Bayesian inference for population prediction of individuals without health insurance in Florida

Neung Soo Ha¹

¹NISS

Outline

- Motivation
- Description of the Behavioral Risk Factor Surveillance System, BRFSS
- Description of posterior predictive distribution under informative/non-informative sampling
- Selection bias
- Inference for proportions of individuals without the health insurance
- Variation of maps

Motivation:

Interest:

- 1. Inference for the county-level proportions of persons without health insurance in FL, using the 2010 Behavioral Risk Factor Surveillance System, BRFSS.
- 2. Display the variation of maps

2010 BRFSS: Survey description

- ► The largest on-going telephone based survey; administered by the Centers for Disease Control and Prevention.
- Collect data on individual risk behaviors and preventive health practices for the adult population(18 years of age and older); collects state-specific data
 - ex: alcohol/cigarette consumption, general health status, health insurance,
- Uses a disproportionate stratified sample (DSS) design.
- ▶ In FL, 63 out of 67 counties were sampled.
- No cell phones for 2010.

Examples of observed data

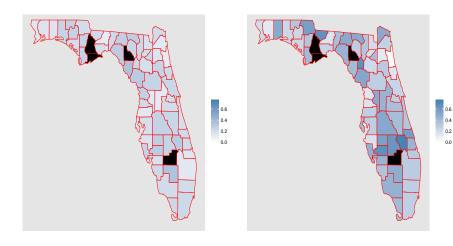


Figure: Observed: All races

Figure: Observed: Hispanics

white=having insurance, blue=not having insurance

Complication

- 1. Small or non-existent number of observations for some sub-population groups in certain geographical areas.
- 2. Possible presence of selection bias in the sample

Model specification for the BRFSS data

$$P(Y_{ik\ell} = 1 | \theta_{ik}) = \theta_{ik}$$

 $logit(\theta_{ik}) = \mathbf{X}'_k \boldsymbol{\beta} + \nu_i$
 $\nu_i \sim N(0, \sigma_{\nu}^2)$

- $Y_{ik\ell}=1$: not having insurance, $Y_{ik\ell}=0$: having insurance
- $i = 1, \dots, M$: county
- ▶ k = 1,..., K: population class (9 age groups × 3 races × 2 genders)
- ▶ $\ell = 1, ..., N_{ik}$: units in county i and group k
- $ightharpoonup N_{ik} = \text{population size in } i \text{th county and } k \text{th group}$
- **X'_k** = vector of indicators for group k.
- ▶ $p(\beta) = \text{const on } (-\infty, \infty)$ Gelman et al.(2004)
- $p(\sigma_{\nu}^2) = \text{const on } (0, \infty)$

Model Evaluation

Model fit

- Bayes residual plots
- QQ plots
- Bayesian tests: Partial posterior predictive p-values, Bayarri and Berger(2002)

Predictions

- Cross-validation to simulate finite population inference
 - ▶ Use 100(1-p)% of observed data to make predictions for the 100*p% that were "held-out"

Posterior predictive distribution with non-informative sampling

Use posterior predictive distribution to make inference for the remaining non-sampled units

Under the non-informative sampling, i.e. independence between the probability of selecting a person and the response:

- $\mathbf{Y}_s =$ sampled units, $\mathbf{Y}_{ns} =$ non-sampled units
- $ightharpoonup Y_{ns} \perp Y_s | \theta, X$
- $f(\mathbf{Y}_{ns}|\mathbf{Y}_{s},\mathbf{X}) = \int g(\mathbf{Y}_{ns}|\mathbf{Y}_{s},\mathbf{X},\theta)p(\theta|\mathbf{Y}_{s},\mathbf{X})d\theta$ $= \int g(\mathbf{Y}_{ns}|\theta,\mathbf{X})p(\theta|\mathbf{Y}_{s},\mathbf{X})d\theta$
- ▶ $p(\theta|\mathbf{Y}_s, \mathbf{X}) \propto L(\theta|\mathbf{Y}_s, \mathbf{X})p(\theta|\beta, \sigma_{\nu}^2)p(\beta, \sigma_{\nu}^2)$: posterior distribution
 - $m{ heta}= ext{a}$ vector of model parameters
 - (β, σ_{ν}^2) = a vector of hyperparameters

Under informative sampling

- Selection probabilities are related to the outcome variables.
- ► The observed outcomes may not be representative of the population outcomes.
- May cause bias for inferences about the finite population parameters.

Selection bias

Let
$$\mathbf{I} = (I_1, \dots, I_N)$$
, $I_i = 1$ if $i \in s$, $I_i = 0$ if $i \notin s$, $s =$ sample The posterior predictive distribution with \mathbf{I}

•

$$f(\mathbf{Y}_{ns}|\mathbf{Y}_s, \mathbf{X}, \theta, \mathbf{I}) \propto g(\mathbf{Y}_{ns}|\theta, \mathbf{X}) p(\mathbf{I}|\mathbf{Y}, \mathbf{X}, \theta)$$
 (1)

Note:

- ▶ $p(\mathbf{I}|\mathbf{X},\mathbf{Y},\theta) \neq p(\mathbf{I}|\mathbf{X},\theta)$ i.e. selection bias.
- Selection information only comes from the sampled units.

Procedure: Ha and Sedransk(2015)

- 1. Pfeffermann and Sverchkov (2009): $p(\mathbf{I}|\mathbf{Y}, \mathbf{X}, \boldsymbol{\theta}) = p(\mathbf{I}|\mathbf{Y}, \mathbf{X}) = \prod_{k} f_1(\mathbf{I}_k|\mathbf{Y}, \mathbf{X}_k)$
- 2. Using the Poisson sampling approximation, Chambers et. al.(1998) $p(\mathbf{I}|\mathbf{Y}, \mathbf{X})$

$$= \prod_{i=1}^{M} \prod_{k=1}^{K} \{ \prod_{\ell \in s_{ik}} P(I_{ik\ell} = 1 | \mathbf{Y}, \mathbf{X}_k) \} \{ \prod_{\ell \notin s_{ik}} (1 - P(I_{ik\ell} = 1 | \mathbf{Y}, \mathbf{X}_k)) \}$$

- 3. $P(I_{ik\ell} = 1 | \mathbf{Y}, \mathbf{X}_k) = E_U(\pi_{ik\ell} | \mathbf{Y}, \mathbf{X}_k) = \{E_s(w_{ik\ell} | \mathbf{Y}, \mathbf{X}_k)\}^{-1},$ Pfeffermann and Sverchkov (2009),
 - $\pi_{ik\ell}$ = probability of unit selected
 - $ightharpoonup w_{ik\ell} = 1/\pi_{ik\ell}$

Posterior predictive distribution with inclusion probability

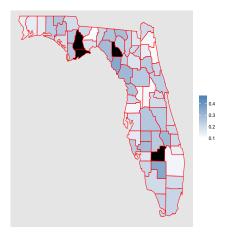
- $\begin{array}{l} \blacktriangleright \ g(\mathbf{Y}_{ns}|\mathbf{Y}_{s},\mathbf{X},\boldsymbol{\theta},\mathbf{I}) \approx \\ g(\mathbf{Y}_{ns}|\boldsymbol{\theta},\mathbf{X}) \times \prod_{i=1}^{M} \prod_{k=1}^{K} (1-a_{k})^{M_{ik1}} (1-b_{k})^{M_{ik0}}, \end{array}$
 - $a_k = \frac{1}{\bar{w}_{k,v0}}, b_k = \frac{1}{\bar{w}_{k,v1}}$
 - $\bar{w}_{k,y0}$ = average of inverse probability of selected units for class k with response $Y_{ik\ell} = 0$
 - $\bar{w}_{k,y1}$ = average of inverse probability of selected units for class k with response $Y_{ik\ell}=1$
 - ▶ M_{ik1} : # non-sampled units with $Y_{ik\ell} = 1$
 - ▶ M_{ik0} : # non-sampled units with $Y_{ik\ell} = 0$
 - $M_{ik1} + M_{ik0} = N_{ik} n_{ik}$
- ▶ Use rejection sampling algorithm to obtain g(Y_{ns}|·), Robert, C. and Casella, G. (2004)

In our data set, $0.96 \leq (1-a_k)/(1-b_k) \leq 1.01$ with 43 of the 54 K groups.

No substantial selection bias.

Comparison between prediction to observation

County comparison



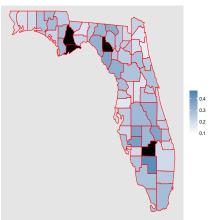


Figure: Observed: All races

Figure: Predicted: All races

Comparison between prediction to observation

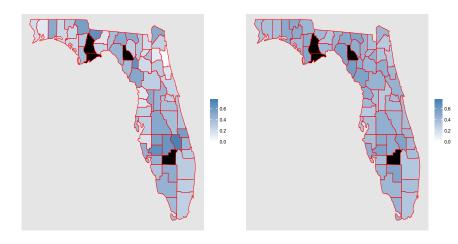


Figure: Observed: Hispanics

Figure: Predicted: Hispanics

Comparison between races

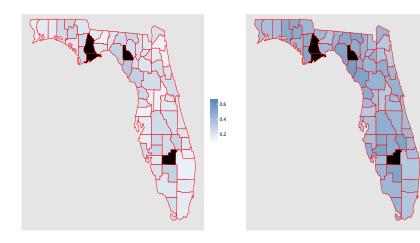


Figure: Predicted: Whites

Figure: Predicted: Hispanics

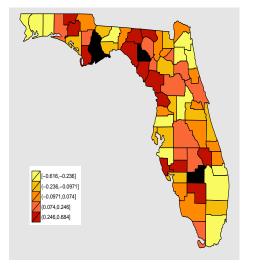
Variation of maps

Objective: Assess the variation of the entire map as a unit rather than expressing the variation separately for each geographic unit.

- Produce a map, based on each MCMC replicate.
- Analyze variations from a set of maps

Illustrate variation between the counties from ν_i , the county-level random effect.

Mean choropleth map of random effect



- Posterior means of county-level random effects, ν_i, are partitioned into quintiles
- Each quintile is color coded

Figure: Mean map of $\hat{\nu}_i$

Besag Method, Besag et al (1995)

- ▶ Provide 100(1 a)% regions for each of ν_i : $\nu_i(L) < \nu_i < \nu_i(U)$
- ▶ Construct lower choropleth map of $\nu_i(L)$ and $\nu_i(U)$
- 1. Denote the posterior MCMC sample by $\{\nu_i^{(t)}: i=1,\ldots,M, t=1,\ldots,T\}$
- 2. Order $\{\nu_i^{(t)}: t=1,\ldots,T\}$ separately for each i to obtain order statistics $x_i^{[t]}$ and ranks $r_i^{(t)}$
- 3. For fixed $k \in \{1, \dots, T\}$, let t^* be the smallest integer such that $x_i^{[T+1-t^*]} \le x_i^{[t]} \le x_i^{[t^*]}$, for all i, for at least k values of t
- 4. $t^* = k$ th order statistic from the set $a^{(t)} = max\{max_ir_i^{(t)}, T+1-min_ir_i^{(t)}\}, t=1,\ldots,T$, i.e. $t^* = a^{[k]}$
- 5. Then, $\{[x_i^{[T+1-t^*]}, x_i^{[t^*]}]: i=1,\ldots,M\}$ are a set of simultaneous credible regions containing at least 100k/T% of the distribution

Lower and Upper maps

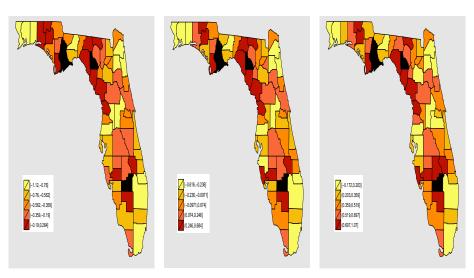


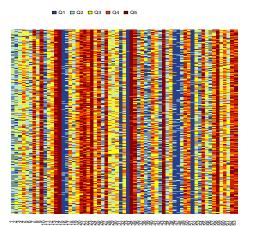
Figure: 90 % Lower, Mean, 90% Upper

Variation in Choropleth map

Goal: Illustrate the uncertainty of the choropleth maps.

- Use T=1000 MCMC replications of ν_i
- ► Each replication can be used to produce a choropleth map.
- Each quintile is color coded.
- For each replication, the value of ith county is color-coded according to its quintile.

Heat map



- Rows: replicates, columns: counties
- Variation in maps is evaluated by color changes

Summary

- Present a method for posterior predictive inference that includes selection information for sampled units
- ▶ Illustrate variation of maps

Reference

- Chambers, R. L., Dorfman, A. and Wang, W. (1998). Limited Information Likelihood Analysis of Survey Data. *Journal of* the Royal Statistical Society, 60, 397-411 Bayesian benchmarking with application to small area estimation *Test* 20 574-588
- Gelman, A., Carlin, J. Stern, H. and Rubin, D. (2004), Bayesian Data Analysis. Chapman and Hall/ CRC, New York, NY.
- Pfeffermann, D. and Sverchkov, M. (2009) Inference under Informative Sampling Sample Surveys: Inference and Analysis, 29B, 455-487
- 4. Robert, C. and Casella, G. (2004), *Monte Carlo Statistical Methods*, Springer, New York, NY.