Two Stage Adaptive Design in Dose Ranging Studies and the Alternatives

Qiqi Deng NISS-Merck Meet-up on Adaptive Studies Jan 2020

Phase II clinical development for chronic disease

- In clinical development, key objectives for phase II in non-oncology/chronic disease is to prove the concept and establish dose range
- Classical phase II development consist of a small proof of concept (PoC) study and followed by moderately sized dose ranging studies

Combined PoC and Dose ranging

 Recent trend in the industry is to combine PoC and dose ranging into one trial

- Advantage: shorten clinical development time, smaller total investment (compare to two separate studies) if the drug works.
- Disadvantage: higher sunken development cost at risk, if the drug doesn't work

Mitigating risk in combined DR study

- Separate trials
 - Small early signal of efficacy (ESOE) study. Brown et al (2012)
- Two stage Adaptive design
 - E.g. Futility analysis

Hypothetical Phase II Trial for comparison

- Continuous endpoint
- 4 active doses, 0.125, 0.25, 0.5, 1.0
- Assumptions for sample size evaluation:
 - Standard deviation = 1
 - Effect size = -.333
 - Type I error: $\alpha = .05$, one-sided
 - Power: $1 \beta = 1 .10 = .90$
 - Five candidate set models (linear, 2 emax, exponential, logistic)
- Statistical Methodology for Proof-of-Concept
- Highest dose against placebo
- Multiple Comparison Procedure Modeling (MCPMod)
- Match overall allocation ratio as (2, 1, 1, 1, 2) for a fair comparison

Option 1 – Two trials

$$\alpha = \alpha_1 \times \alpha_2 = .4 \times .125 = .05$$

 $1 - \beta = (1 - \beta_1) \times (1 - \beta_2) = .95 \times .95 = .9025$

Average sample size under null hypothesis: $N_0 = 65 \times 2 + .4 \times 522 = 338.8$ Average sample size under alternative hypothesis: $N_A = 65 \times 2 + .95 \times 522 = 625.9$

Option 2 - Futility analysis (MCPMod + futility on left, and step-wise futility/2-stage GS on right)

$$\alpha = .0506$$
, with $\alpha_1 = .4$ and $\alpha_2 = .06$
 $1 - \beta = .905$, with $1 - \beta_1 = .95$

• Interim decision is Go/NGo, it is more efficient to use one high dose if monotonic assumption can be assumed (Indeed a special case under step-wise design).

Summary of Various Designs

 ${\bf Table\ 1\ Sample\ Size\ Summary\ for\ Each\ Design}$

	2 Trials	MCPMod	MCPMod + futility	Step-wise MCPMod	Step-wise GS
Type I	0.050	0.050	0.050	0.051	0.050
Power	0.903	0.900	0.903	0.901	0.900

Table 2 Sample Size Summary for Each Design

Sample Size	2 Trials	MCPMod	MCPMod + futility	Step-wise MCPMod	Step-wise GS
Stage/Trial I	130		217	130	130
Stage/Trial II	522		336	416	463
Max	652	490	553	546	593
Average (H_0)	338.8	490	351.8	296.4	315.7
Average (H_a)	625.9	490	536.1	525.2	569.8

- MCPMod+futility: Start with multiple doses. The same allocation ratio throughout the trial.
- Step-wise MCPMod: Start with High dose+Pbo. Interim futility analysis by two-sample t test. Final analysis by MCPMod.
- Step-wise GS: Start with High dose+Pbo. Interim and final analysis by two-sample t test.

Comparison of Average sample size

An alternative: A two-stage step-wise design

"Go fast"

An alternative: A two-stage step-wise design

"Go slow"

An alternative: A two-stage step-wise design

Start with a two group PoC: e.g. MTD vs Placebo

Go slow: (Traditional PoC)

- $\delta = 0.4$
- one-sided type I error rate $\tilde{\alpha} = 0.15$
- power of 88%
- => 60 subjects each in highest dose and Placebo

Go fast: (Dose ranging study)

- $\delta = 0.4$
- one-sided type I error rate $\alpha = 0.05$
- power of 88%
- => 100 subjects each in highest dose and placebo, 3 additional doses with 50 subjects per dose

"Alpha protection"

"Alpha protection"

P(continue development)

= P(Go fast and succeed) + P(Go slow and succeed)

$$=P(X>c,Z>z_{1-\alpha})+P(X\leq c,\tilde{Z}>z_{1-\widetilde{\alpha}})$$

$$< P(X > c, \tilde{Z} > z_{1-\alpha}) + P(X \le c, \tilde{Z} > z_{1-\tilde{\alpha}})$$

$$< P(X > c, \tilde{Z} > z_{1-\tilde{\alpha}}) + P(X \le c, \tilde{Z} > z_{1-\tilde{\alpha}})$$

$$=P(\tilde{Z}>z_{1-\tilde{\alpha}})=\tilde{\alpha}$$

where

X = test statistics for interim analysis ESOE

Z = test statistics for final analysis under "Go fast" path

 \tilde{Z} = test statistics for final analysis under "Go slow" path

Chen C, Anderson K, Mehrotra DV, Tse A, Rubin EH. A 2-in-1 adaptive Phase 2/3 design for expedited drug development. Contemporary Clinical Trials. 2018 Jan; 64:238-242. doi: 10.1016/j.cct.2017.09.006.

Numerical results — under alternative hypothesis

- Prob (Continue development) is stable regardless of cut-off.
- Prob (Go slow and success) is the probability to have reversed results. It is not desirable to have reversed results, but it is better than missing a good drug.

Numerical results – ESS2

Two types of expected sample size

$$- ESS_1 = 2n_1 + PF * (2n_2 + kn_3) + (1 - PF) * (2\tilde{n}_2)$$

-
$$ESS_2 = 2n_1 + PF * (2n_2 + kn_3) + (1 - PF) * (2\tilde{n}_2) + PSS * (2n_1 + 2n_2 + kn_3)$$

- Prob(Go fast) -- PF
- Prob(Go fast and success in the end)
- Prob(Go slow and success in the end) PSS
- k is the number of additional dosing groups added in the dose ranging study

Discussion

Two key factors

- Start with two groups (High dose and Placebo), and then expand if promising
- 2-in-1 concept instead of futility analysis
 - Prob(Continue development) is very stable under either pathway
 - can choose a more meaningful interim boundary for decision making
 - Naturally takes care the patient overflow
 - Interim message is different compared to futility analysis

Extension/variations

- Final analysis can use MCPMod or two-group comparison.
- Short term intermediate endpoint for interim analysis
- Two separate trials may have operational flexibility
 - Smaller initial commitment of resources
 - Amount/type of Data to be collect can be different, even different endpoints

Acknowledgement

Thanks to

- Naitee Ting, Xiaofei Bai (co-authors of the paper)
- Yutao Liu, Columbia University
- Cong Chen, Merck

References

- Qiqi Deng, Xiaofei Bai, Naitee Ting. (2018) Dynamic development paths for expanding a proof-of-concept study to explore dose range. Statistics in Medicine.1–10. https://doi.org/10.1002/sim.7840
- Bretz, F., Pinheiro, J. C., and Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose–response studies. *Biometrics* **61**, 738–748.
- Brown MJ, Chuang-Stein C, Kirby S. Designing Studies to Find Early Signals of Efficacy, Journal of Biopharmaceutical Statistics. 2012; 22(6): 1097-1108. DOI: 10.1080/10543406.2011.570466.
- Chen C, Anderson K, Mehrotra DV, Tse A, Rubin EH. A 2-in-1 adaptive Phase 2/3 design for expedited drug development. Accepted by Contemporary Clinical Trials. 2017.

