Outline for Discussion at NCES Roundtable on Imputation

- 1. Brief discussion of Bamberg (2011) presentation
 - Types of applications for multiple imputation
 - Traditional (will come back to NHANES DXA imputation later)
 - Bridging (and other types of combining information)
 - Note uncongeniality issues reported in Rubin and Schenker (1987, JOS)
 - o Measurement error

_

- Topics for future research
 - o Flexible models and methods
 - Diagnostics for imputation models
 - "Portability" of bridging models when the two surveys have different contexts 0
 - o "Uncongeniality" between imputation model and analysis model
 - o Methods for reflecting complex sample designs in imputation models
- 2. "Hot-deck imputation versus multiple imputation"
 - Not really the issue, because multiple hot-deck imputation possible
 - To reflect variability more fully, draw bootstrap sample from complete data before 0 creating each set of imputations
 - Rubin and Schenker (1986, JASA; 1991, Statistics in Medicine))
 - Two big issues
 - Single imputation versus multiple imputation
 - o Hot-deck versus explicit-model-based imputation
 - Hot-deck versus explicit-model-based imputation
 - Hot deck

- Imputes values that have actually occurred
- Less parametric flavor => possible robustness
 - See Schenker and Taylor (1996, Computational Statistics and Data Analysis) •
- Explicit-model-based 0
 - Easier to explain the model
 - Handles general patterns of missing data better
 - Can include more variables as predictors (e.g., by omitting high-order interactions)
 - Can improve prediction and make missingness at random more plausible
- 3. Some issues of interest for NHES imputation
 - Single imputation versus multiple imputation -
 - So far, differences in variance estimates not major (note low item nonresponse rates)
 - See if there are classes of analyses for which differences are larger
 - Possible advantages of explicit-model-based imputation over hot-deck imputation
 - Handles general patterns of missing data better 0
 - Predictors (analogous to "boundary variables") can have missingness
 - Note that "random imputation" (used for "boundary variables") probably okay for marginal distributions, but may attenuate multivariate analyses
 - Can include more variables as predictors 0
 - Could reduce bias and decrease variance
 - No need to worry about number of donors in cells
 - Note that there is a bias/variance trade-off associated with number of donors, collapsing cells etc. (see Schenker and Taylor 1996 for some relevant work)
 - Effects of manual imputation and post-imputation edits
 - Any attenuation of the positive effects of the prior imputation?