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Missing Data Mechanisms

Missing mechanisms can be classified as (Rubin, 1976):

Missing completely at random (MCAR)

Missing at random (MAR)
- Missingness depends on observed values

Weighted GEE (Robins et al., 1995; Rotnitzky et al., 1998)
Multiple imputation (Rubin, 1987; Paik, 1997; Fitzmaurice,
Laird and Ware, 2011)
Both are consistent under MAR

Missing not at random (MNAR)
- Missingness depends on un-observed values
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Existing Approaches for Nonignorable Missing Data

When missing is nonignorable, additional assumptions or sensitivity

analysis might be required (Robins, 1997)

Likelihood methods (Diggle and Kenward, 1994; Ibrahim et al.,
2001)

Semiparametric methods (Scharfstein et al., 1999; Kim and
Yu, 2011)

Mixed-effects models (Tsonaka et al., 2009; Shao and Zhang,
2015)
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A Motivating Example: Presidential Election Survey Data

4719 survey respondents were measured their interests in presidential
election for 9 waves (2007-2008, Associated Press-Yahoo! News Poll)

Responses are missing intermittently with a missing rate of 49.7%

1990 respondents were refreshment samples recruited in wave 3, 5, 6, or
9

Predictors include Time, Gender, Race, Age, Education, Income, Marital
Status and Location
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A Motivating Example: Presidential Election Survey Data
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A Motivating Example: Presidential Election Survey Data

Respondents with higher interest tend to participate more

Last-wave recruits show a significantly higher interest
(p-value= 8.56× 10−10)

Data could be missing not at random

Goals: Correct estimation bias
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Shared Parameter Models for Nonignorable Missingness

Introduce shared parameter model (Wu and Carroll, 1988)

Model Assumption:

The response y and the missing indicator δ are independent
given the random effect b:

y ⊥⊥ δ|b

Parametric assumptions on b difficult to verify

Existing approaches require a full or partial likelihood formulation

Restrictive: requiring a dropout missing pattern

Intensive computation involving high-dimensional integration or sampling
procedures
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The Proposed Method

Basic Ideas:

Estimating equations utilizing unspecified random effects

Properties:

No parametric assumptions on random effects

Non-monotone missing pattern (without baseline observations)

Correlated errors (serial correlation)
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Notations

yi is an ni × 1 observed response vector, i = 1, . . . ,N

Xi is an ni × p fixed-effects covariates matrix

β is a p × 1 fixed-effects parameter

Zi is an ni × q random-effects covariates matrix; usually a subset of Xi

b = (b′1, . . . , b
′
N)′ is the random-effects parameter, with each bi a q × 1

random effect for subject i

E(yi |bi ) = µ(Xiβ + Zibi ) = µi
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Penalized Conditional Quasilikelihood

The conditional quasi-likelihood of y given the random effects
b is lbq = − 1

2φ

∑N
i=1 di (yi , µ

b
i ), where

di (y , u) = −2
∫ u
y

y−u
aiv(u)du

Impose a constraint to ensure identifiability: PAb = 0

PA is the projection matrix on the null space of (I − PX )Z
where X and Z are the design matrices for fixed and random
effects respectively

Penalized conditional quasilikelihood (Jiang, 1999)

lq = − 1

2φ

N∑
i=1

di (yi , µ
b
i )− 1

2
λ|PAb|2
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Conditional Extended Score Corresponding for β and b

Take the derivatives of the penalized conditional
quasilikelihood lq corresponding to β and b

The quasi-score equation corresponding to the fixed effect β is

N∑
i=1

(
∂µi
∂β

)′(Wi )
−1(yi − µbi ) = 0.

The quasi-score equation corresponding to the random effects
b is h1 = (∂µ1

∂b1
)′(Wb

1)−1(y1 − µb1
1 )− λ∂PAb

∂b1
PAb = 0

...

hN = ( ∂µi∂bN
)′(Wb

N)−1(yN − µbNN )− λ∂PAb
∂bN

PAb = 0
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Moment Conditions for Fixed Effects

Construct the moment conditions for fixed-effects β conditional on b,

Gf
N =

1

N

N∑
i=1

gf
i (β) =

1

N


∑N

i=1( ∂µi
∂β

)′A
−1/2
i M1A

−1/2
i (yi − µi )

...∑N
i=1( ∂µi

∂β
)′A
−1/2
i MmA

−1/2
i (yi − µi )

 .

where Ai is marginal variance of yi , and Mj ’s are basis matrix
representations of the empirical correlations

Conditional on b,

β̂ = arg min(Ḡf
N)′(C̄ f

N)−1(Ḡf
N)

where C̄ f
N = (1/N)

∑
gf
i (β)gf

i (β)′
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Moment Conditions for Random Effects

The random effect b is considered as a realization of a random process

Construct the moment conditions for b:

Gr (b) = {(gr
1)′, . . . , (gr

N)′, λ1b′, λ2(PAb)′}′,

where gr
i = ( ∂µi

∂bi
)′C−1(yi − µi ) and C = V̂ar(y|b)

Estimate β and b by iteratively minimizing (Ḡf
N)′(C̄ f

N)−1(Ḡf
N) and

(Gr )′(Gr )
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Tuning Parameters Selection

λ1 penalizes the variance of b to control the variance magnitude and
assure convergence

λ2 penalizes the mean of b to assure identifiability

Use a generalized cross validation to tune λ1

λ2 is not critical and is fixed to be log(n)
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Theoretical Properties

If y ⊥⊥ δ|b then E(gf
i |b) = 0

Consistency and asymptotic normality of β̂

No need to estimate δ

However, y ⊥⊥ δ|b̂ is not necessarily true as b̂ might not be a consistent
estimator of b

If lim
N→∞

1

N

N∑
i=1

gf
i (β|b̂)→ 0, then we have consistency and asymptotic

normality of β , given b̂.
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Consistency under Shared Parameter Model Assumption

Theorem

If:

1) y ⊥⊥ δ|b
2) 1

N

∑N
i=1 gf

i (β|b̂)→ 0 as N →∞,

then conditional on b̂,

β̂ − β = Op(
1√
N

),

and
√
N(β̂ − β)→ N(0,Σ).
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Assumption Relaxation

Shared parameter model assumption y ⊥⊥ δ|b is a concept of ”conditional
MCAR”

However, random effects alone may not capture the missing mechanism

“Conditional MAR”: allow the observed response to carry out information

δ|(b, y) = δ|b ⇒ δ|(b, y) = δ|(b, yo)

where y = (yo , ym), with yo the observed values and ym the missing

values
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Assumption Relaxation

Linear Conditional Mean assumption (Qu et al., 2010)

E(ym|b, yo) is linear in yo

An idea of first-order expansion

Holds true for normal responses, and approximately true for binary or
ordinal responses
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Consistency without Shared Parameter Model Assumption

Theorem

If:

1) E(ym|b, yo) is linear in yo

2) 1
N

∑N
i=1 gf

i (β|b̂)→ 0 as N →∞,

then conditional on b̂,

β̂ − β = Op(
1√
N

),

and
√
N(β̂ − β)→ N(0,Σ).
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Simulation Study 1

Sample size N = 100, the largest cluster size T = 10

Fixed effects: intercept, treatment, time and interaction,
β = (−1, 1, 1, 0.8)′

Random effects: zit = (1, xi3), bi1
iid∼ 2× Beta(0.5, 0.5)− 1 and

bi2
iid∼ N(0, 0.52); bi1 is bimodal

The missing pattern is intermittent missing

The missing rate is about 45%
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Simulation Study 1

The measurement process:

yit ’s are binary responses, with probability of being 1:

logit(pµit ) = x′itβ + z′itbi

Cor(yi |bi ) is AR-1 with ρ = 0.2, 0.6

The missing process:

δit = 1 if subject i is observed at time t, and 0 otherwise

logit{P(δit = 1)} = γ′bi − t/T + 0.5, where γ = (2, 1.5)′
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Simulation Study 1

Table: Absolute bias and RMSE of fixed-effects estimation when
responses are binary with an AR1 correlation structure

MEEE PQL WGEE MI

ρ = 0.2 β0 0.390.42 0.300.35 1.041.77 0.550.56

β1 0.210.26 0.240.32 2.043.44 0.570.59

β2 0.160.21 0.300.39 1.222.03 0.210.24

β3 0.220.29 0.280.36 1.943.23 0.510.53

ρ = 0.6 β0 0.380.43 0.500.65 0.921.41 0.480.50

β1 0.290.36 0.991.38 0.871.25 0.530.57

β2 0.180.23 1.391.82 0.851.66 0.230.26

β3 0.270.34 1.020.42 0.951.34 0.520.55

MEEE, the proposed mixed-effects estimating equation; PQL, penalized

quasi-likelihood (Breslow and Clayton, 1993); WGEE, weighted generalized estimating

equation (Robins et al., 1995); MI, multiple imputation (Fitzmaurice et al., 2011);

Monotonized data are used for WGEE.
22 / 33



Nonignorable Missing Data

Introduction
Methodology
Theory
Numerical Studies
Summary

Simulation Study 2

Responses are count data

Shared parameter model assumption is violated

The missing pattern is dropout

The missing rate is about 35%
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Simulation Study 2

The measurement process:

Each yi follows a correlated Poisson distribution with
ρ = 0, 0.4, 0.7 and:

log(λit) = (β0 + bi0) + (β1 + bi1)xit ,

where xit
iid∼ N(0, 1), (β0, β1)′ = (0, 0.8)′ and bij

iid∼ N(0, 0.22)

The missing process:

δit = 1 if subject i is observed at time t, and 0 otherwise.

logit(pδit) =

{
(yi,t−1 + yit + yi,t+1)− 1.5 if t < T
1.5 · (yi,t−1 + yit)− 3 if t = T

N = 100 and T = 5, assume δit = · · · = δiT = 0 if δi,t−1 = 0
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Simulation Study 2

Table: MSE of fixed-effects estimation when responses are count data
with an AR1 correlation structure

MEEE PQL WGEE MI DR

ρ = 0.0 β0 0.163 0.178 0.234 0.339 0.563
β1 0.085 0.062 0.103 0.163 0.459

ρ = 0.4 β0 0.192 0.334 0.293 0.344 0.494
β1 0.126 0.196 0.130 0.099 0.370

ρ = 0.7 β0 0.202 0.663 0.623 0.467 1.011
β1 0.185 0.357 0.247 0.126 0.461

MEEE, the proposed mixed-effects estimating equation; PQL, penalized

quasi-likelihood (Breslow and Clayton, 1993); WGEE, weighted generalized estimating

equation (Robins et al., 1995); MI, multiple imputation (Fitzmaurice et al., 2011);

DR, doubly-robust generalized estimating equation (Seaman and Copas, 2009).
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Presidential Election Survey Data

A random intercept model:

logit(µit) = Xitβ + bi , t = 1, . . . , ni , i = 1, . . . ,N

Xit is a p-dimensional covariate

N = 4719, p = 11, and the largest cluster size is T = 9
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Presidential Election Survey Data

Table: Estimates and p-value of fixed effects

Method MEEE PQL MI WGEE* DR*

Intercept −4.350.00 −5.370.00 −2.400.00 −3.190.00 −2.860.01

Time 0.110.00 0.230.00 0.110.00 0.110.00 0.110.00

Age 0.040.00 0.050.00 0.020.00 0.030.00 0.030.04

Education 0.550.00 0.620.00 0.290.00 0.370.00 0.360.12

Gender 0.190.00 0.220.01 0.110.04 0.030.67 0.060.89

Income 0.050.00 0.060.00 0.030.00 0.030.00 0.030.59

Marital Status −0.010.87 −0.030.76 −0.010.85 −0.020.81 −0.080.86

Location 0.150.07 0.130.26 0.050.48 0.070.46 0.030.95

Black 0.600.00 0.700.00 0.330.00 0.430.00 0.220.79

Other −0.230.07 −0.260.14 −0.110.30 −0.430.01 −0.200.82

Hispanic 0.050.66 0.080.65 0.020.87 −0.120.38 −0.060.94

*Data are monotonized before analysis; Refreshment samples are not used
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Presidential Election Survey Data

Large random effects ⇒ High interest in election
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Presidential Election Survey Data

The estimated random effects: showing a bi-modal pattern
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Concluding Remarks

Construct an unbiased estimating equation

Utilizing unspecified random effects to quantify nonignorable missing data

Consistency and asymptotic normality of fixed-effects estimators

Can handle intermittent non-response data occurred in refreshment
samples
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