Editing, Imputation, and Synthesis: A Public Use File for the Census of Manufactures

> Hang Kim NISS / Duke University

2015 Affiliates Annual Meeting, Miami, FL Sunday, March 15

Joint work with Jerry Reiter, Alan Karr, and Larry Cox Research supported by NSF [SES-11-31897]

Background Disseminate Public Use File

Production of Public Use File

Survey Data Collection

Data Processing

Publication

Current Practice: Data Processing

Data Masking

Edit Rules

- **Logical constraints** which are satisfied by reported records to be considered plausible and consistent
 - find unacceptable errors in survey data
 - e.g. pregnant male, \$2M of avg. salary
 - specify space of reasonably imputed values
- Common edit rules for continuous values
 - 1. Range restriction e.g. *total emp.* > 0
 - 2. Ratio edit e.g. *total salary / total emp. < \$1M*
 - 3. Balance edit
 - e.g. total emp. = production workers + other emp.

Three Related Research Topics

- 1. Imputation under linear constraints
 - Technical Report No. 182, NISS
 - Journal of Business and Economic Statistics, 2015, Vol 32
- 2. Simultaneous data editing and imputation
 - Technical Report No. 189, NISS
- 3. **Synthetic** microdata for the U.S. Census of Manufactures
 - work in progress

Topic I Imputation under linear constraints

Similar to U.S. Census of Manufactures

Data 1977-1991 have been used for researchers

All variables are continuous

Complex feasible region given edit rules

Not easy to assume a parametric distribution

Joint Modeling Imputation (NISS report 182)

- Nonparametric Bayesian Model
 - use mixture normals with Dirichlet process (DP) priors
 - to capture complex features of data under very weak distributional assumption
 - restrict support under constraints regions
 - to guarantee that imputed values satisfy edit rules
- Multiple Imputation Approach
 - to capture uncertainty introduced by missing values and imputation process

Simulated Dataset

Simulated Dataset

1. Assume data are truly reported values with no missing

Simulated Dataset

2. Randomly blank some values as simulated nonresponse

Simulated Dataset

3. Fill in simulated missing values using the suggested method

Pink dots: unchanged values

 Blue dots: (Left) original values before blanking (Right) imputed values

Topic II

Simultaneous data editing and imputation

Automatic Data Editing

- Agencies detect and edit unacceptable errors in survey data
 - Manual editing
 - utilizing expert knowledge
 - Automatic editing
 - fast and handling massive datasets
- Automatic editing process
 - 1. Error localization step
 - Which variable of a record is incorrect?
 - 2. Imputation step
 - What is a reasonable value to replace the incorrect value?

Fellegi-Holt (F-H) Approach

- Since proposed by Fellegi and Holt in 1976, the bestknown, most-used guiding principle for automatic data editing
- Mathematical optimization approach
 - Objective function
 - the number of changed variables (to be minimized)
 - Constraints
 - imputed/edited values satisfy edit rules
 - ✤ Example
 - If avg. salary > \$ 1M, need to further review
 - avg. salary = total salary / total employees
 - F-H changes either variable, but not change both variables

Case 1. assume the observed value failing edit rules

Case 1. no option but changing the value of X_1

Case 1. can draw imputations from high density region

Case 1. can draw imputations from high density region

Case 2. no option but changing the value of X_2

Case 2. no option but changing the value of X_2

Case 2. can draw imputations from high density region

Case 3. both options available: changing X₁ or X₂

Case 3. draw imputed values from tails of distribution

Bayesian Data Editing (NISS report 189)

- Nonparametric Bayesian Model
 - use Dirichlet process (DP) mixture normals
 - restrict support under constrained regions
 - **balance edits** as well as ratio edits
 - utilize latent indicator to stochastically find the **location of error**
- Multiple Imputation Approach
 - measure uncertainty introduced by imputation process and data editing process

Generate simulated reported values with introduced errors

Generate simulated reported values with introduced errors

Simulation Study

* Generate simulated reported values with introduced errors

Result with Bayesian Editing

True simulated values Edited values by BE Unchanged values Unchanged values (Edit-passing records) Values before introducting error · Edited values for edit-failing records 5 S 9 9 log X₈ log X₈ 2 5 \circ 10 12 10 12 14 14 log X₁ log X₁

 Bayes. Editing successfully estimates the distribution of simulated true values

Simulation Study: Comparison of Pairwise Correlations from Edited Data

Application: U.S. Census of Manufactures

- Economic census for manufacturing industries, conducted by the U.S. Census Bureau every five years
 - variables: cost of materials, total emp., total value of shipments
 - widely used by researchers, e.g., interested in plant-level productivity
- Current editing practice
 - F-H based automatic editing system
 - using ratio edits and balance edits
 - additional (separated) manual editing processes
- We compare three editing approaches with pairwise correlation
 - BE: Bayesian Editing
 - FH: Fellegi-Holt based editing
 - FH & manual: Final edited data produced by the Census Bureau

2007 Census of Manufactures: Comparison of Pairwise Correlations from Edited Data

Topic III

Synthetic microdata for the U.S. Census of Manufactures

Integration of Imputation, Editing and Synthesizer (in progress)

- Two-stage Multiple Imputation Approach
 - 1. impute/edit survey data X given a size measure z
 - resulting in *m* copies of edited/imputed datasets, $X^{(1)}$, ..., $X^{(m)}$
 - 2. generate synthetic data given $X^{(l)}$ and z
 - resulting in r synthetic file $X_1^{(l)}, \ldots, X_r^{(l)}$ for $l=1,\ldots,m$
- Inferences
 - based on *mr* complete-data analyses and combining rules
- Compared to current practices (with separate steps)
 - correctly estimate variance of final synthetic data
 - all benefits enjoyed by Bayesian editing/imputation

Concluding Remarks

- We proposed a Bayesian framework to integrate the currently-separated processes: imputation, data editing, and disclosure limitation
- A future research topic is simultaneous data editing/ imputation methods for mixed type data, such as American Community Survey
- R package for Bayesian editing/imputation of continuous variables will be published on CRAN soon
- Technical reports are available at NISS websites (<u>http://www.niss.org/publications/technical-reports</u>)

"Thank you"

– Hang J. Kim (<u>hangkim@niss.org</u>)