Bayesian Statistics & Clinical Trial Disruption

Gary L. Rosner

Chenguang Wang & Marianna Zahurak

27 April 2021

What Might a Bayesian Approach Help?

- Interim futility analysis, regardless of type of design
 - Predictive probability calculations
- Augmenting study data with external data
 - Propensity scores (Dr. Lilly Yue's presentation)
 - Marc Vandemeulebroecke
- Change in patient population after disruption
 - Drift in patient characteristics over time
- Sensitivity analyses

Questions in Light of a Disruption

- What might happen going forward?
 - Prediction Bayesian predictive dist'n:

$$p(Y_{\text{new}} \mid Y_{\text{current}}) = \int p(Y_{\text{new}} \mid \theta) p(\theta \mid Y_{\text{current}}) d\theta$$

- What might have happened had there not been a disruption?
 - ▶ If condition on actual data, Bayesian predictive dist'n
 - Can allow for perturbation in treatment effect (sensitivity)
 - ▶ If condition on hypothesized parameter, frequentist

Unplanned Interim Analysis Regardless of Type of Design

Questions

- Should we continue the study?
 - What is the chance that the study will show a difference?
- Even if a standard design based on Neyman-Pearson hypothesis test, can use Bayesian inference at interim
- Examples for Bayesian inference at interim
 - Binary outcome (beta-binomial)
 - Continuous outcome (normal-normal)
 - Time-to-event (parametric or nonparametric)

Example: RCT of 2nd-Line Therapy for Type 2 Diabetes

- Endpoint: HbA1c₆ HbA1c₀
 - Type I error prob (1-sided) = 0.025
- Power in protocol = 0.9
- Effect size = 0.2
- Assumed variance = 0.95
- Sample size = 500 / arm

Disruption

- Recruitment started October 2019
- Trial disrupted March 2020
 - Reached 300 patients / arm
 - No patients admitted since but follow-up has continued
 - ▶ 6-month endpoint recorded for all 300 patients (per arm)

Decisions for Disrupted Diabetes RCT

- Analyze current data: determine efficacy of adding New Drug?
- Re-start recruitment?
 - Perhaps change the target final sample size.
 - It is not clear when recruitment will re-commence and the time taken to reach the final decision is an important consideration.
 - ▶ Decision analysis (utility-based ⇒ Bayesian analysis)
- If data currently blinded
 - Develop procedure to allow "stopping now" or "continuing," depending on results when current data unblinded

Choices for Interim Analyses

Use Bayesian predictive distribution:

$$p(\text{Data}_{\text{post}} \mid \text{Data}_{\text{pre}}) = \int p(\text{Data}_{\text{post}} \mid \theta) p(\theta \mid \text{Data}_{\text{pre}}) d\theta$$

- Set up enthusiastic and skeptical priors
 - Stop if enthusiast loses almost all enthusiasm
 - Continue if skeptic gains considerable enthusiasm
- Zellner's g-prior ("objective" Bayesian approach)
 - Stop if low predictive probability ultimately reject
 - Continue if high predictive probability ultimately reject

Calibrate Prior for Δ to Achieve Desired Type I and Type II Error Probabilities

- Calibrate prior normal dist'n of Δ via alternative, $\Delta_{\rm alt}=0.2$
 - \blacktriangleright Skeptic's $p_{\rm skep}(\Delta)$ & enthusiast's $p_{\rm enth}(\Delta)$
 - _ Skeptic: $\Delta \sim N\left(0, \sigma_{\rm skep}^2\right)$
 - $\Pr(\Delta > \Delta_{\text{alt}}) = 0.025 \ \Rightarrow \sigma_{\text{skep}}^2 = (\Delta_{\text{alt}}/Z_{1-\alpha})^2$
 - _ Enthusiast: $\Delta \sim N\left(\Delta_{\rm alt},\,\sigma_{\rm enth}^2\right)$
 - $\Pr(\Delta < 0) = 0.1 \Rightarrow \sigma_{\text{enth}}^2 = (-\Delta_{\text{alt}}/Z_{\beta})^2$
 - If set variances for frequentist level- α test and power $1-\beta$

Data at Disruption (Simulated with p < 0.025 with full 1000)

- Reached 300 patients / arm
 - ▶ 6-month endpoint recorded for all 300 patients (per arm)

M + SU	M + ND
1.5112	1.6201
0.0578	0.0518
300	300
	1.5112 0.0578

$$\hat{\Delta}$$
 = 0.109 (st. error = 0.0776)
p-value = 0.081 (1-sided)

Skeptic's and Enthusiast's Beliefs Before and After Disruption

Skeptic's & Enthusiast's Inferences After Disruption

Consider Usual Linear Regression

$$Y = X\beta + \varepsilon, \ \varepsilon \sim N(0, \sigma^2)$$

- A common objective prior: Unit Information Prior
 - Prior uses covariate info in data to specify prior $var(\beta)$
 - Ordinary least squares: $\hat{\beta}_{OLS} = (X'X)^{-1}X'Y$, with
 - $\hat{\beta}_{OLS} \sim N\left(\beta, \sigma^2(X'X)^{-1}\right)$ in frequentist presentation
 - With n obs'ns, information in sample is $(X'X)/\sigma^2$ (i.e., 1/var)
 - with respect to precision of $\hat{\beta}_{OLS}$
 - Divide by n gives information in 1 observation
 - ▶ Unit Information Prior: $\beta \mid \sigma^2 \sim N\left(b_0, n\sigma^2(X'X)^{-1}\right)$

Zellner's g-Prior

- Instead of dividing information by n, use arbitrary constant g
- Posterior dist'n of β (conditional on σ^2) has particularly simple form with g-prior (prior mean: $b_0=0$)

$$\beta \mid Y, X, \sigma^{2} \sim N(m, V)$$

$$m = \frac{g}{g+1} (X'X)^{-1} X'Y = \frac{g}{g+1} \hat{\beta}_{OLS}$$

$$V = \frac{g}{g+1} \sigma^{2} (X'X)^{-1} = \frac{g}{g+1} var(\hat{\beta}_{OLS})$$

Variance with Zellner's g-Prior

- Complete prob. model with $\sigma^2 \sim \text{Inv-gamma}(\nu_0/2, \, \nu_0 \sigma_0^2/2)$
- Marginal posterior is

$$\sigma^2 \mid Y, X \sim \text{Inv-gamma}\left(\frac{\nu_0 + n}{2}, \frac{\nu_0 \sigma_0^2 + SSR_g}{2}\right),$$

• where SSR_g = sum of squared residuals with the g-prior

$$SSR_g = Y' \left[I - \frac{g}{g+1} X(X'X)^{-1} X' \right] Y$$

Since using data pre-disruption, might set $\sigma_0^2 = \sigma_{\text{OLS}}^2$

Simulation to Predict Final Result: Generate Remaining Obs'ns & Covars

- Generate remaining observations and covariates at each iter
 - $\sigma^{2^{(j)}} \sim p(\sigma^2 \mid \text{Data}_1)$
 - $\beta^{(j)} \sim p(\beta \mid \text{Data}_1, \sigma^{2^{(j)}})$
 - $X_i^{(j)} \sim p(X \mid \text{Data}_1), \ i = n_1 + 1, \ldots, N$, possibly with other information
 - $Y_i^{(j)} \sim N\left(X_i^{(j)'}\beta^{(j)}, \sigma^{2^{(j)}}\right), i = n_1 + 1, ..., N$
 - Combine $(Y_i^{(j)}, X_i^{(j)}), i = n_1 + 1, ..., N$ with Data₁
 - Regression w/ full data; Reject H_0 : trt effect = 0?

Model for Example Trial: Generate Study Data

- X_1 = Baseline HbA1c (HbA1c₀)
 - $X_1 \sim N(7.8, 0.4^2)$
- X_2 = 6-month HbA1c (HbA1c₆)
 - $X_2 = 7.0 + 0.5 * (X_1 7.0) 1 + \epsilon_2$ if t=0 (metform+SU)
 - $X_2 = 7.0 + 0.5 * (X_1 7.0) 1.2 + \epsilon_2$ if t=1 (metform+N)
 - $\epsilon_2 \sim N(0, 0.95)$
- Y = X1 X2 $E[Y] = 1.4 \text{ or } 1.6, \ var[Y] = 0.95,$ $cov[Y, X_1] = 0.08, \ corr[Y, X_1] = 0.205$

Operating Characteristics (Interim at 1/2): g=500, nSim = 2000, ν_0 =4, σ_0^2 =0.95

Under null hypothesis (Stop if pred prob reject < 1/3 at interim)

```
Would stop early for futility 1847 times (92.3 %). Rejected, 53 times (2.6 %).
```

• Under alternative, $\beta_{\rm trt}=0.2$ (Stop if pred prob reject < 1/3) Would stop early for futility 231 times (11.6 %). Rejected, 1712 times (85.6 %).

• Under alternative, β_{trt} =0.2 (No interim analysis)

Would stop early for futility 0 times (0 %).

Rejected, 1722 times (86.1 %).

Data at Disruption Predicted Power with *g*-Prior

- Reached 300 patients / arm
 - ▶ 6-month endpoint recorded for all 300 patients (per arm)

	M + SU	M + ND
١	1.5112	1.6201
ror	0.0578	0.0518
	300	300
	0.0578	0.0518

Predicted power with g-prior = 0.38

At interim: $\hat{\beta}_{trt}$ =0.099 (0.077), p-value = 0.099 (1-sided)

At final: $\hat{\beta}_{trt}$ =0.142 (0.060), p-value = 0.019 (1-sided)

Potential Lack of Exchangeability: Sensitivity Analysis for Change in Pt Pop

- Disruption might lead to sampling dist'n post-disruption ≠ pre
 - Might "adjust" via covariate (time interval)
 - Consider adapting robust meta-analysis predictive prior (RMAP) approach Schmidli et al. (2014)
 - $p_{\text{RMAP}}(\theta) = \epsilon p(\theta \mid \text{Data}) + (1 \epsilon)p_0(\theta)$
 - $\epsilon \in [0,1]$
 - $p_0(\theta)$ is a *vague* prior
 - Prior post-disruption is mixture of posterior from predisruption & $p_0(\theta)$

Schematic of Disruption

Analysis at End: Control for Drift

- Patients after start of pandemic may be different from enrollees during (and after) the pandemic
 - Patients no longer fully exchangeable
 - Notation
 - $p_1(\Delta \mid Data_1)$: posterior of data pre-disruption,
 - $p_1(\Delta \mid \mathrm{Data}_2)$: posterior with just data between start of disruption and restart of RCT
 - $p_1(\Delta \mid \text{Data}_3)$: posterior with just data between restart of RCT and end of pandemic
 - $p_1(\Delta \mid \text{Data}_4)$: posterior with data after end of pandemic

Summary

- Bayesian analyses at disruption useful for decision making
- No inflation of Type 1 error probability with futility analysis
- Can use Bayesian methods for sensitivity analyses
 - At interim and final analyses

Extra Slides

Bayesian Interim Futility Analysis: Binary Outcome

Suppose RCT

- ▶ H_0 : $\Delta = 0$ vs. H_A : $\Delta \neq 0$, where $\Delta = p_T p_C$
 - $\alpha=0.05$ (1-sided), $1-\beta=0.9$ for $\Delta=\Delta_a$ ($\Delta_a>0$)
- Consider skeptical and enthusiastic priors a la Spiegelhalter
 & Freedman
 - Enthusiast's prior: $p_{\text{enth}}(\Delta \geq \Delta_a) = 0.05$
 - Skeptic: $p_{\text{skep}}(\Delta \ge \Delta_a) = 0.9 \& p_{\text{skep}}(\Delta \le 0) = 0.1$
- Stop for futility if $p_{\text{skep}}(\Delta \geq \Delta_a \mid \text{Data}) \leq \gamma$, for small γ

Binary Outcome Example

- Cancer trial of an anti-angiogenic agent vs. placebo
 - ▶ Target sample size = 100 patients, 1:1 randomization
 - ▶ 80% power for alternative hypothesis:
 - Risk of progression decreases from 94% (placebo) to 72% (new agent) by 16 weeks after randomization

Trt arm	CR/PR	SD	PD
Placebo	0%	6%	94%
CAI	0%	28%	72%

Alternative in protocol

Priors for Cancer Trial

- Accrual slowed after 49 patients. Continue?
 - Odds ratio of PD (placebo vs CAI) ≈ 6
 - Odds of PD w/ placebo (94/6 = 15.7)
 - Odds of PD w/CAI (72/28 = 2.6)
 - Calibrated prior variance of trt effect parameter (log OR) to give around 80% predictive power a priori

Priors

- Normal distributions for log odds (placebo & CAI)
- Roughly uniform prior for placebo risk of PD
- Alternative risk for CAI has approx 80% power

Marginal Dist'n (a.k.a. Prior Predictive Dist'n)

	Reject & Conclude	Mean	St Dev	2.5 %'ile	50 %'ile	97.5 %'ile
Noninformative Prior: Equivalent Risks	Placebo PD* Risk > CAI PD Risk	0.071	0.258	0.00	0.00	1.00
	CAI PD Risk > Placebo PD Risk	0.074	0.261	0.00	0.00	1.00
Enthusiastic Prior: Placebo Odds 6 > CAI	Placebo PD Risk > CAI PD Risk	0.788	0.409	0.00	1.00	1.00
	CAI PD Risk > Placebo PD Risk	0.024	0.153	0.00	0.00	0.00

A priori probability final test stat in the rejection region after randomizing 100 patients: Results of 5000 simulations

Predictive Dist'n at Interim Analysis

	Reject & Conclude	Mean	St	2.5	50	97.5
			Dev	%'ile	%'ile	%'ile
Noninformative	Placebo PD* Risk >					
Prior: Equivalent Risks	CAI PD Risk	0.000	0.010	0.00	0.00	0.00
	CAI PD Risk >					
	Placebo PD Risk	0.065	0.247	0.00	0.00	1.00
Enthusiastic	Placebo PD Risk >					
Prior:	CAI PD Risk	0.087	0.282	0.00	0.00	1.00
Placebo Odds 6	CAI PD Risk >					
> CAI	Placebo PD Risk	0.000	0.020	0.00	0.00	0.00

A posteriori probability of being in the rejection region after randomizing 51 new patients, given data from 49 current patients (2 parallel MCMC chains, 5000 iterations, 25000 burn-in)

Any Reason to Continue for Enthusiast?

Predictive Densities (with Enthusiastic Priors)

Graphical Model for HMM (ignoring nuisance parameters)

 $\nu \sim p_0(\nu)$, vague prior

Might set $\epsilon_1 = 1$