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Introduction
Basic Setup

U = {1, 2, · · · ,N}: Finite population

A ⊂ U: sample (selected by a probability sampling design).

The parameter of interest, ηg = N−1
∑N

i=1 g(yi ). Here, g(·) is a
known function.

For example, g(y) = I (y < 3) leads to ηg = P(Y < 3).

Under complete response, suppose that

η̂n,g =
∑
i∈A

wig(yi )

is an unbiased estimator of ηg
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Introduction
Imputation

What if some of yi are not observed ?

Imputation: Fill in missing values by a plausible value (or by a set of
plausible values)

Why imputation ?

It provides a complete data file: we can apply the standard complete
data methods
By filling in missing values, the analyses by different users will be
consistent.
By a proper choice of imputation model, we may reduce the
nonresponse bias.
Retain records with partial information: Makes full use of information.
(i.e. reduce the variance)
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Introduction
Basic Setup (Cont’d)

A = AR ∪ AM , where yi are observed in AR . yi are missing in AM

δi = 1 if i ∈ AR and δi = 0 if i ∈ AM .

y∗i : imputed value for yi , i ∈ AM

Imputed estimator of ηg

η̂I ,g =
∑
i∈AR

wig(yi ) +
∑
i∈AM

wig(y∗i )

Need E {g(y∗i ) | δi = 0} = E {g(yi ) | δi = 0}.
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Introduction
ML estimation under missing data setup

Often, find x (always observed) such that

Missing at random (MAR) holds: f (y | x , δ = 0) = f (y | x)
Imputed values are created from f (y | x).

An unbiased estimator of ηg under MAR:

η̂g =
∑
i∈AR

wig(yi ) +
∑
i∈AM

wiE{g(yi )|xi}

Computing the conditional expectation can be a challenging problem.
1 Do not know the true parameter θ in f (y | x) = f (y | x ; θ):

E {g (y) | x} = E {g (yi ) | xi ; θ} .

2 Even if we know θ, computing the conditional expectation can be
numerically difficult.
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Introduction
Imputation

Imputation: Monte Carlo approximation of the conditional
expectation (given the observed data).

E {g (yi ) | xi} ∼=
1

M

M∑
j=1

g
(
y
∗(j)
i

)

1 Bayesian approach: generate y∗i from

f (yi | xi , yobs) =

∫
f (yi | xi , θ) p(θ | xi , yobs)dθ

2 Frequentist approach: generate y∗i from f
(
yi | xi ; θ̂

)
, where θ̂ is a

consistent estimator.
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Introduction
Basic Setup (Cont’d)

Thus, imputation is a computational tool for computing the
conditional expectation E{g(yi ) | xi} for missing unit i .

To compute the conditional expectation, we need to specify a model
f (y | x ; θ) evaluated at θ = θ̂.

Thus, we can write η̂I ,g = η̂I ,g (θ̂).

To estimate the variance of η̂I ,g , we need to take into account of the

sampling variability of θ̂ in η̂I ,g = θ̂I ,g (θ̂).
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Introduction
Basic Setup (Cont’d)

Three approaches

Bayesian approach: multiple imputation by Rubin (1978, 1987),
Rubin and Schenker (1986), etc.

Resampling approach: Rao and Shao (1992), Efron (1994), Rao and
Sitter (1995), Shao and Sitter (1996), Kim and Fuller (2004), Fuller
and Kim (2005).

Linearization approach: Clayton et al (1998), Shao and Steel (1999),
Robins and Wang (2000), Kim and Rao (2009).
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Comparison

Bayesian Frequentist

Model Posterior distribution Prediction model
f (latent, θ | data) f (latent | data, θ)

Computation Data augmentation EM algorithm
Prediction I-step E-step

Parameter update P-step M-step

Parameter est’n Posterior mode ML estimation

Imputation Multiple imputation Fractional imputation

Variance estimation Rubin’s formula Linearization
or Bootstrap
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Fractional Imputation

Idea (parametric model approach)

Approximate E{g(yi ) | xi} by

E{g(yi ) | xi} ∼=
Mi∑
j=1

w∗ij g(y
∗(j)
i )

where w∗ij is the fractional weight assigned to the j-th imputed value
of yi .

If yi is a categorical variable, we can use

y
∗(j)
i = the j-th possible value of yi

w
∗(j)
ij = P(yi = y

∗(j)
i | xi ; θ̂),

where θ̂ is the (pseudo) MLE of θ.
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Fractional Imputation

Parametric fractional imputation

More generally, we can write yi = (yi1, · · · , yip) and yi can be
partitioned into (yi ,obs , yi ,mis).

1 More than one (say M) imputed values of ymis,i : y
∗(1)
mis,i , · · · , y

∗(M)
mis,i from

some (initial) density h (ymis,i | yobs).
2 Create weighted data set{(

wiw
∗
ij , y
∗
ij

)
; j = 1, 2, · · · ,M; i = 1, 2 · · · , n

}
where

∑M
j=1 w

∗
ij = 1, y∗ij = (yobs,i , y

∗(j)
mis,i )

w∗ij ∝ f (y∗ij ; θ̂)/h(y
∗(j)
mis,i | yi,obs),

θ̂ is the (pseudo) maximum likelihood estimator of θ, and f (y ; θ) is the
joint density of y .

3 The weight w∗ij are the normalized importance weights and can be
called fractional weights.
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Proposed method: Fractional imputation
Maximum likelihood estimation using FI

EM algorithm by fractional imputation
1 Initial imputation: generate y

∗(j)
mis,i ∼ h (yi,mis | yi,obs).

2 E-step: compute

w∗ij(t) ∝ f (y∗ij ; θ̂(t))/h(y
∗(j)
i,mis | yi,obs)

where
∑M

j=1 w
∗
ij(t) = 1.

3 M-step: update

θ̂(t+1): solution to
n∑

i=1

M∑
j=1

wiw
∗
ij(t)S

(
θ; y∗ij

)
= 0,

where S(θ; y) = ∂ log f (y ; θ)/∂θ is the score function of θ.
4 Repeat Step2 and Step 3 until convergence.

We may add an optional step that checks if w∗ij(t) is too large for

some j . In this case, h(yi ,mis) needs to be changed.
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Approximation: Calibration Fractional imputation

In large scale survey sampling, we prefer to have smaller M.

Two-step method for fractional imputation:
1 Create a set of fractionally imputed data with size nM, (say

M = 1000).
2 Use an efficient sampling and weighting method to get a final set of

fractionally imputed data with size nm, (say m = 10).

Thus, we treat the step-one imputed data as a finite population and
the step-two imputed data as a sample. We can use efficient sampling
technique (such as systematic sampling or stratification) to get a final
imputed data and use calibration technique for fractional weighting.
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Approximation: Calibration Fractional imputation

Step-One data set (of size nM):{(
w∗ij , y

∗
ij

)
; j = 1, 2, · · · ,M; i = 1, 2 · · · , n

}
and the fractional weights satisfy

∑M
j=1 w

∗
ij = 1 and

∑
i∈A

M∑
j=1

wiw
∗
ijS
(
θ̂; y∗ij

)
= 0

where θ̂ is obtained from the EM algorithm after convergence.

The final fractionally imputed data set can be written{(
w̃∗ij , ỹ

∗
ij

)
; j = 1, 2, · · · ,m; i = 1, 2 · · · , n

}
and the fractional weights satisfy

∑m
j=1 w̃

∗
ij = 1 and∑

i∈A

m∑
j=1

wi w̃
∗
ijS
(
θ̂; ỹ∗ij

)
= 0
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Variance estimation for fractional imputation

Replication-based approach

V̂rep(η̂n,g ) =
L∑

k=1

ck

(
η̂
(k)
n,g − η̂n,g

)2
where L is the size of replication, ck is the k-th replication factor, and

η̂n,g =
∑

i∈A w
(k)
i g(yi ) is the k-th replication factor.
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Variance estimation for fractional imputation

For each k, we repeat the PFI method
1 Generate M imputed values from the same proposal distribution h.
2 Compute θ̂(k), the k-th replicate of θ̂ using the EM algorithm in the

imputed score equation with replication weight w
(k)
i .

3 Using the same imputed values ỹ∗ij , the replication fractional weights

are constructed to satisfy
∑m

j=1 w̃
∗(k)
ij = 1 and

∑
i∈A

m∑
j=1

w
(k)
i w̃

∗(k)
ij S

(
θ̂(k); ỹ∗ij

)
= 0
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Variance estimation for fractional imputation

Variance estimation of η̂FI ,g =
∑

i∈A
∑m

j=1 wi w̃
∗
ij g(ỹij) is computed by

V̂rep(η̂FI ,g ) =
L∑

k=1

ck

(
η̂
(k)
FI ,g − η̂FI ,g

)2
where

η̂
(k)
FI ,g =

∑
i∈A

m∑
j=1

w
(k)
i w̃

∗(k)
ij g(ỹij).

Yang & Kim (ISU) Fractional Imputation October 17, 2014 18 / 28



Simulation Study

Simulation 1

Bivariate data (xi , yi ) of size n = 200 with

xi ∼ N(3, 1)

yi ∼ N(−2 + xi , 1)

xi always observed, yi subject to missingness.

MCAR (δ ∼ Bernoulli(0.6))
Parameters of interest

1 θ1 = E (Y )
2 θ2 = Pr(Y < 1)

Multiple imputation (MI) and fractional imputation (FI) are applied
with M = 50.

For estimation of θ2, the following method-of-moment estimator is
used.

θ̂2,MME = n−1
n∑

i=1

I (yi < 1)
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Simulation Study

Table 1 Monte Carlo bias and variance of the point estimators.

Parameter Estimator Bias Variance Std Var

Complete sample 0.00 0.0100 100
θ1 MI 0.00 0.0134 134

FI 0.00 0.0133 133

Complete sample 0.00 0.00129 100
θ2 MI 0.00 0.00137 106

FI 0.00 0.00137 106

Table 2 Monte Carlo relative bias of the variance estimator.

Parameter Imputation Relative bias (%)

V (θ̂1) MI -0.24
FI 1.21

V (θ̂2) MI 23.08
FI 2.05

Yang & Kim (ISU) Fractional Imputation October 17, 2014 20 / 28



Simulation study

Rubin’s formula is based on the following decomposition:

V (θ̂MI ) = V (θ̂n) + V (θ̂MI − θ̂n)

where θ̂n is the complete-sample estimator of θ. Basically, WM term
estimates V (θ̂n) and (1 + M−1)BM term estimates V (θ̂MI − θ̂n).

For general case, we have

V (θ̂MI ) = V (θ̂n) + V (θ̂MI − θ̂n) + 2Cov(θ̂MI − θ̂n, θ̂n)

and Rubin’s variance estimator ignores the covariance term. Thus, a
sufficient condition for the validity of unbiased variance estimator is

Cov(θ̂MI − θ̂n, θ̂n) = 0.

Meng (1994) called the condition congeniality of θ̂n.

Congeniality holds when θ̂n is the MLE of θ.
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Discussion

The validity of Rubin’s variance formula in MI requires the
congeniality condition of Meng (1994).

Under the congeniality condition:

V (η̂MI ) = V (η̂n) + V (η̂MI − η̂n), (1)

where η̂n is the full sample estimator of η. Rubin’s formula
V̂MI (η̂MI ) = Wm +

(
1 + 1

m

)
Bm is consistent.

For general case, we have

V (θ̂MI ) = V (θ̂n) + V (θ̂MI − θ̂n) + 2Cov(θ̂MI − θ̂n, θ̂n) (2)

Rubin’s formula can be biased if Cov(θ̂MI − θ̂n, θ̂n) 6= 0.

The congeniality condition holds true for estimating the population
mean; however, it does not hold for the method of moments estimator
of the proportions.
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Discussion

For example, there are two estimators of θ = P(Y < 1) when Y
follows from N(µ, σ2).

1 Maximum likelihood method: θ̂MLE =
∫ 1

−∞ φ(z ; µ̂, σ̂2)dz

2 Method of moments: θ̂MME = n−1
∑n

i=1 I (yi < 1)

In the simulation setup, the imputed estimator of θ2 can be expressed
as

θ̂2,I = n−1
n∑

i=1

[δi I (yi < 1) + (1− δi )E{I (yi < 1) | xi ; µ̂, σ̂}] .

Thus, imputed estimator of θ2 “borrows strength” by making use of
extra information associated with f (y | x).

Thus, when the congeniality conditions does not hold, the imputed
estimator improves the efficiency (due to the imputation model that
uses extra information) but the variance estimator does not recognize
this improvement.
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Simulation Study

Simulation 2

Bivariate data (xi , yi ) of size n = 100 with

Yi = β0 + β1xi + β2
(
x2i − 1

)
+ ei (3)

where (β0, β1, β2) = (0, 0.9, 0.06), xi ∼ N (0, 1), ei ∼ N (0, 0.16), and
xi and ei are independent. The variable xi is always observed but the
probability that yi responds is 0.5.

In MI, the imputer’s model is

Yi = β0 + β1xi + ei .

That is, imputer’s model uses extra information of β2 = 0.

From the imputed data, we fit model (3) and computed power of a
test H0 : β2 = 0 with 0.05 significant level.

In addition, we also considered the Complete-Case (CC) method that
simply uses the complete cases only for the regression analysis
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Simulation Study

Table 3 Simulation results for the Monte Carlo experiment based on
10,000 Monte Carlo samples.

Method E (θ̂) V (θ̂) R.B. (V̂ ) Power

MI 0.028 0.00056 1.81 0.044
FI 0.046 0.00146 0.02 0.314
CC 0.060 0.00234 -0.01 0.285

Table 3 shows that MI provides efficient point estimator than CC method
but variance estimation is very conservative (more than 100%
overestimation). Because of the serious positive bias of MI variance
estimator, the statistical power of the test based on MI is actually lower
than the CC method.
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Summary

Imputation can be viewed as a Monte Carlo tool for computing the
conditional expectation.

Monte Carlo EM is very popular but the E-step can be
computationally heavy.

Parametric fractional imputation is a useful tool for frequentist
imputation.

Multiple imputation is motivated from a Bayesian framework. The
frequentist validity of multiple imputation requires the condition of
congeniality.

Uncongeniality may lead to overestimation of variance which can
seriously increase type-2 errors.
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