SPEAKING TO A CLINICAL AUDIENCE

SOME EXPERIENCES AND SOME EXAMPLES

Susan S. Ellenberg, Ph.D.

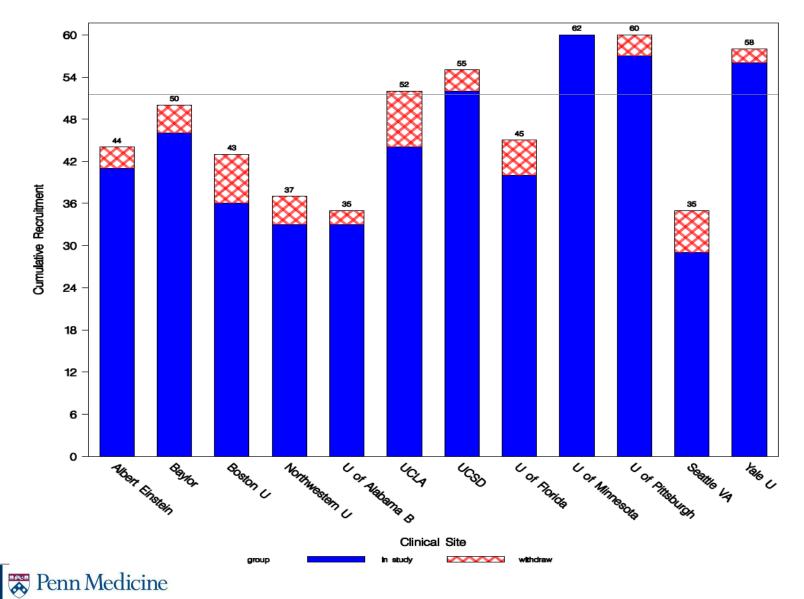
Professor of Biostatistics, Medical Ethics and Health Policy Department of Biostatistics, Epidemiology and Informatics Perelman School of Medicine University of Pennsylvania

ADVICE FROM FDA CLINICIANS

- At the FDA, I was charged with developing a basic biostatistics course for the medical reviewers
- I was given the following direction: NO GREEK LETTERS!
- They could handle α—they were used to that one but no others!
- Key message: they don't want to get mired in the mathematical details, they want to understand the concepts
- Good advice for any presentation to a nonstatistical audience

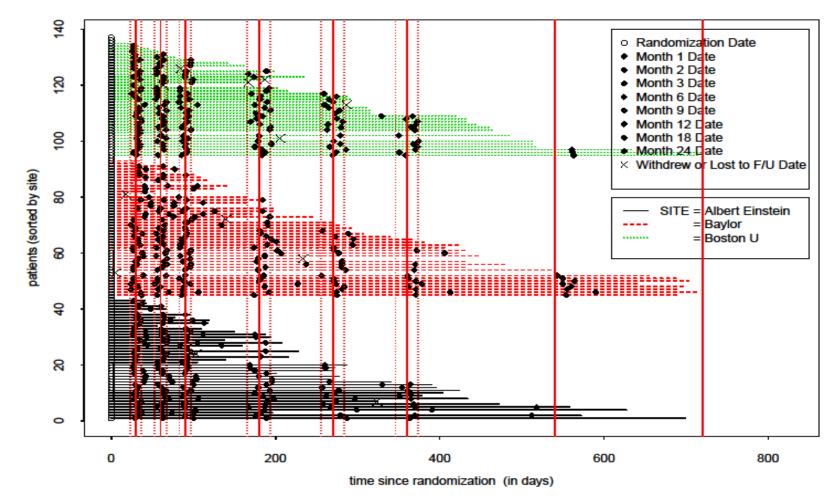
WHAT ARE YOU GOING TO PRESENT TO A CLINICAL AUDIENCE?

- Probably not your dissertation work
- Probably not your latest results that you published in JASA
- Presentations to nonstatistical audiences are of three main types
 - Study design and analytical plan to collaborators
 - Presentation of study design and/or study results at a conference or other general meeting
 - Explanations of statistical methods at professional society meetings or local seminars

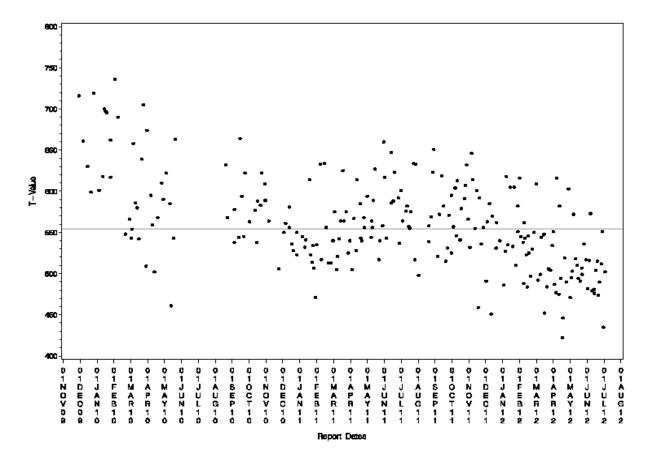

STUDY DESIGNS AND ANALYTICAL PLANS

- If you are working with a large team you may be asked to present study design and analysis at an investigator meeting
- Your collaborators have likely been involved in numerous previous studies—they will not freak out by terms like "mixed model," "Cox model," "logistic regression," etc
- If you are proposing a novel approach, acknowledge that and explain its advantages as conceptually as possible
- Be prepared for informed suggestions!
 - Why are you planning on looking just at the difference between the first and last time point when we are collecting that measure at other times? Why not do a longitudinal analysis?
 - Are you going to use some kind of multiplicity adjustment for the secondary endpoints?

PRESENTING DATA


- Plots are usually better received than tables
- Physicians love bar charts!
- Keep material as simple as possible while still presenting the important findings
- If you present a table, make sure the entries can be read!
 - "I know you can't read this, but..."
 - Divide data up into multiple slides if necessary
 - Avoid tables with large numbers of cells
- Please <u>never</u> say, "we found no difference..." when presenting results that don't reach statistical significance
 - Physicians tend to do this—we need to train them not to

RANDOMIZATIONS AND WITHDRAWALS BY CLINICAL SITE



TIMELINESS OF DATA TRANSFER

TTRIAL - Intervals Between Visits (a)

LAB QC DATA: HIGH SAMPLE

TEACHING ABOUT METHODS

- Nonstatisticians will often tell you that the worst class they ever took was statistics
- Practicing scientists don't need (or want) to know statistical formulae or analytical details
- They need to know conceptually why a certain approach may be optimal in a given situation
- They need to understand pitfalls of common approaches, and ways to avoid them
 - Why ignoring missing values, or using methods like "last observation carried forward" can yield unreliable results
 - Why you can't simply compare number of events observed in different treatment groups when multiple events might be observed in a single participant

EXAMPLE: SAMPLE SIZE

- How to determine a sample size is often of interest
- Showing a formula is not needed—they can easily find a program to do the calculation

HERE IS WHAT THEY DON'T NEED (OR WANT) TO SEE

$$n = \left(\begin{array}{c} c_{1}\sqrt{2 \ \overline{pq}} + c_{2}\sqrt{p_{1}q_{1} + p_{2}q_{2}} \end{array} \right)^{2}$$

$$\left(\begin{array}{c} p_{2} - p_{1} \end{array} \right)^{2}$$

$$c_{1}: 1.96, 1.64 \qquad c_{2}: 0.84, 1.28$$

WHAT THEY NEED TO KNOW ABOUT SAMPLE SIZE

- Sample size depends on the following:
 - The size of the effect you want to document
 - The risks of a false positive and a false negative you are willing to accept
 - The variability of your outcome variable
- The size of the effect you want to document is the major driver of the required sample size
- It is often effective to present a table of sample sizes that would be needed to achieve high power for a range of plausible treatment effects
 - This can demonstrate how changing the effect size and variability of outcome affects the sample size

KNOW YOUR AUDIENCE

- Some clinicians know a lot of statistics
- If you're working with a group like that, they may be fine with Greek letters, formulae, and more technical details
- If you are speaking to a large group to provide an overview of statistical methods, keep it as non-technical as possible
 - $-\operatorname{Focus}$ on the concepts
 - Use simple graphics when possible
 - Be prepared to expand on technical issues when asked