Bayesian inference
for population prediction of individuals without health insurance in Florida

Neung Soo Ha^{1}

${ }^{1}$ NISS

Outline

- Motivation
- Description of the Behavioral Risk Factor Surveillance System, BRFSS
- Description of posterior predictive distribution under informative/non-informative sampling
- Selection bias
- Inference for proportions of individuals without the health insurance
- Variation of maps

Motivation:

Interest:

1. Inference for the county-level proportions of persons without health insurance in FL, using the 2010 Behavioral Risk Factor Surveillance System, BRFSS.
2. Display the variation of maps

2010 BRFSS: Survey description

- The largest on-going telephone based survey; administered by the Centers for Disease Control and Prevention.
- Collect data on individual risk behaviors and preventive health practices for the adult population(18 years of age and older); collects state-specific data
- ex: alcohol/cigarette consumption, general health status, health insurance,
- Uses a disproportionate stratified sample (DSS) design.
- In FL, 63 out of 67 counties were sampled.
- No cell phones for 2010.

Examples of observed data

Figure: Observed: All races

Figure: Observed: Hispanics
white=having insurance, blue=not having insurance

Complication

1. Small or non-existent number of observations for some sub-population groups in certain geographical areas.
2. Possible presence of selection bias in the sample

Model specification for the BRFSS data

$$
\begin{gathered}
P\left(Y_{i k \ell}=1 \mid \theta_{i k}\right)=\theta_{i k} \\
\operatorname{logit}\left(\theta_{i k}\right)=\mathbf{X}_{k}^{\prime} \boldsymbol{\beta}+\nu_{i} \\
\nu_{i} \sim N\left(0, \sigma_{\nu}^{2}\right)
\end{gathered}
$$

- $Y_{i k \ell}=1$: not having insurance, $Y_{i k \ell}=0$: having insurance
- $i=1, \ldots, M$: county
- $k=1, \ldots, K$: population class (9 age groups $\times 3$ races $\times 2$ genders)
- $\ell=1, \ldots, N_{i k}$: units in county i and group k
- $N_{i k}=$ population size in i th county and k th group
- $\mathbf{X}_{k}^{\prime}=$ vector of indicators for group k.
- $p(\boldsymbol{\beta})=$ const on $(-\infty, \infty)$ Gelman et al.(2004)
- $p\left(\sigma_{\nu}^{2}\right)=$ const on $(0, \infty)$

Model Evaluation

Model fit

- Bayes residual plots
- QQ plots
- Bayesian tests: Partial posterior predictive p-values, Bayarri and Berger(2002)
Predictions
- Cross-validation to simulate finite population inference
- Use $100(1-p) \%$ of observed data to make predictions for the 100 *p\% that were "held-out"

Posterior predictive distribution with non-informative sampling

Use posterior predictive distribution to make inference for the remaining non-sampled units
Under the non-informative sampling, i.e. independence between the probability of selecting a person and the response:

- $\mathbf{Y}_{s}=$ sampled units, $\mathbf{Y}_{n s}=$ non-sampled units
- $\mathbf{Y}_{n s} \Perp \mathbf{Y}_{s} \mid \boldsymbol{\theta}, \mathbf{X}$
- $f\left(\mathbf{Y}_{n s} \mid \mathbf{Y}_{s}, \mathbf{X}\right)=\int g\left(\mathbf{Y}_{n s} \mid \mathbf{Y}_{s}, \mathbf{X}, \boldsymbol{\theta}\right) p\left(\boldsymbol{\theta} \mid \mathbf{Y}_{s}, \mathbf{X}\right) d \boldsymbol{\theta}$
$=\int g\left(\mathbf{Y}_{n s} \mid \boldsymbol{\theta}, \mathbf{X}\right) p\left(\boldsymbol{\theta} \mid \mathbf{Y}_{s}, \mathbf{X}\right) d \boldsymbol{\theta}$
- $p\left(\boldsymbol{\theta} \mid \mathbf{Y}_{s}, \mathbf{X}\right) \propto L\left(\boldsymbol{\theta} \mid \mathbf{Y}_{\mathbf{s}}, \mathbf{X}\right) p\left(\boldsymbol{\theta} \mid \boldsymbol{\beta}, \sigma_{\nu}^{2}\right) p\left(\boldsymbol{\beta}, \sigma_{\nu}^{2}\right):$ posterior distribution
- $\boldsymbol{\theta}=$ a vector of model parameters
- $\left(\boldsymbol{\beta}, \sigma_{\nu}^{2}\right)=$ a vector of hyperparameters

Under informative sampling

- Selection probabilities are related to the outcome variables.
- The observed outcomes may not be representative of the population outcomes.
- May cause bias for inferences about the finite population parameters.

Selection bias

$$
\begin{align*}
& \text { Let } \mathbf{I}=\left(I_{1}, \ldots, I_{N}\right) \\
& I_{i}=1 \text { if } i \in s, I_{i}=0 \text { if } i \notin s, s=\text { sample } \\
& \text { The posterior predictive distribution with } \mathbf{I} \\
& \qquad f\left(\mathbf{Y}_{n s} \mid \mathbf{Y}_{s}, \mathbf{X}, \boldsymbol{\theta}, \mathbf{I}\right) \propto g\left(\mathbf{Y}_{n s} \mid \boldsymbol{\theta}, \mathbf{X}\right) p(\mathbf{I} \mid \mathbf{Y}, \mathbf{X}, \boldsymbol{\theta}) \tag{1}
\end{align*}
$$

Note:

- $p(\mathbf{I} \mid \mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) \neq p(\mathbf{I} \mid \mathbf{X}, \boldsymbol{\theta})$ i.e. selection bias.
- Selection information only comes from the sampled units.

Procedure: Ha and Sedransk(2015)

1. Pfeffermann and Sverchkov (2009):
$p(\mathbf{I} \mid \mathbf{Y}, \mathbf{X}, \boldsymbol{\theta})=p(\mathbf{I} \mid \mathbf{Y}, \mathbf{X})=\prod_{k} f_{1}\left(\mathbf{I}_{k} \mid \mathbf{Y}, \mathbf{X}_{\mathbf{k}}\right)$
2. Using the Poisson sampling approximation, Chambers et.
al.(1998)
$p(\mathbf{I} \mid \mathbf{Y}, \mathbf{X})$
$=\prod_{i=1}^{M} \prod_{k=1}^{K}\left\{\prod_{\ell \in s_{i k}} P\left(\iota_{i k \ell}=1 \mid \mathbf{Y}, \mathbf{X}_{k}\right)\right\}\left\{\prod_{\ell \notin s_{i k}}\left(1-P\left(I_{i k \ell}=1 \mid \mathbf{Y}, \mathbf{X}_{k}\right)\right)\right\}$
3. $P\left(\iota_{i k \ell}=1 \mid \mathbf{Y}, \mathbf{X}_{k}\right)=E_{U}\left(\pi_{i k \ell} \mid \mathbf{Y}, \mathbf{X}_{k}\right)=\left\{E_{s}\left(w_{i k \ell} \mid \mathbf{Y}, \mathbf{X}_{k}\right)\right\}^{-1}$, Pfeffermann and Sverchkov (2009),

- $\pi_{i k \ell}=$ probability of unit selected
- $w_{i k \ell}=1 / \pi_{i k \ell}$

Posterior predictive distribution with inclusion probability

- $g\left(\mathbf{Y}_{n s} \mid \mathbf{Y}_{s}, \mathbf{X}, \boldsymbol{\theta}, \mathbf{I}\right) \approx$ $g\left(\mathbf{Y}_{n s} \mid \theta, \mathbf{X}\right) \times \prod_{i=1}^{M} \prod_{k=1}^{K}\left(1-a_{k}\right)^{M_{i k 1}}\left(1-b_{k}\right)^{M_{i k 0}}$,
- $a_{k}=\frac{1}{\bar{w}_{k, y 0}}, b_{k}=\frac{1}{\bar{w}_{k, y 1}}$
- $\bar{w}_{k, y 0}=$ average of inverse probability of selected units for class k with response $Y_{i k \ell}=0$
- $\bar{w}_{k, y 1}=$ average of inverse probability of selected units for class k with response $Y_{i k \ell}=1$
- $M_{i k 1}$: \# non-sampled units with $Y_{i k \ell}=1$
- $M_{i k 0}$: \# non-sampled units with $Y_{i k \ell}=0$
- $M_{i k 1}+M_{i k 0}=N_{i k}-n_{i k}$
- Use rejection sampling algorithm to obtain $g\left(\mathbf{Y}_{n s} \mid \cdot\right)$, Robert, C. and Casella, G. (2004)

In our data set, $0.96 \leq\left(1-a_{k}\right) /\left(1-b_{k}\right) \leq 1.01$ with 43 of the 54 K groups.

- No substantial selection bias.

Comparison between prediction to observation

County comparison

Figure: Observed: All races

Figure: Predicted: All races

Comparison between prediction to observation

Figure: Observed: Hispanics

Figure: Predicted: Hispanics

Comparison between races

Figure: Predicted: Whites

Figure: Predicted: Hispanics

Variation of maps

Objective: Assess the variation of the entire map as a unit rather than expressing the variation separately for each geographic unit.

- Produce a map, based on each MCMC replicate.
- Analyze variations from a set of maps

Illustrate variation between the counties from ν_{i}, the county-level random effect.

Mean choropleth map of random effect

- Posterior means of county-level random effects, ν_{i}, are partitioned into quintiles
- Each quintile is color coded

Figure: Mean map of $\hat{\nu}_{i}$

Besag Method, Besag et al (1995)

- Provide $100(1-a) \%$ regions for each of ν_{i} : $\nu_{i}(L)<\nu_{i}<\nu_{i}(U)$
- Construct lower choropleth map of $\nu_{i}(L)$ and $\nu_{i}(U)$

1. Denote the posterior MCMC sample by $\left\{\nu_{i}^{(t)}: i=1, \ldots, M, t=1, \ldots, T\right\}$
2. Order $\left\{\nu_{i}^{(t)}: t=1, \ldots, T\right\}$ separately for each i to obtain order statistics $x_{i}^{[t]}$ and ranks $r_{i}^{(t)}$
3. For fixed $k \in\{1, \ldots, T\}$, let t^{*} be the smallest integer such that $x_{i}^{\left[T+1-t^{*}\right]} \leq x_{i}^{(t)} \leq x_{i}^{\left[t^{*}\right]}$, for all i, for at least k values of t
4. $t^{*}=k$ th order statistic from the set
$a^{(t)}=\max \left\{\max _{i} r_{i}^{(t)}, T+1-\min _{i} r_{i}^{(t)}\right\}, t=1, \ldots, T$, i.e. $t^{*}=a^{[k]}$
5. Then, $\left\{\left[x_{i}^{\left[T+1-t^{*}\right]}, x_{i}^{\left[t^{*}\right]}\right]: i=1, \ldots, M\right\}$ are a set of simultaneous credible regions containing at least $100 \mathrm{k} / T \%$ of the distribution

Lower and Upper maps

Figure: 90 \% Lower, Mean, 90\% Upper

Variation in Choropleth map

Goal: Illustrate the uncertainty of the choropleth maps.

- Use $T=1000$ MCMC replications of ν_{i}
- Each replication can be used to produce a choropleth map.
- Each quintile is color coded.
- For each replication, the value of ith county is color-coded according to its quintile.

Heat map

- Rows: replicates, columns: counties
- Variation in maps is evaluated by color changes

Summary

- Present a method for posterior predictive inference that includes selection information for sampled units
- Illustrate variation of maps

Reference

1. Chambers, R. L., Dorfman, A. and Wang, W. (1998). Limited Information Likelihood Analysis of Survey Data. Journal of the Royal Statistical Society, 60, 397-411
Bayesian benchmarking with application to small area estimation Test 20 574-588
2. Gelman, A., Carlin, J. Stern, H. and Rubin, D. (2004), Bayesian Data Analysis. Chapman and Hall/ CRC, New York, NY.
3. Pfeffermann, D. and Sverchkov, M. (2009) Inference under Informative Sampling Sample Surveys: Inference and Analysis, 29B, 455-487
4. Robert, C. and Casella, G. (2004), Monte Carlo Statistical Methods, Springer, New York, NY.
