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Missing Data Mechanisms

@ Missing mechanisms can be classified as (Rubin, 1976):

o Missing completely at random (MCAR)
o Missing at random (MAR)

- Missingness depends on observed values

o Weighted GEE (Robins et al., 1995; Rotnitzky et al., 1998)
o Multiple imputation (Rubin, 1987; Paik, 1997; Fitzmaurice,
Laird and Ware, 2011)
o Both are consistent under MAR
e Missing not at random (MNAR)

- Missingness depends on un-observed values



Introduction
Methodology
Nonignorable Missing Data Theory

Numerical Studies
Summary

Existing Approaches for Nonignorable Missing Data

@ When missing is nonignorable, additional assumptions or sensitivity
analysis might be required (Robins, 1997)

o Likelihood methods (Diggle and Kenward, 1994; Ibrahim et al.,
2001)

o Semiparametric methods (Scharfstein et al., 1999; Kim and
Yu, 2011)

o Mixed-effects models (Tsonaka et al., 2009; Shao and Zhang,
2015)
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A Motivating Example: Presidential Election Survey Data

@ 4719 survey respondents were measured their interests in presidential
election for 9 waves (2007-2008, Associated Press-Yahoo! News Poll)

@ Responses are missing intermittently with a missing rate of 49.7%

@ 1990 respondents were refreshment samples recruited in wave 3, 5, 6, or
9

@ Predictors include Time, Gender, Race, Age, Education, Income, Marital
Status and Location
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A Motivating Example: Presidential Election Survey Data

Average interest in campaign for president
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A Motivating Example: Presidential Election Survey Data

Respondents with higher interest tend to participate more

Last-wave recruits show a significantly higher interest
(p-value= 8.56 x 107'°)

@ Data could be missing not at random

@ Goals: Correct estimation bias
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Shared Parameter Models for Nonignorable Missingness

@ Introduce shared parameter model (Wu and Carroll, 1988)

@ Model Assumption:

o The response y and the missing indicator § are independent
given the random effect b:

y L &b

@ Parametric assumptions on b difficult to verify
@ Existing approaches require a full or partial likelihood formulation
@ Restrictive: requiring a dropout missing pattern

@ Intensive computation involving high-dimensional integration or sampling
procedures
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The Proposed Method

o Basic ldeas:

e Estimating equations utilizing unspecified random effects
o Properties:

o No parametric assumptions on random effects

o Non-monotone missing pattern (without baseline observations)

o Correlated errors (serial correlation)
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Notations

@ y; is an n; X 1 observed response vector, i =1,..., N

@ X; is an n; x p fixed-effects covariates matrix

@ Bis a p x 1 fixed-effects parameter

@ Z is an n; X g random-effects covariates matrix; usually a subset of X;

@ b= (by,...,by) is the random-effects parameter, with each b; a ¢ x 1
random effect for subject i

@ E(yilbi) = u(XiB + Zib;) = p;
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Penalized Conditional Quasilikelihood

o The conditional quasi likelihood of y given the random effects

bis It = 2¢ Z, 1 di(yi, 1P), where
di(y,u) = —2fy av(” du

@ Impose a constraint to ensure identifiability: Pab =0

@ Pj is the projection matrix on the null space of (I — Px)Z
where X and Z are the design matrices for fixed and random
effects respectively

@ Penalized conditional quasilikelihood (Jiang, 1999)
1N

1
lg=—==>_ di(yi,uf) — SA|Pabl?
q 2¢i:1 (.yv:ul) 2‘A’
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Conditional Extended Score Corresponding for 5 and b

o Take the derivatives of the penalized conditional
quasilikelihood /; corresponding to /3 and b

@ The quasi-score equation corresponding to the fixed effect 3 is

N

S YW - ) =0,

@ The quasi-score equation corresponding to the random effects

bis
o= (G (WD) ™My — ) — A%EEPab = 0
P = (SEY(WR) = 1) = AGAEPab = 0
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Moment Conditions for Fixed Effects

@ Construct the moment conditions for fixed-effects 3 conditional on b,
S (G AT AT (v — i)

S (G AT o 3,

where A; is marginal variance of y;, and M;'s are basis matrix
representations of the empirical correlations

@ Conditional on b,
B = argmin(G})'(CH) T (G})
where Cf = (1/N) S gf (8)gf (8)’

12/33
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Moment Conditions for Random Effects

@ The random effect b is considered as a realization of a random process

@ Construct the moment conditions for b:
G'(b) = {(g1)’, .-, (gh)’; \b’, \2(Pab)"}’,

where g/ = (g—ﬁl_")/c_l(y,- — i) and C = Var(y|b)

@ Estimate B and b by iteratively minimizing (G%) (C{)~*(G}) and
(G")'(G")

13/33
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Tuning Parameters Selection

A1 penalizes the variance of b to control the variance magnitude and
assure convergence

A2 penalizes the mean of b to assure identifiability

@ Use a generalized cross validation to tune A1

A2 is not critical and is fixed to be log(n)

14 /33
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Theoretical Properties

@ Ify I &|b then E(gf|b) =0
@ Consistency and asymptotic normality of ,@
@ No need to estimate §

@ However, y 1 5“3 is not necessarily true as b might not be a consistent
estimator of b

N
.1 ~ . .
@ If lim — E gf(ﬂ|b) — 0, then we have consistency and asymptotic
N—oo N P
normality of 3 , given b.
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Consistency under Shared Parameter Model Assumption

Theorem
If:
1) y L 4|b
2) %, &l(al

then conditional on

b) — 0 as N — oo,
b,

B -B8= OP(%)?

and

VN(B - B) — N(O, X).

16 /33
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Assumption Relaxation

@ Shared parameter model assumption y L §|b is a concept of " conditional
MCAR”

@ However, random effects alone may not capture the missing mechanism

@ “Conditional MAR": allow the observed response to carry out information

d|(b,y) = é|b = 6|(b,y) = 6|(b,y°)

where y = (y°,y"), with y° the observed values and y™ the missing

values

17/33
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Assumption Relaxation

@ Linear Conditional Mean assumption (Qu et al., 2010)

E(y™|b,y°) is linear in y°

@ An idea of first-order expansion

@ Holds true for normal responses, and approximately true for binary or
ordinal responses
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Consistency without Shared Parameter Model Assumption

Theorem
If:
1) E(y™|b,y°) is linear in y°
2) 23 gl(Blb) + 0 as N — oo,

then conditional on B

B_ﬂ:O )7

( 1
VN
and

VN(B - B) — N(O, X).
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Simulation Study 1

Sample size N = 100, the largest cluster size T = 10

Fixed effects: intercept, treatment, time and interaction,
ﬂ = (717 17 13 08)/

@ Random effects: z; = (1, xi3), bix 0 % Beta(0.5,0.5) — 1 and
biz % N(0,0.5%); by is bimodal

@ The missing pattern is intermittent missing

@ The missing rate is about 45%

20/33
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Simulation Study 1

@ The measurement process:
@ y;i's are binary responses, with probability of being 1:

|ogit(pf:) = x:’tﬁ + z:-tb,-

o Cor(y;|b;) is AR-1 with p =0.2,0.6
@ The missing process:

e J;; = 1 if subject / is observed at time t, and 0 otherwise

o logit{P(0x = 1)} =+'b; — t/T 4+ 0.5, where v = (2,1.5)’

21/33
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Simulation Study 1

Table: Absolute bias and RMSE of fixed-effects estimation when
responses are binary with an AR1 correlation structure

MEEE PQL WGEE Ml
p=0.2 ﬁo 0.390.42 0.300.35 1.041 77 0.550.56
B1 0.21p26 0.24032 2.04344 0.57050
B2 0.16021 0.30039 1.22203 0.21p.24
p=06 SBo 038043 050065 0.92141 0.480.50
B2 018023 1.391s 0.85166 0.230.26
Bz 0.27034 1.02042 0.95134 0.520.55

MEEE, the proposed mixed-effects estimating equation; PQL, penalized
quasi-likelihood (Breslow and Clayton, 1993); WGEE, weighted generalized estimating
equation (Robins et al., 1995); MI, multiple imputation (Fitzmaurice et al., 2011);

Monotonized data are used for WGEE.
22/33
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Simulation Study 2

@ Responses are count data

@ Shared parameter model assumption is violated

@ The missing pattern is dropout

@ The missing rate is about 35%

23/33
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Simulation Study 2

@ The measurement process:

e Each y; follows a correlated Poisson distribution with
p=20,0.4,0.7 and:

log(Aje) = (Bo + bio) + (B1 + bir)xi,

where x;; © N(0,1), (8o, 81)' = (0,0.8) and b; % N(0,0.22)

@ The missing process:

e J0; = 1 if subject i is observed at time t, and O otherwise.

ron | ieer Yt yien)—15  ift<T
° |Og|t(pit) = { 15. (_)/i,tfl +YIt) 3 e T

e N =100 and T:5, assumeé,-t:--~:6,-T:0if&,-’t,lzo

24 /33
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Simulation Study 2

Table: MSE of fixed-effects estimation when responses are count data
with an ARL correlation structure

MEEE PQL WGEE MI DR
p=00 po 0163 0178 0.234 0.339 0.563
B 0085 0.062 0.103 0.163 0.459
p=04 pSo 0192 0334 0.293 0.344 0.494
B 0126 0196 0.130 0.099 0.370
p=07 [y 0202 0663 0.623 0467 1.011
B 0185 0.357 0.247 0.126 0.461

MEEE, the proposed mixed-effects estimating equation; PQL, penalized
quasi-likelihood (Breslow and Clayton, 1993); WGEE, weighted generalized estimating
equation (Robins et al., 1995); MI, multiple imputation (Fitzmaurice et al., 2011);
DR, doubly-robust generalized estimating equation (Seaman and Copas, 2009).

25/33
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Presidential Election Survey Data

@ A random intercept model:

Iogit(,u,-t):X,-tﬂer,-,t:1,...,n,-,i:1,...,N

@ X is a p-dimensional covariate

@ N = 4719, p =11, and the largest cluster size is T =9

26 /33
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Presidential Election Survey Data

Table: Estimates and p-value of fixed effects

Method MEEE PQL Ml WGEE* DR*
Intercept —4.35¢.00 —5.370.00 —2.400.00 —3.19¢.00 —2.860.01
Time 0.110‘00 0.230,00 0.110,00 0.110_00 0.11[)‘(]0
Age 0.040.00 0.050.00 0.020.00 0.030.00 0.030.04
Education 0.550.00 0.620.00 0.290.00 0.370.00 0.360.12
Gender 0.190.00 0.220.01 0.110.04 0.030.67 0.06¢.59
Income 0.050.00 0.060.00 0.030.00 0.030.00 0.030.59
Marital Status —0.01¢.87 —0.030.76 —0.01p.85 —0.020.81 —0.080.86
Location 0.15007 0~130.26 0.05043 0-07046 0.03()‘95
Black 0.600.00 0.700.00 0.330.00 0.430.00 0.220.79
Other —0.23007 —0.260(14 —0.11()‘30 —0‘43()‘01 —0.20()‘32
Hispanic 0.050.66 0.080.65 0.02¢.87 —0.12p33 —0.06¢.94

*Data are monotonized before analysis; Refreshment samples are not used

33
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Presidential Election Survey Data

Average interest in following news

@ Large random effects = High interest in election
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Presidential Election Survey Data

@ The estimated random effects: showing a bi-modal pattern

150

100

Histogram of the estimated random effects
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Concluding Remarks

Construct an unbiased estimating equation

Utilizing unspecified random effects to quantify nonignorable missing data

Consistency and asymptotic normality of fixed-effects estimators

@ Can handle intermittent non-response data occurred in refreshment
samples

30/33
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