a few applications in real word due to:
q Moore’s Law + GPU
q Internet generated large labeled dataset
q Efficient algorithm for optimization (i.e. SGD + Backpropagation) 
q Better activation functions (i.e. Relu)

2010-Now, very broad application in various areas:
q Near-human-level image classification
q Near-human-level handwriting transcription
q Much improved speech recognition
q Much improved machine translation

Now we know working neural network models usually contains many layers (i.e. the 
depth of the network is deep), and to achieve near-human-level accuracy the deep 
neural network need huge training dataset (for example millions of labeled pictures 
for image classification problem).



Optimization Methods
q Mini-batch Stochastic Gradient Descent (SGD)

q Use a small segment of data (i.e. 128 or 256) to update the model 
parameters: 𝑏 = 𝑏 − 𝛼𝛻+𝐿 𝑏, 𝑥,, 𝑦, where 𝛼 is the learning rate which is 
a hyper parameter that can be changed, and 𝑚 is the mini-batch.

q Gradients are efficiently calculated using backpropagation method
q When the entire dataset are used to updated the SGD, it is called one epoch

and multiple epochs are needed to run to reach convergence
q An updated version with ‘momentum’ for quick convergence:

𝑣 = 𝛾𝑣-./0 + 𝛼𝛻+𝐿 𝑏, 𝑥,, 𝑦,
𝑏 = 𝑏 − 𝑣

q The optimal number for epoch 
is determined by when the 
model is not overfitted (i.e. 
validation accuracy reaches 
the best performance). 



More Optimization Methods

• With Adaptive Learning Rates
– Adagrad: Scale learning rate inversely proportional 

to the square root of the sum of all historical squared 
values of the gradient (stored for every weight)

– RMSProp: Exponentially weighted moving average to 
accumulate gradients

– AdaDelta: Uses sliding window to accumulate 
gradients

– Adam (adaptive moments): momentum integrated, 
bias correction in decay

• A good summary: http://ruder.io/optimizing-
gradient-descent/

http://ruder.io/optimizing-gradient-descent/


Activation Functions

q Intermediate layers
q Relu (i.e. rectified linear unit) is usually a good choice which has the following good 

properties: (1) fast computation; (2) non-linear; (3) reduced likelihood of the gradient 
to vanish; (4) Unconstrained response

q Sigmoid, studied in the past, not as good as Relu in deep learning, due to the gradient 
vanishing problem when there are many layers

q Last layer which connects to the output
q Binary classification: sigmoid with binary cross entropy as loss function
q Multiple class, single-label classification: softmax with categorical cross entropy for 

loss function
q Continuous responses: identity function (i.e. y = x)

𝒚 = 𝑓! 𝑓!"# 𝑓!"$ …𝑓# 𝒙, 𝒃# … , 𝒃!"$ , 𝒃!"# , 𝒃!

=𝒚
=𝒃𝟏

= =𝒚=>;
=>;
=>;<=

=>;<>
=>;<=

… =>=
=𝒃𝟏

Gradient:

* Graphs from wiki: link

https://en.wikipedia.org/wiki/Activation_function


Deal With Overfitting
q Huge number of parameters, even with large amount of training data, 

there is a potential of overfitting 
q Overfitting due to size of the NN (i.e. total number of parameters)
q Overfitting due to using the training data for too many epochs

q Solution for overfitting due to NN size
q Dropout: randomly dropout some proportion (such as 0.3 or 0.4) of nodes at 

each layer, which is similar to random forest concept 
q Using L1 or L2 regularization in the activation function at each layer 

q Solution for overfitting due to using too many epochs
q Run NN with large number of epochs to reach overfitting region through 

cross validation from training/validation vs. epoch curve
q Choose the model with number of epochs that have the minimum validation 

accuracy as the final NN model (i.e. early stop)



Recap of A Few Key Concepts
q Data: Require large well-labeled dataset

q Computation: intensive matrix-matrix operation

q Structure of fully connected feedforward NN
q Size of the NN: total number of parameters
q Depth: total number of layers (this is where deep learning comes from)
q Width of a particular layer: number of nodes (i.e. neurons) in that layer

q Activation function
q Intermediate layers
q Last layer connecting to outputs

q Loss function
q Classification (i.e. categorical response)
q Regression (i.e. continuous response)

q Optimization methods (SGD)
q Batch size
q Learning rate 
q Epoch

q Deal with overfitting
q Dropout 
q Regularization (L1 or L2)



DEEP LEARNING
ACROSS PLATFORMS

Luckily, there is no needs to write our own functions from scratch! There are 
thousands of dedicated developers, engineers and scientists are working on 
open source deep learning frameworks. 



Open NN Exchange Format (ONNX)

https://onnx.ai/index.html

https://onnx.ai/index.html


THE MNIST DATASET



MNIST Dataset
q Originally created by NIST, then modified for machine leaning training purpose
q Contains 70000 handwritten digit images and the label of the digit in the image 

where 60000 images are the training dataset and the rest 10000 images are the 
testing dataset.

q Census Bureau employees and  American high school students wrote these digits
q Each image is 28x28 pixel in greyscale
q Yann LeCun used convolutional network LeNet to achieve < 1% error rate at 

1990s
q More details: https://en.wikipedia.org/wiki/MNIST_database

https://en.wikipedia.org/wiki/MNIST_database


USING KERAS R PACKAGE
TO BUILD FEED FORWARD
NEURAL NETWORK MODEL



Procedures
q Data preprocessing (from image to list of input features)

q One image of 28x28 grey scale value matrix à 784 column of features
q Scale the value to between 0 and 1, by divide each value by 255
q Make response categorical (i.e. 10 columns with the corresponding digit column 1 and 

rest columns zero.

q Load keras package and build a neural network with a few layers
q Define a placeholder object for the NN structure
q 1st layer using 256 nodes, fully connected, using ‘relu’ activation function and 

connect from the input 784 features
q 2nd layer using 128 nodes, fully connected, using ‘relu’ activation function
q 3rd layer using 64 nodes, fully connected, using ‘relu’ activation function
q 4th layer using 10 nodes, fully connected, using ‘softmax’ activation function and 

connect to the output 10 columns
q Add drop out to the first three layers to prevent overfitting

q Compile the NN model, define loss function, optimizer, and metrics to follow

q Fit the NN model using the training dataset, define epoch, mini batch size, and validation 
size used in the training where the metrics will be checked

q Predict using the fitted NN model using the testing dataset



R Scripts

Define NN 
Structure

Compile and define loss function, optimizer 
and metrics to monitor during the training

Fit the model using training dataset and 
define epochs, batch size and validation data

Predict new outcomes using the trained model



Size of the Model



Performance Accuracy: 98% without much fine tuning

A few misclassified images:



Cross-Validation Curve



FFNN HANDS-ON SESSION

Databrick Community Edition: link
FFNN Notebook: link

https://community.cloud.databricks.com/login.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/3981279215211072/4269117185296628/78755435857845/latest.html


CONVOLUTIONAL
NEURAL NETWORK



Types of NNs

There are many different CNN structures and 
applications. In this course, we focus on the 
application of image classification of the 
handwritten digits same as FFNN part. 

2D, 3D or higher 
dimension data

* Figure adapted from slides by Andrew NG:
Deep Learning Specialization

https://www.coursera.org/specializations/deep-learning?utm_source=deeplearningai&utm_medium=institutions&utm_campaign=WebsiteCoursesDLSTopButton


Image as Numbers

Grey Scale
1 channel

Each pixel is an
integer between 

0 and 255

Color Picture
3 channel: R G B

Each pixel is three
integers between 

0 and 255

There are more ways to describe pictures. 

66 104 8 10

78

66

23

156 78 23 4

178

56

77

201 223 109 78

23 45 221 178

99 83 76 105

132 15 6 98

23 45 1 3

67 87 102 103

23 56 234 89

4 108 76 44



Concept of Convolution

* Animation graph from UFLDL Tutorial: link

Input (5x5) Kernel/Filter (3x3) Output (3x3)

With stride 1 (move 1 pixel at a time)

For 𝑛×𝑛 input picture, 𝑓×𝑓 kernal, and 
stride 𝑠, the output after convolution will 
has size: 

𝑛 − 𝑓
𝑠 + 1 ×

𝑛 − 𝑓
𝑠 + 1

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/


Extend to Multiple Channels and Filters
For 5×5×3 input RGB picture, we will need 3×3×3 as one kernel/filter. We apply the 
same procedure for each 5×5 input and 3×3 filter, and get 3 intermedia matrixes of 
4×4. The final output after convolution for one set of kernel will has size: 4×4 by 
applying element-wise average.

We can apply multiple channels to the same input, in the graph below, there are two 
set of 3×3×3 kernels. The final output will be two 4×4 matrixes (i.e. a tensor). 

* Figure adapted from slides by Andrew NG: Deep Learning Specialization

https://www.coursera.org/specializations/deep-learning?utm_source=deeplearningai&utm_medium=institutions&utm_campaign=WebsiteCoursesDLSTopButton


Padding
Convolution will reduce the size of the matrix after each convolution layer. 
Sometime, we want to keep the output dimension to be the same as input 
dimension. It can be done by padding (i.e. put zeroes at the edges of the input 
matrix).

For 𝑛×𝑛 input picture, 𝑓×𝑓 kernal, stride 𝑠, 
and padding 𝑝, the output after convolution 
will has size: 

𝑛 + 2𝑝 − 𝑓
𝑠 + 1 ×

𝑛 + 2𝑝 − 𝑓
𝑠 + 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

× =



Estimation Process
Similar to FFNN, we can define number of convolution layers and size & number of kernels to use at 
each layer to construct a CNN. The CNN estimation process is to get a set of values for all the kernels 
to minimize the loss function using mini-batch gradient descent. For MNIST dataset, the loss function 
is the same as what we defined in FFNN example.  Due to the time limit, we will not go into detail of 
the estimation process through back-propagation.  More details can be found: link

In the picture below, it shows one 3x3 kernel with unknow parameters                      :𝑤!, … , 𝑤"

𝑤& 𝑤( 𝑤)
𝑤* 𝑤+ 𝑤,
𝑤- 𝑤. 𝑤/

× =

6x6 3x3 4x4

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c


66 104 8 10

78

66

23

156 78 23 4

178

56

77

Flatten Layer
If we only have convolution layers, the output will be a tensor. How can we connect a 
tensor to the output of 10 classes in the MNIST example? We need to flatten the tensor 
into a vector.  The graph below shows a flatten operation to convert a 4x4x3 tensor into a 
vector of 48 elements. For flatten layer, there is no parameters to be estimated, just 
change the shape. 

Once it is flattened, we can add a few fully connected layers before finally connecting to 
the output layer of 10 classes for the NIST example. 

201 223 109 78

23 45 221 178

99 83 76 105

132 15 6 98

201

…

98

156

…

77

66

…

23



Pooling Layer
One way to reduce the dimension of matrixes. A 𝑓×𝑠 rectangular area is 
replaced by one single number by taking the maximum or average of these 
𝑓×𝑠 values. 

34 3 21 7

55 12 78 124

54 7 76 66

21 15 23 210

Input
4x4

55 124

54 210

Max Pooling

Average Pooling

26 57.5

24.25 93.75

Output
2x2

Output
2x2𝑓 = 2

𝑠 = 2



CNN Example

LeCun et al., 1998. Gradient-based learning applied to document recognition. Link, Link

LeNet-5 Architecture

More modern CNN structures can be found: link

With convolution layers, pooling layers, flatten layer, and fully connect layers, we 
can create functional CNN structure to connect inputs and output for image 
related applications.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/lenet/index.html
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d


Create and Train CNN Model in Keras



CNN HANDS-ON SESSION

CNN Notebook: link

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/3981279215211072/1821707097719970/78755435857845/latest.html


RECURRENT
NEURAL NETWORK



Types of NNs

There are many different RNN structures 
and applications. In this course, we focus on 
one type of application called many to one
problem (i.e. the input is a sequence of 
words and the output is just one variable).

Sequence is key!

* Figures adapted from slides by Andrew NG:
Deep Learning Specialization

https://www.coursera.org/specializations/deep-learning?utm_source=deeplearningai&utm_medium=institutions&utm_campaign=WebsiteCoursesDLSTopButton


Problem Description & IMDB dataset

q Raw data: 50,000 movie review text (X) and it’s corresponding sentiment of 
positive (1, 50%) or negative (0, 50%) (Y). 

q Included in keras package, can be easily loaded and processed.
q Task: train a model such that we can use review text as input to predict whether 

its sentiment is positive or negative (i.e. binary classification problem). 
q It is one example of many-to-one RNN application. 
q The raw data can be found here. Sample data in its text format:

Very smart, sometimes shocking, I just love it. It shoved one more side of David's 
brilliant talent. He impressed me greatly! David is the best. The movie captivates your 
attention for every second.

Positive
(i.e. 1)

Input X (Review) Output Y
(Sentiment)

I and a friend rented this movie. We both found the movie soundtrack and production 
techniques to be lagging. The movie's plot appeared to drag on throughout with little 
surprise in the ending. We both agreed that the movie could have been compressed 
into roughly an hour giving it more suspense and moving plot.

Negative
(i.e. 0)

http://ai.stanford.edu/~amaas/data/sentiment/


Analyzing Text - Tokenization

Raw Text
This movie is great !
Great movie ? Are you kidding  me ! Not worth the money.
Love it
…

Algorithm cannot deal with raw text and we have to convert text into 
numbers for machine learning methods.

Tokenize
[23, 55, 5, 78, 9]
[78, 55, 8, 17, 12, 234, 33, 9, 14, 78, 32, 77, 4]
[65, 36]
…

Pading
& Truncate

[23, 55, 5, 78, 9, 0, 0, 0, 0, 0]
[78, 55, 8, 17, 12, 234, 33, 9, 14, 78]
[65, 36, 0, 0, 0, 0, 0, 0, 0, 0]
…

Now we have a typical data frame, each row is an observation, and each column is a feature. 
Here we have 10 columns by designing after the padding and truncating stage. We have 
converted raw text into categorical integers. 

Suppose we only have 
250 unique words and 
punctuation marks in 
the entire dataset, 
and each unique word 
is replaced with an 
integer between 1 to 
250, and 0 is used for 
padding.



One Hot 
Encoding

Dense 
Embedding

Analyzing Text – Encoding/Embedding
Categorical integers can not be used directly to algorithm as there is no mathematical 
relationship among these categories. We have to use either Encoding or Embedding.

23 0, 0, 0, …, 1, 0, 0, …, 0, 0
One_Column One_Column_dummy

250 columns!

[23, 55, 5, 78, 9, 0, 0, 0, 0, 0]
[78, 55, 8, 17, 12, 234, 33, 9, 14, 78]
[65, 36, 0, 0, 0, 0, 0, 0, 0, 0]
…

[0, 0, 0, …, 1, 0, …, 0, 0, 0, 0, 0]
[0, 0, 0, …, 0, 0, …, 0, 0, 0, 0, 0]
[0, 0, 0, …, 0, 0, …, 0, 0, 0, 0, 0]
…

250x10 columns!

OHE data frameOriginal data frame

10 columns

The OHE will explode the 
dimension if we have 10,000 
unique words in vocabulary and 
a few hundreds words in the 
each review in the training 
dataset! 

It is binary, sparse, without 
consider the relationship among 
words.  OHE is generally not 
used in text related models.

23 0.3, 0.9, 0.1, 0.2
One_Column Embedding_Column

Configurable (here use 4)

[23, 55, 5, 78, 9, 0, 0, 0, 0, 0]
[78, 55, 8, 17, 12, 234, 33, 9, 14, 78]
[65, 36, 0, 0, 0, 0, 0, 0, 0, 0]
…

[0.3, 0.9, 0.1, 0.2, …, 0.7, 0.8]
[0.2, 0.7, 0.3, 0.7, …, 0.4, 0.3]
[0.5, 0.8, 0.4, 0.6, …, 0.5, 0.9]
…

10x4 columns!

OHE data frameOriginal data frame

10 columns

Dense embedding utilizes the 
inherit relationship of words and 
dramatically reduce the embedded 
dimension. The dimension is a 
vector space and can be configured 
such as 4 for this example. 
Word2vec has 300 for the vector.

It is low dimension compared with 
OHE, real number, meaningful, and 
can be learned on specific data  or 
use pre-trained embeddings. 



Analyzing Text – Pre-Trained Embeddings
• word2vec embedding: word2vec was first introduced in 2013 and it was trained by a

large collection of text in an unsupervised fashion. After the training, each word is
represented by a fixed length of vector (for example a vector with 300 elements). We
can quantify relationships between two words using cosine similarity measure. To train
the embedding vector, continuous bag-of-words or continuous skip-gram method was
used. In the continuous bag-of-words architecture, the model predicts the current word
from a window of surrounding context words. In the continuous skip-gram architecture,
the model uses the current word to predict the surrounding window of context words.
There are pretrained word2vec embeddings based on large amount of text (such as wiki
pages, news reports, etc) for general applications.

• More detail: https://code.google.com/archive/p/word2vec/

• fastText embedding: word2vec uses word-level information, however words are created
by meaningful components. fastText use subword and morphological information to
extend the skip-gram model in word2vec. With fastText, new words not appeared in the
training data can be repressed well. It also has 150+ different languages support.

• More detail: https://fasttext.cc/

• BERT embedding: Bidirectional Encoder Representations from Transformers which uses
contextual information of text in a bi-directional manner.

• More detail: link

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html


Analyzing Text – RNN Modeling
With Embedding (pre-trained or to be trained), we now have a typical data frame for model 
training: many-to-one RNN structure where the sequence of the word is considered as input 
and the RNN layer output is connected through a fully-connected  layer to the binary output.

This movie is great !

[0.2,0.4,0.1,0.7] [0.7,0.1,0.5,0.4] [0.4,0.2,0.9,0.3] [0.6,0.1,0.8,0.4] [0.3,0.2,0.9,0.0]

[0.2,0.3,0.3,0.6] [0.8,0.2,0.3,0.7] [0.6,0.2,0.7,0.4] [0.7,0.3,0.8,0.2] [0.4,0.3,0.7,0.2]

t=0 t=1 t=2 t=3 t=4

Final RNN output
To FFNN layer

Intermediate output
Can be used for next RNN layer

Time Stamp

Raw Text Input

Embedding

RNN Layer

RNN Output

Output from embedding
& Input features to RNN We will skip the theory part of RNN 

and go directly to implementation.



IMDB dataset

q Raw data: 50,000 movie review text (X) and it’s corresponding sentiment of 
positive (1, 50%) or negative (0, 50%) (Y).

q Included in keras R package, can be easily loaded and preprocessed with build-in 
R functions

q Preprocessing includes:
o Set size of the vocabulary (i.e. N most frequently occurring words)
o Set length of the review by padding using ‘0’ by default or truncating as we have to 

have same length for all reviews for modeling
o Any words not in the chosen vocabulary replaced by ‘2’ by default
o Words are indexed by overall frequency in the chosen vocabulary

q Once the dataset is preprocessed, we can apply embedding and then feed the 
data to RNN layer.



R Code – Data Preprocessing



R Code – RNN Modeling





RNN Extension – LSTM 
Simple RNN layer is a good starting point, but the performance is usually not that good because long-term 
dependencies are impossible to learn due to vanishing gradient problem in the optimization process. 

LSTM

A great tutorial about LSTM can be found at:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory RNN model introduce a “carry out” mechanism 
such that useful information from the front words can be carried to later 
words like a conveyor belt without suffering the vanishing gradient problem 
we see in the simple RNN case. 

Implementation: 
layer_simple_rnn() à

layer_lstm()

This movie is great !

[0.2,0.4,0.1,0.7] [0.7,0.1,0.5,0.4] [0.4,0.2,0.9,0.3] [0.6,0.1,0.8,0.4] [0.3,0.2,0.9,0.0]Embedding

Raw Text Input

Final RNN output
To FFNN layer

[0.4,0.3,0.7,0.2]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


SIMPLE RNN / LSTM 
HANDS-ON SESSION

RNN/LSTM Notebook: link

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/3981279215211072/3137931017799475/78755435857845/latest.html


The End!


