A Mixed-Effects Estimating Equation Approach to Nonignorable Missing Longitudinal Data

Xuan Bi and Annie Qu*

Department of Statistics, University of Illinois at Urbana-Champaign

Census of Bureau, Washington, D.C., Nov. 13, 2015

Introduction Methodology Theory Numerical Studies Summary

Missing Data Mechanisms

- Missing mechanisms can be classified as (Rubin, 1976):
 - Missing completely at random (MCAR)
 - Missing at random (MAR)
 - Missingness depends on observed values
 - Weighted GEE (Robins et al., 1995; Rotnitzky et al., 1998)
 - Multiple imputation (Rubin, 1987; Paik, 1997; Fitzmaurice, Laird and Ware, 2011)
 - Both are consistent under MAR
 - Missing not at random (MNAR)
 - Missingness depends on un-observed values

Introduction Methodology Theory Numerical Studies Summary

Existing Approaches for Nonignorable Missing Data

- When missing is nonignorable, additional assumptions or sensitivity analysis might be required (Robins, 1997)
 - Likelihood methods (Diggle and Kenward, 1994; Ibrahim et al., 2001)
 - Semiparametric methods (Scharfstein et al., 1999; Kim and Yu, 2011)
 - Mixed-effects models (Tsonaka et al., 2009; Shao and Zhang, 2015)

Introduction Methodology Theory Numerical Studies Summary

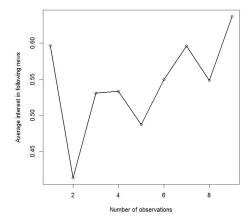
A Motivating Example: Presidential Election Survey Data

- 4719 survey respondents were measured their interests in presidential election for 9 waves (2007-2008, Associated Press-Yahoo! News Poll)
- Responses are missing intermittently with a missing rate of 49.7%
- 1990 respondents were **refreshment samples** recruited in wave 3, 5, 6, or 9
- Predictors include Time, Gender, Race, Age, Education, Income, Marital Status and Location

Introduction Methodology Theory Numerical Studies Summary

A Motivating Example: Presidential Election Survey Data

Average interest in campaign for president



Introduction Methodology Theory Numerical Studies Summary

A Motivating Example: Presidential Election Survey Data

Respondents with higher interest tend to participate more

 Last-wave recruits show a significantly higher interest (p-value= 8.56 × 10⁻¹⁰)

• Data could be missing not at random

• Goals: Correct estimation bias

Introduction Methodology Theory Numerical Studies Summary

Shared Parameter Models for Nonignorable Missingness

- Introduce shared parameter model (Wu and Carroll, 1988)
- Model Assumption:
 - The response **y** and the missing indicator δ are independent given the random effect **b**:

$\mathbf{y} \perp \boldsymbol{\delta} | \mathbf{b}$

- Parametric assumptions on **b** difficult to verify
- Existing approaches require a full or partial likelihood formulation
- Restrictive: requiring a dropout missing pattern
- Intensive computation involving high-dimensional integration or sampling procedures

Introduction Methodology Theory Numerical Studies Summary

The Proposed Method

- Basic Ideas:
 - Estimating equations utilizing unspecified random effects
- Properties:
 - No parametric assumptions on random effects
 - Non-monotone missing pattern (without baseline observations)
 - Correlated errors (serial correlation)

Introduction Methodology Theory Numerical Studies Summary

Notations

- \mathbf{y}_i is an $n_i \times 1$ observed response vector, $i = 1, \dots, N$
- X_i is an $n_i \times p$ fixed-effects covariates matrix
- β is a $p \times 1$ fixed-effects parameter
- Z_i is an $n_i \times q$ random-effects covariates matrix; usually a subset of X_i
- $\mathbf{b} = (\mathbf{b}'_1, \dots, \mathbf{b}'_N)'$ is the random-effects parameter, with each \mathbf{b}_i a $q \times 1$ random effect for subject *i*

•
$$\mathsf{E}(\mathbf{y}_i|\mathbf{b}_i) = \boldsymbol{\mu}(X_i\boldsymbol{\beta} + Z_i\mathbf{b}_i) = \boldsymbol{\mu}_i$$

Introduction Methodology Theory Numerical Studies Summary

Penalized Conditional Quasilikelihood

- The conditional quasi-likelihood of y given the random effects b is $l_q^b = -\frac{1}{2\phi} \sum_{i=1}^N d_i(y_i, \mu_i^b)$, where $d_i(y, u) = -2 \int_y^u \frac{y-u}{a_i v(u)} du$
- Impose a constraint to ensure identifiability: $P_A b = 0$
- P_A is the projection matrix on the null space of $(I P_X)Z$ where X and Z are the design matrices for fixed and random effects respectively
- Penalized conditional quasilikelihood (Jiang, 1999)

$$I_q = -\frac{1}{2\phi}\sum_{i=1}^N d_i(y_i, \mu_i^b) - \frac{1}{2}\lambda |P_A b|^2$$

Introduction Methodology Theory Numerical Studies Summary

Conditional Extended Score Corresponding for β and b

- Take the derivatives of the penalized conditional quasilikelihood l_q corresponding to β and b
- $\bullet\,$ The quasi-score equation corresponding to the fixed effect β is

$$\sum_{i=1}^{N} \left(\frac{\partial \mu_i}{\partial \beta}\right)' (\mathsf{W}_i)^{-1} (y_i - \mu_i^b) = 0.$$

• The quasi-score equation corresponding to the random effects *b* is

$$\begin{pmatrix} h_1 &= (\frac{\partial \mu_1}{\partial b_1})'(\mathsf{W}_1^b)^{-1}(y_1 - \mu_1^{b_1}) - \lambda \frac{\partial P_A b}{\partial b_1} P_A b = 0 \\ \vdots \\ h_N &= (\frac{\partial \mu_i}{\partial b_N})'(\mathsf{W}_N^b)^{-1}(y_N - \mu_N^{b_N}) - \lambda \frac{\partial P_A b}{\partial b_N} P_A b = 0 \end{pmatrix}$$

Introduction Methodology Theory Numerical Studies Summary

Moment Conditions for Fixed Effects

• Construct the moment conditions for fixed-effects β conditional on **b**,

$$\mathbf{G}_{N}^{f} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{g}_{i}^{f}(\boldsymbol{\beta}) = \frac{1}{N} \begin{pmatrix} \sum_{i=1}^{N} (\frac{\partial \mu_{i}}{\partial \boldsymbol{\beta}})' A_{i}^{-1/2} M_{1} A_{i}^{-1/2} (\mathbf{y}_{i} - \mu_{i}) \\ \vdots \\ \sum_{i=1}^{N} (\frac{\partial \mu_{i}}{\partial \boldsymbol{\beta}})' A_{i}^{-1/2} M_{m} A_{i}^{-1/2} (\mathbf{y}_{i} - \mu_{i}) \end{pmatrix}$$

where A_i is marginal variance of \mathbf{y}_i , and M_j 's are basis matrix representations of the empirical correlations

Conditional on b,

$$\hat{oldsymbol{eta}} = rgmin(ar{f G}^{\scriptscriptstyle f}_{\scriptscriptstyle N})'(ar{C}^{\scriptscriptstyle f}_{\scriptscriptstyle N})^{-1}(ar{f G}^{\scriptscriptstyle f}_{\scriptscriptstyle N})$$

where $ar{\mathcal{C}}_{\mathcal{N}}^{f} = (1/\mathcal{N})\sum \mathbf{g}_{i}^{f}(oldsymbol{eta})\mathbf{g}_{i}^{f}(oldsymbol{eta})'$

.

Introduction Methodology Theory Numerical Studies Summary

Moment Conditions for Random Effects

- $\bullet\,$ The random effect b is considered as a realization of a random process
- Construct the moment conditions for **b**:

$$\mathbf{G}^{r}(\mathbf{b}) = \{(\mathbf{g}_{1}^{r})^{\prime}, \ldots, (\mathbf{g}_{N}^{r})^{\prime}, \lambda_{1}\mathbf{b}^{\prime}, \lambda_{2}(\mathbf{P}_{\mathbf{A}}\mathbf{b})^{\prime}\}^{\prime},$$

where $\mathbf{g}_i^r = (\frac{\partial \mu_i}{\partial b_i})^r \mathsf{C}^{-1}(y_i - \mu_i)$ and $\mathcal{C} = \hat{\mathsf{Var}}(\mathbf{y}|\mathbf{b})$

• Estimate β and **b** by iteratively minimizing $(\bar{\mathbf{G}}_N^f)'(\bar{C}_N^f)^{-1}(\bar{\mathbf{G}}_N^f)$ and $(\mathbf{G}^r)'(\mathbf{G}^r)$

Introduction Methodology Theory Numerical Studies Summary

Tuning Parameters Selection

- λ₁ penalizes the variance of b to control the variance magnitude and assure convergence
- λ_2 penalizes the mean of **b** to assure identifiability
- Use a generalized cross validation to tune λ_1
- λ_2 is not critical and is fixed to be $\log(n)$

Introduction Methodology **Theory** Numerical Studies Summary

Theoretical Properties

- If $\mathbf{y} \perp \delta | \mathbf{b}$ then $\mathsf{E}(\mathbf{g}_i^f | \mathbf{b}) = \mathbf{0}$
- Consistency and asymptotic normality of $\hat{oldsymbol{eta}}$
- ullet No need to estimate δ

• If $\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathbf{g}_{i}^{f}(\boldsymbol{\beta}|\hat{\mathbf{b}}) \to \mathbf{0}$, then we have consistency and asymptotic normality of $\boldsymbol{\beta}$, given $\hat{\mathbf{b}}$.

Introduction Methodology **Theory** Numerical Studies Summary

Consistency under Shared Parameter Model Assumption

Theorem If: 1) y $\perp \delta | \mathbf{b} \rangle$ 2) $\frac{1}{N}\sum_{i=1}^{N} \mathbf{g}_{i}^{f}(\boldsymbol{\beta}|\hat{\mathbf{b}}) \rightarrow \mathbf{0} \text{ as } N \rightarrow \infty,$ then conditional on $\hat{\mathbf{b}}$. $\hat{oldsymbol{eta}} - oldsymbol{eta} = O_{ ho}(rac{1}{\sqrt{N}}),$ and $\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \rightarrow N(0,\Sigma).$

Introduction Methodology **Theory** Numerical Studies Summary

Assumption Relaxation

- Shared parameter model assumption $\mathbf{y}\perp\!\!\!\!\perp \delta | \mathbf{b}$ is a concept of "conditional MCAR"
- However, random effects alone may not capture the missing mechanism
- "Conditional MAR": allow the observed response to carry out information

$$\delta | (\mathbf{b}, \mathbf{y}) = \delta | \mathbf{b} \Rightarrow \delta | (\mathbf{b}, \mathbf{y}) = \delta | (\mathbf{b}, \mathbf{y}^{\circ})$$

where $\mathbf{y} = (\mathbf{y}^o, \mathbf{y}^m)$, with \mathbf{y}^o the observed values and \mathbf{y}^m the missing values

Introduction Methodology **Theory** Numerical Studies Summary

Assumption Relaxation

• Linear Conditional Mean assumption (Qu et al., 2010)

 $\mathsf{E}(\mathbf{y}^{\mathit{m}}|\mathbf{b},\mathbf{y}^{\mathit{o}})$ is linear in \mathbf{y}^{o}

- An idea of first-order expansion
- Holds true for normal responses, and approximately true for binary or ordinal responses

Introduction Methodology **Theory** Numerical Studies Summary

Consistency without Shared Parameter Model Assumption

Theorem If: 1) $E(\mathbf{y}^m | \mathbf{b}, \mathbf{y}^\circ)$ is linear in \mathbf{y}° 2) $\frac{1}{N}\sum_{i=1}^{N} \mathbf{g}_{i}^{f}(\boldsymbol{\beta}|\hat{\mathbf{b}}) \rightarrow \mathbf{0} \text{ as } N \rightarrow \infty,$ then conditional on $\hat{\mathbf{b}}$. $\hat{oldsymbol{eta}}-oldsymbol{eta}=O_{P}(rac{1}{\sqrt{N}}),$ and $\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \rightarrow N(0,\Sigma).$

Introduction Methodology Theory Numerical Studies Summary

Simulation Study 1

- Sample size N = 100, the largest cluster size T = 10
- Fixed effects: intercept, treatment, time and interaction, $\beta = (-1, 1, 1, 0.8)'$
- Random effects: $z_{it} = (1, x_{i3}), b_{i1} \stackrel{iid}{\sim} 2 \times \text{Beta}(0.5, 0.5) 1$ and $b_{i2} \stackrel{iid}{\sim} N(0, 0.5^2); b_{i1}$ is bimodal
- The missing pattern is intermittent missing
- The missing rate is about 45%

Introduction Methodology Theory Numerical Studies Summary

Simulation Study 1

- The measurement process:
 - y_{it} 's are binary responses, with probability of being 1:

$$logit(p_{it}^{\mu}) = \mathbf{x}_{it}^{\prime} \boldsymbol{\beta} + \mathbf{z}_{it}^{\prime} \mathbf{b}_{i}$$

• Cor
$$(\mathbf{y}_i | \mathbf{b}_i)$$
 is AR-1 with $ho = 0.2, 0.6$

- The missing process:
 - $\delta_{it} = 1$ if subject *i* is observed at time *t*, and 0 otherwise

• logit{P(
$$\delta_{it} = 1$$
)} = $\gamma' \mathbf{b}_i - t/T + 0.5$, where $\gamma = (2, 1.5)'$

Introduction Methodology Theory Numerical Studies Summary

Simulation Study 1

Table: Absolute bias and RMSE of fixed-effects estimation whenresponses are binary with an AR1 correlation structure

		MEEE	PQL	WGEE	MI
$\rho = 0.2$	β_0	0.390.42	0.300.35	$1.04_{1.77}$	0.550.56
	β_1	$0.21_{0.26}$	$0.24_{0.32}$	$2.04_{3.44}$	$0.57_{0.59}$
	β_2	$0.16_{0.21}$	0.300.39	$1.22_{2.03}$	$0.21_{0.24}$
	β_3	0.220.29	0.280.36	$1.94_{3.23}$	$0.51_{0.53}$
$\rho = 0.6$	β_0	0.380.43	$0.50_{0.65}$	0.921.41	0.480.50
	β_1	0.29 _{0.36}	$0.99_{1.38}$	$0.87_{1.25}$	$0.53_{0.57}$
	β_2	$0.18_{0.23}$	$1.39_{1.82}$	$0.85_{1.66}$	$0.23_{0.26}$
	β_3	0.270.34	$1.02_{0.42}$	$0.95_{1.34}$	$0.52_{0.55}$

MEEE, the proposed mixed-effects estimating equation; PQL, penalized quasi-likelihood (Breslow and Clayton, 1993); WGEE, weighted generalized estimating equation (Robins et al., 1995); MI, multiple imputation (Fitzmaurice et al., 2011); Monotonized data are used for WGEE.

Introduction Methodology Theory Numerical Studies Summary

Simulation Study 2

- Responses are **count data**
- Shared parameter model assumption is violated
- The missing pattern is dropout
- The missing rate is about 35%

Introduction Methodology Theory Numerical Studies Summary

Simulation Study 2

- The measurement process:
 - Each \mathbf{y}_i follows a correlated Poisson distribution with $\rho = 0, 0.4, 0.7$ and:

$$\log(\lambda_{it}) = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})x_{it},$$

where $x_{it} \stackrel{iid}{\sim} N(0, 1)$, $(\beta_0, \beta_1)' = (0, 0.8)'$ and $b_{ij} \stackrel{iid}{\sim} N(0, 0.2^2)$

- The missing process:
 - $\delta_{it} = 1$ if subject *i* is observed at time *t*, and 0 otherwise.

•
$$\mathsf{logit}(p_{it}^{\delta}) = \begin{cases} (y_{i,t-1} + y_{it} + y_{i,t+1}) - 1.5 & \text{if } t < T \\ 1.5 \cdot (y_{i,t-1} + y_{it}) - 3 & \text{if } t = T \end{cases}$$

•
$$N = 100$$
 and $T = 5$, assume $\delta_{it} = \cdots = \delta_{iT} = 0$ if $\delta_{i,t-1} = 0$

Introduction Methodology Theory Numerical Studies Summary

Simulation Study 2

Table: MSE of fixed-effects estimation when responses are count data with an AR1 correlation structure

		MEEE	PQL	WGEE	MI	DR
$\rho = 0.0$	β_0	0.163	0.178	0.234	0.339	0.563
	β_1	0.085	0.062	0.103	0.163	0.459
$\rho = 0.4$	β_0	0.192	0.334	0.293	0.344	0.494
	β_1	0.126	0.196	0.130	0.099	0.370
$\rho = 0.7$	β_0	0.202	0.663	0.623	0.467	1.011
	β_1	0.185	0.357	0.247	0.126	0.461

MEEE, the proposed mixed-effects estimating equation; PQL, penalized quasi-likelihood (Breslow and Clayton, 1993); WGEE, weighted generalized estimating equation (Robins et al., 1995); MI, multiple imputation (Fitzmaurice et al., 2011); DR, doubly-robust generalized estimating equation (Seaman and Copas, 2009).

Introduction Methodology Theory Numerical Studies Summary

Presidential Election Survey Data

• A random intercept model:

$$logit(\mu_{it}) = X_{it}\beta + b_i, t = 1, \dots, n_i, i = 1, \dots, N$$

- X_{it} is a p-dimensional covariate
- N = 4719, p = 11, and the largest cluster size is T = 9

Introduction Methodology Theory Numerical Studies Summary

Presidential Election Survey Data

Table: Estimates and *p*-value of fixed effects

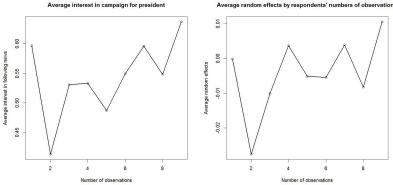
Method	MEEE	PQL	MI	WGEE*	DR*
Intercept	$-4.35_{0.00}$	$-5.37_{0.00}$	$-2.40_{0.00}$	$-3.19_{0.00}$	$-2.86_{0.01}$
Time	$0.11_{0.00}$	$0.23_{0.00}$	$0.11_{0.00}$	$0.11_{0.00}$	$0.11_{0.00}$
Age	0.040.00	0.050.00	0.020.00	0.030.00	0.030.04
Education	0.550.00	0.620.00	0.290.00	0.370.00	0.360.12
Gender	$0.19_{0.00}$	$0.22_{0.01}$	$0.11_{0.04}$	$0.03_0.67$	0.060.89
Income	0.050.00	0.060.00	0.030.00	0.030.00	0.030.59
Marital Status	$-0.01_{0.87}$	$-0.03_{0.76}$	$-0.01_{0.85}$	$-0.02_{0.81}$	$-0.08_{0.86}$
Location	0.150.07	$0.13_{0.26}$	0.050.48	0.070.46	0.030.95
Black	0.60 _{0.00}	$0.70_{0.00}$	0.330.00	0.430.00	0.220.79
Other	$-0.23_{0.07}$	$-0.26_{0.14}$	$-0.11_{0.30}$	$-0.43_{0.01}$	$-0.20_{0.82}$
Hispanic	0.05 _{0.66}	0.080.65	0.020.87	$-0.12_{0.38}$	$-0.06_{0.94}$

*Data are monotonized before analysis; Refreshment samples are not used

Numerical Studies

Presidential Election Survey Data

• Large random effects \Rightarrow High interest in election

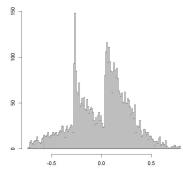


Average random effects by respondents' numbers of observations

Introduction Methodology Theory Numerical Studies Summary

Presidential Election Survey Data

• The estimated random effects: showing a bi-modal pattern



Histogram of the estimated random effects

Introduction Methodology Theory Numerical Studies Summary

Concluding Remarks

- Construct an unbiased estimating equation
- Utilizing unspecified random effects to quantify nonignorable missing data
- Consistency and asymptotic normality of fixed-effects estimators
- Can handle intermittent non-response data occurred in refreshment samples

Introduction Methodology Theory Numerical Studies Summary

References

- Bi, X. and Qu, A. (2015+). A mixed-effects estimating equation approach to nonignorable missing longitudinal data. *Submitted*.
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88, 9-25.
- Diggle, P., Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis (with discussion). *Appl. Stat.* **43**, 49-93.
- Fitzmaurice, G. M., Laird, N. M. and Ware, J. H. (2011). *Applied longitudinal analysis.* Wiley, New York.
- Ibrahim, J. G., Chen, M. H. and Lipsitz, S. R. (2001). Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable. *Biometrika* 88, 551-564.
- Kim, J. K. and Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. *J. Amer. Statist. Assoc.* 106, 157-165.
- Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. *J. Amer. Statist. Assoc.* **90**, 106-121.

Introduction Methodology Theory Numerical Studies Summary

References

- Rubin, D. B. (1976). Inference and missing data. *Biometrika* 63, 581-592.
- Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. *J. Amer. Statist. Assoc.* 94, 1096-1120.
- Shao, J. and Zhang, J. (2015). A transformation approach in linear mixed-effects models with informative missing responses. *Biometrika*, in press.
- Seaman, S. and Copas, A. (2009). Doubly robust generalized estimating equations for longitudinal data. *Statistics in Medicine* **28**, 937-955.
- Tsonoka, R., Verbeke, G. and Lesaffre, E. (2009). Adjusting for nonignorable drop-out using semiparametric nonresponse models. *Biometrics* 65, 81-87.
- Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. *Biometrics* **44**, 175-188.

Thank You!