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Disparate Information Fusion

Disparate Information Fusion (DIF) is the combination of data of
heterogeneous type and/or structure, e.g., text and images.

In text mining, image analysis, and many other disciplines, the ambient
feature spaces are complicated and high-dimensional. Domain experts
have developed specialized measures of (dis)similarity, e.g., for retrieval.

We assume that we have n objects and pairwise dissimilarities for each
data type. Our goal is to construct a common representation of the n
objects to be used for subsequent analysis. Our present concern is with
classification.
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Product Embedding Approach

Given: n objects and k nxn pairwise dissimilarity matrices ∆1,∆2, . . . ,∆k

Goal: construct a Euclidean representation of the objects

∆1 → X1

↘

...
... X∗

↗
∆k → Xk

1. Construct a representation, Xi , for each of the k disparate measures.

2. Form the product, X∗ = [X1| . . . |Xk ].

3. Apply standard multivariate methods for dimension reduction,
classification, etc.
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Multidimensional Scaling

Metric multidimensional scaling are techniques for embedding points in
Euclidean space such that dij ≈ δij .

I Uses actual values of the observed dissimilarities

I Scale equivariant

Nonmetric multidimensional scaling are techniques for embedding points
in Euclidean space such that the interpoint distances are monotonically
related to the dissimilarities.

I Uses only the rank order of the observed dissimilarities

I Scale invariant
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Nonmetric Multidimensional Scaling

Kruskal (1964) formulated nonmetric multidimensional scaling to
minimize the normalized stress criterion:

σn(X ) =

√√√√∑
i<j(d̂ij − dij(X ))2∑

i<j d2
ij (X )

where dij is the distance between objects i and j and d̂ij is the monotone
regression of dij(X ) on the ranks of the observed dissimilarities.

Normalizing ensures scale invariance and precludes degenerate solutions.

Kruskal proposed minimizing σn by a gradient method.
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Our Formulation

Our approach to nonmetric MDS is unconventional, motivated by a
desire to embed large data sets.

We are less concerned with precise global minimizers than with plausible
embeddings of large data sets. For each ∆r , we seek small values of

σ(∆,X ) =
∑
i<j

[δij − dij(X )]2

subject to

(1) ∆ ∈ M(∆r ) [monotonicity constraint]

(2)
∑
i<j

δ2
ij ≥

n(n−1)/2∑
`=1

`2 [nondegeneracy constraint]

Trosset (1998) proposed (2) as an alternative to normalization.
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Our Algorithm

1. Construct an inexpensive initial embedding using the method of
standards. We embed d + 1 anchor points by Classical MDS, then
position each remaining point by solving a dxd linear system.

2. Decrease σ by several cycles of the following variable alternation
scheme:

a Fix ∆ and modify X by several iterations of a fixed point method, e.g.,
Guttman majorization or diagonal majorization (Trosset and Groenen
2005).

b Fix X and modify ∆ by projecting D(X ) into the closed and convex set
of feasible ∆. This is accomplished by projecting D(X ) into M(∆r ) by
isotonic regression (Grotzinger & Witzgall 1984), followed by rescaling
the projected D(X ) to satisfy the nondegeneracy constraint (Lemma 2,
Trosset 1998).
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Two Classification Examples

Example 1: Classify images as one of four classes using two measures

Example 2: Classify yeast genes with functional labels given five measures

For each example we:

1. Construct a Euclidean representation as the product of the separate
embeddings constructed by nonmetric MDS.

2. Perform linear discriminant analysis in product representation (or a
subspace). Subspaces identified by various methods, e.g., variable
selection (McHenry 1978), discriminant coordinates, etc.
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Example 1 - Tiger Images

Given n = 1520 images that contain the word “tiger” in their caption.

The images range in size from 186× 245 pixels to 406× 450 pixels. Each
pixel is represented as a vector of RGB values.

Each object is labeled by the following:

animal 148 golf 897
baseball 145 rebel 330
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Example 1 - Color

1. Transform each image from RGB space to CIE L*a*b* space. 1

2. For each image, compute pixel representatives m1, . . . ,m8 by a fast
algorithm for k-means clustering. An image’s color signature is the
discrete measure that weights each mi by the proportion of pixels
associated with mi .

3. Use ‖mi −mj‖2 to compute the earth mover’s distance between
pairs of color signatures. 2

1McLaren (1976). The development of the CIE 1976 (L*a*b*) uniform
colour-space and colour-difference formula. Journal of the Society of Dyers and
Colourists, 92:338–341.

2Rubner, Tomasi, Guibas (1998). A metric for distributions with applications to
image databases. Proceedings of the IEEE International Conference on Computer
Vision, 59–66.
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Example 1 - Texture

With minor deviations, we followed Chapter 5 of Rubner’s 1999 Ph.D.
dissertation, Perceptual Metrics for Image Database Navigation,
Department of Computer Science, Stanford University.

1. Convolve each image with 24 Gabor filters (6 orientations × 4
scales), each with a fixed size of 13× 13 pixels. This procedure
associates a vector of 24 features with each pixel.

2. For each image, compute pixel representatives m1, . . . ,m8 by
k-means clustering the pixel feature vectors. An image’s texture
signature is the discrete probability measure that weights each mi by
the proportion of pixels associated with mi .

3. Use ‖mi −mj‖1 to compute the earth mover’s distance between
pairs of texture signatures.
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Example 1 - Product Embedding

∆color → Xcolor

↘

X∗

↗
∆texture → Xtexture
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Example 1 - Results
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Example 2 - Yeast gene function
Given n = 3588 yeast genes, each with 13 binary labels:

Metabolism 1048 Cell Rescue, Defense & Virulence 264
Energy 242 Interaction w/ cell. env. 193
Cell Cycle & DNA proc. 600 Cell Fate 411
Transcription 753 Control of cellular organization 192
Protein Synthesis 335 Transport Facilitation 306
Protein Fate 578 Others 81
Cellular Transportation 479

Five measures were taken between each pair of genes:

1. Inner product of binary vectors (presence of Pfam domains) (Pfam)

2. Distance in a graph of genetic interaction information (GI)

3. Distance in a graph of protein-protein interaction information (PPI)

4. Distance in a graph of co-participation in a protein complex (TAP)

5. Dissimilarity measure between expression profiles (Exp)

Deng (2003) used a Markov Random Field to fuse the five measures and
predict gene function. Lanckriet et al. (2004) formed an optimal linear
combination of the five measures in a kernel representation.
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Example 2 - Product Embedding

∆Pfam → XPfam

↘

...
... X∗

↗
∆Exp → XExp
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Example 2 - Results
Following the methods in Deng (2003) and Lanckriet (2004) we present
the results as the area under the receiver operating characteristic (ROC)
curve (AUC).

The ROC curve is a plot of the true positive rate (sensitivity) vs. the false
positive rate (1-specificity) for various discrimination thresholds. The
AUC statistic is a means of summarizing the curve in a single number.
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Example 2 - Results
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Summary

I Motivated the use of nonmetric MDS in the product embedding

I Formulated a scalable implementation of nonmetric MDS

I Results from image classification and gene function classification
show the technique works on complex data
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Thank you!
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