Survey Samples for Observational Studies

Concluding Remarks

イロン 不良 とくほう 不良 とう

Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design

Changbao Wu Department of Statistics and Actuarial Science University of Waterloo

(Joint work with Min Chen and Mary Thompson)

November 13, 2015

2 Survey Samples for Observational Studies

Survey Samples for Observational Studies

Concluding Remarks

<ロ> <四> <四> <四> <三</td>

4/32

(1) Two Independent Samples

- Two groups: treatment vs control
- Response Y: Y_1 for treatment and Y_0 for control
- Sample data on *Y*:

$$\{Y_{11}, \cdots, Y_{1n_1}\}$$
 and $\{Y_{01}, \cdots, Y_{0n_0}\}$

• Covariates might be involved

•
$$\mu_1 = E(Y_1)$$
 and $\mu_0 = E(Y_0)$
• $F_1(t) = P(Y_1 \le t)$ and $F_0(t) = P(Y_0 \le t)$
• $S_1(t) = P(Y_1 > t) = 1 - F_1(t)$
 $S_0(t) = P(Y_0 > t) = 1 - F_0(t)$

Survey Samples for Observational Studies

Concluding Remarks

(1) Two Independent Samples

- Inference on treatment effect: $\theta = \mu_1 \mu_0$
- Inference on survival functions (distribution functions): *Y*₁ is stochastically larger than *Y*₀ if

$$S_1(t) > S_0(t)$$
 for $t > 0$.

- Empirical likelihood methods for two-sample problems (Wu and Yan, 2012):
 - Two independent samples with no missing values
 - Two independent samples with responses missing at random
 - Two independent survey samples with no missing values

Survey Samples for Observational Studies

Concluding Remarks

(2) Pretest-Posttest Studies

- A very popular approach in medical and social sciences
- Measure changes resulting from a treatment or an intervention
- A version of two-sample problems
- Design I: Paired comparison (less popular one)

Select a random sample of n units from the target population; Measure the response Y on all units BEFORE and AFTER the treatment/intervention.

(2) Pretest-Posttest Studies

Design II: (commonly used method)

- A random sample of *n* units is taken from the target population
- Measures on certain baseline variables **Z** are obtained for ALL *n* individuals (pretest measures)
- Among the *n* units, *n*₁ are randomly selected and assigned to "treatment";

Values of the response variable *Y* are obtained (posttest measures)

• The other $n_0 = n - n_1$ units are assigned to "control"; Values of the response variable *Y* are also obtained

Survey Samples for Observational Studies

Concluding Remarks

(2) Pretest-Posttest Studies

- Y_1 : response under treatment
 - Y_0 : response under control
- The available data ($n = n_1 + n_0$)

i	1	2	•••	n_1	$n_1 + 1$	$n_1 + 2$	•••	n
Ζ	\mathbf{Z}_1	\mathbf{Z}_2	•••	Z_{n_1}	Z_{n_1+1}	Z_{n_1+2}	•••	Z_n
Y_1	$\frac{Z_1}{Y_{11}}$	Y_{12}	•••	Y_{1n_1}	*	*	•••	*
Y_0	*	*	•••	*	$Y_{0(n_1+1)}$	$Y_{0(n_1+2)}$	•••	Y_{0n}

- Two distinct features of the design:
 - Response Missing-by-Design
 - Availability of baseline information for all *n* units
 - The **Z** variables follow the same distributions for both groups (due to randomization)

Survey Samples for Observational Studies

Concluding Remarks

(2) Pretest-Posttest Studies

- A two-sample problem with unique features
- Parameter of primary interest: $\theta = \mu_1 \mu_0$
- Test $H_0: \theta = 0$ vs $H_1: \theta \neq 0$ (or $\theta > 0$)
- Test H_0 : $F_1 = F_0$ vs H_1 : $F_1 < F_0$ (OR H_0 : $S_1 = S_0$ vs H_1 : $S_1 > S_0$)
- Question: How to effectively use the baseline information and the feature of missing-by-design?

(3) Two-sample Problems for Observational Studies

- Baseline information (Z) collected for all *n* units
- Each unit is assigned to either treatment or control (Missing-by-Design)
- Assignments to treatment or control are **not randomized**:

Example 1. Patients self-selection of treatment among two alternative choices.

Example 2. Voluntary participation in a school smoking-intervention education program.

Example 3. Modes of survey data collection: Web versus telephone interview.

Survey Samples for Observational Studies

Concluding Remarks

An EL Approach to Pretest-Posttest Studies (Huang , Qin and Follmann, JASA, 2008)

- Parameter of interest: $\theta = \mu_1 \mu_0$
- Find the EL estimators of μ_1 and μ_0 separately
- Estimate θ by $\hat{\theta} = \hat{\mu}_1 \hat{\mu}_0$
- Estimate the standard error of $\hat{\theta}$ through a bootstrap method
- Inference on $\theta = \mu_1 \mu_0 \operatorname{using} (\hat{\theta} \theta) / SE(\hat{\theta})$
- Finding $\hat{\mu}_1$ (and $\hat{\mu}_0$) is the main focus of the HQF paper

Survey Samples for Observational Studies

Concluding Remarks

An Imputation-based Two-Sample EL Approach

• Why imputation? More efficient use of baseline information!

i	1	2	•••	n_1	$n_1 + 1$	$n_1 + 2$		n
Ζ	Z_1	\mathbf{Z}_2	•••	$\begin{array}{c} \mathbf{Z}_{n_1} \\ Y_{1n_1} \end{array}$	Z_{n_1+1}	Z_{n_1+2}	•••	\mathbf{Z}_n
Y_1	<i>Y</i> ₁₁	Y_{12}	•••	Y_{1n_1}	*	*	•••	*
Y_0	*	*	• • •	*	$Y_{0(n_1+1)}$	$Y_{0(n_1+2)}$	• • •	Y_{0n}

• Regression modelling:

$$Y_{1i} = \mathbf{Z}_i^T \boldsymbol{\beta}_1 + \epsilon_{1i}, \quad i = 1, \cdots, n,$$
(1)

$$Y_{0i} = \mathbf{Z}_i^T \boldsymbol{\beta}_0 + \epsilon_{0i}, \quad i = 1, \cdots, n,$$
(2)

Survey Samples for Observational Studies

Concluding Remarks

An Imputation-based Two-Sample EL Approach

• Let $R_i = 1$ if *i* is under treatment, $R_i = 0$ otherwise,

$$\hat{\boldsymbol{\beta}}_{1} = \left(\sum_{i=1}^{n} R_{i} \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{T}\right)^{-1} \sum_{i=1}^{n} R_{i} \boldsymbol{Z}_{i} Y_{1i},$$
$$\hat{\boldsymbol{\beta}}_{0} = \left(\sum_{i=1}^{n} (1-R_{i}) \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{T}\right)^{-1} \sum_{i=1}^{n} (1-R_{i}) \boldsymbol{Z}_{i} Y_{0i}$$

• Regression imputation:

$$Y_{1i}^* = \mathbf{Z}_i^T \hat{\boldsymbol{\beta}}_1, \quad i = n_1 + 1, \cdots, n$$

$$Y_{0i}^* = \mathbf{Z}_i^T \hat{\boldsymbol{\beta}}_0, \quad i = 1, \cdots, n_1$$

Survey Samples for Observational Studies

Concluding Remarks

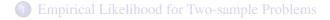
Imputation-basede EL Inference on $\theta = \mu_1 - \mu_0$

• Two augmented samples after imputation:

$$\{\tilde{Y}_{1i} = R_i Y_{1i} + (1 - R_i) Y_{1i}^*, i = 1, \cdots, n\}$$

$$\{\tilde{Y}_{0i} = (1-R_i)Y_{0i} + R_iY_{0i}^*, i = 1, \cdots, n\}.$$

- Each sample has an enlarged sample size at $n = n_1 + n_0$
- The imputed samples are no longer independent
- Inferences are under the assumed regression models (the imputation model)



2 Survey Samples for Observational Studies

3 Concluding Remarks

Survey Samples for Observational Studies •••••••• Concluding Remarks

Two Independent Surveys

- Two independent survey samples S_1 and S_0 from the same population
- Two (possibly different) designs: d_{1i} , $i \in S_1$; d_{0i} , $i \in S_0$

$$\tilde{d}_{1i} = \frac{d_{1i}}{\sum_{k \in S_1} d_{1k}}$$
 and $\tilde{d}_{0i} = \frac{d_{0i}}{\sum_{k \in S_0} d_{0k}}$

• Response variables Y_1 and Y_0 ; Survey sample data:

$$\left\{(y_{1i}, \boldsymbol{z}_{1i}), i \in S_1\right\}$$
 and $\left\{(y_{0i}, \boldsymbol{z}_{0i}), i \in S_0\right\}$

- Parameter of interest: $\theta = \mu_{y1} \mu_{y0}$
- Design-based estimator of θ :

$$\hat{\theta}_1 = \hat{\mu}_{y1} - \hat{\mu}_{y0} = \sum_{i \in S_1} \tilde{d}_{1i} y_{1i} - \sum_{i \in S_0} \tilde{d}_{0i} y_{0i}$$

Survey Samples for Observational Studies

Concluding Remarks

Two-sample Pseudo Empirical Likelihood

• Two-sample pseudo EL function

$$\ell(\boldsymbol{p}, \boldsymbol{q}) = \frac{1}{2} \sum_{i \in S_1} \tilde{d}_{1i} \log(p_{1i}) + \frac{1}{2} \sum_{i \in S_0} \tilde{d}_{0i} \log(q_{0i})$$

Normalization constraints

$$\sum_{i \in S_1} p_{1i} = 1$$
 and $\sum_{i \in S_0} q_{0i} = 1$

• Parameter constraint

$$\sum_{i \in S_1} p_{1i} y_{1i} - \sum_{i \in S_0} q_{0i} y_{0i} = \theta$$

• Additional constraints on z_1 and z_0 depending on what's available

Survey Samples for Observational Studies

Concluding Remarks

The ITC Four Country Survey (ITC4)

- The International Tobacco Control Policy Evaluation Project (The ITC Project)
- ITC Four Country Survey: Waves 1 -7 by telephone interview
- ITC Four Country Survey: Wave 8, respondents chose to complete the survey either by telephone interview or self-administered web survey
 - Total number of respondents at wave 8: 4507
 - Number of respondents by telephone: 2709
 - Number of respondents by web: 1798
- The research question: Examine the effect of two different modes for data collection
- *Y*₁: response by web (treatment) *Y*₀: response by telephone (control)

Survey Samples for Observational Studies

Concluding Remarks

Mode Effect in Survey Data Collection

- Survey sample S of size n; design weights d_i , $i = 1, \dots, n$.
- Units $i = 1, \dots, n_1$ chose "treatment" Units $i = n_1 + 1, \dots, n$ chose "control"
- Let $R_i = 1$ if unit *i* chose "treatment", $R_i = 0$ if unit *i* chose "control, $i = 1, \dots, n$
- Baseline information z_i observed for all $i = 1, \dots, n$
- Response variable **missing-by-design**: Y_{1i} observed for $i = 1, \dots, n_1$ Y_{0i} observed for $i = n_1 + 1, \dots, n$
- Point estimate and confidence interval for $\theta = \mu_{y1} \mu_{y0}$

Survey Samples for Observational Studies

Concluding Remarks

Mode Effect

• Under randomization to treatment and control:

$$E(Y_1 \mid R = 1) - E(Y_0 \mid R = 0) = E(Y_1) - E(Y_0) = \theta$$

• With self-selection of treatment and control:

$$E(Y_1 | R = 1) \neq E(Y_1), \quad E(Y_0 | R = 0) \neq E(Y_0)$$

• Ignorable treatment assignment (Rosenbaum and Rubin, 1983):

 (Y_1, Y_0) and *R* are independent given *Z*

• Test ignobility using a two-phase sampling technique? (Chen and Kim, 2014)

Survey Samples for Observational Studies

Concluding Remarks

Mode Effect: Propensity Score Adjustment (PSA)

• Treatment assignment (self-selection) depends only on Z

$$P(R = 1 | Y_1, Y_0, \mathbb{Z} = z) = P(R = 1 | \mathbb{Z} = z) = r(z)$$

• Fit a feasible model to obtain the propensity scores

$$\hat{r}_i = \hat{r}(\boldsymbol{z}_i), \quad i = 1, \cdots, n$$

Available data

$$\{(y_{1i}, z_i), i = 1, \cdots, n_1\}$$
 and $\{(y_{0i}, z_i), i = n_1 + 1, \cdots, n\}$

• Point estimator for $\theta = \mu_{y1} - \mu_{y0}$ using PSA:

$$\hat{\theta}_2 = \sum_{i=1}^{n_1} \frac{\tilde{d}_i}{\hat{r}_i} y_{1i} - \sum_{i=n_1+1}^n \frac{\tilde{d}_i}{1-\hat{r}_i} y_{0i}$$

・ロ・・ 日・・ ヨ・・ 日・ うへの

Survey Samples for Observational Studies

Concluding Remarks

Pseudo EL Under Propensity Score Adjustment

- Design weights $d_i = P(i \in S), i = 1, \dots, n; \tilde{d}_i = d_i / \sum_{k \in S} d_k$
- Pseudo empirical likelihood function and constraints

$$\ell(\boldsymbol{p}, \boldsymbol{q}) = \sum_{i=1}^{n_1} \frac{\tilde{d}_i}{\hat{r}_i} \log(p_i) + \sum_{j=n_1+1}^n \frac{\tilde{d}_j}{1-\hat{r}_j} \log(q_j) \quad (3)$$

$$\sum_{i=1}^{n_1} p_i = 1, \quad \sum_{j=n_1+1}^n q_j = 1 \quad (4)$$

$$\sum_{i=1}^n p_i y_{1i} - \sum_{j=n_1+1}^n q_j y_{0j} = \theta \quad (5)$$

- $\hat{p}(\theta)$ and $\hat{q}(\theta)$: Maximizer of (3) under constraints (4) and (5)
- The maximum pseudo EL estimator $\hat{\theta}_3$: Maximize $\ell(\hat{p}(\theta), \hat{q}(\theta))$ w.r.t. θ

Survey Samples for Observational Studies

Concluding Remarks

A Simulation Study

- N = 20,000; n = 200; Single stage PPS sampling
- $x_{i1} \sim Bernoulli(0.5); \quad x_{i2} \sim U[0,1]; \quad x_{i3} \sim 0.5 + 2\exp(1)$
- $\pi_i \propto x_{i3}$; $\max \pi_i / \min \pi_i = 45$
- Linear models for the responses y_{i0} and y_{i1} :

$$y_{ik} = \beta_{0k} + \beta_{1k}x_{i1} + \beta_{2k}x_{i2} + \beta_{3k}x_{i3} + \varepsilon_i, \quad i = 1, 2, \dots, N$$

• Logistic regression model for R_i : $r_i = P(R_i = 1 | \mathbf{x}_i)$

$$\log\left(\frac{r_i}{1-r_i}\right) = \gamma_0 + \gamma_1 x_{i1} + \gamma_2 x_{i2} + \gamma_3 x_{i3}, \quad i = 1, 2, \dots, N$$

- Three point estimators of $\theta = \mu_{y1} \mu_{y0}$: $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$
- B = 1000 repeated simulation runs

Survey Samples for Observational Studies

Concluding Remarks

A Simulation Study

Table : Absolute Relative Bias (ARB, %) and Mean Square Error (MSE)

		$\theta = \mu_{2}$	$\theta = \mu_{y1} - \mu_{y0} = 1$				$\theta = \mu_{y1} - \mu_{y0} = 2$			
E(R)		$\hat{ heta}_1$	$\hat{ heta}_2$	$\hat{ heta}_3$		$\hat{ heta}_1$	$\hat{ heta}_2$	$\hat{ heta}_3$		
0.50	ARB	3.2	2.4	2.8		1.4	0.3	0.6		
	MSE	0.2	0.1	0.1		0.3	0.1	0.1		
0.60	ARB	42.9	17.9	10.6		26.7	8.7	4.9		
	MSE	0.4	0.5	0.2		0.6	0.5	0.2		
0.70	ARB	104.8	67.2	14.1		61.6	33.8	6.4		
	MSE	1.5	12.1	0.7		2.0	12.1	0.7		

Survey Samples for Observational Studies

Concluding Remarks

Post-stratification by Propensity Score

- With self-selection of "treatment" and "control", the distributions of Z | R = 1 and Z | R = 0 tend to be different
- Matching by propensity score is an effective way to balance the distribution of **Z** between the "treated" and the "untreated" (Rosenbaum and Rubin, 1983, 1984)
- Order the units based on fitted propensity scores

$$\hat{r}_{(1)} \leq \hat{r}_{(2)} \leq \cdots \leq \hat{r}_{(n)}$$

- Form K strata based on suitable cut-off of the propensity scores (Popular choice: K = 5)
- Units within the same stratum have similar values of propensity scores

Survey Samples for Observational Studies

Concluding Remarks

Post-stratification by Propensity Score

- Post-stratified samples: $S = Q_1 \cup \cdots \cup Q_K$
- Estimated stratum weights

$$\hat{W}_k = \left(\sum_{i \in Q_k} d_i\right) / \left(\sum_{i \in S} d_i\right), \quad k = 1, \cdots, K$$

Population means

$$\mu_{y1} = \sum_{k=1}^{K} W_k \mu_{y1k}$$
 and $\mu_{y0} = \sum_{k=1}^{K} W_k \mu_{y0k}$

• Treatment and control groups within $Q_k = S_{1k} \cup S_{0k}$:

$$R_i = 1$$
 if $i \in S_{1k}$ and $R_i = 0$ if $i \in S_{0k}$

Survey Samples for Observational Studies

Concluding Remarks

Post-stratification by Propensity Score

- For each Q_k , the distributions of **Z** over S_{1k} and S_{0k} are approximately the same
- Balance diagnostics tools are available (Austin, 2008, 2009)
- The post-stratified estimator of θ :

$$\hat{\theta} = \sum_{k=1}^{K} \hat{W}_k \Big(\hat{\mu}_{y1k} - \hat{\mu}_{y0k} \Big)$$

$$\hat{\mu}_{y1k} = \frac{\sum_{i \in S_{1k}} d_i y_{1i}}{\sum_{i \in S_{1k}} d_i}, \quad \hat{\mu}_{y0k} = \frac{\sum_{i \in S_{0k}} d_i y_{0i}}{\sum_{i \in S_{0k}} d_i}$$

• Post-stratification provides an effective way of using baseline information on Z

Survey Samples for Observational Studies

Concluding Remarks

Using Z in Pseudo EL Through Additional Constraints

• The pseudo EL function for the post-stratified samples

$$\ell = \sum_{k=1}^{K} \hat{W}_{k} \sum_{i \in S_{1k}} \tilde{d}_{ik} \log(p_{ik}) + \sum_{k=1}^{K} \hat{W}_{k} \sum_{i \in S_{0k}} \tilde{d}_{ik} \log(q_{ik})$$

Constraints

$$\sum_{i \in S_{1k}} p_{ik} = 1, \quad \sum_{i \in S_{0k}} q_{ik} = 1, \quad k = 1, \cdots, K$$
$$\sum_{k=1}^{K} \hat{W}_k \sum_{i \in S_{1k}} p_{ik} y_{1i} - \sum_{k=1}^{K} \hat{W}_k \sum_{i \in S_{0k}} q_{ik} y_{0i} = \theta$$
$$\sum_{k=1}^{K} \hat{W}_k \sum_{i \in S_{1k}} p_{ik} z_i = \sum_{k=1}^{K} \hat{W}_k \sum_{i \in S_{0k}} q_{ik} z_i$$

28/32

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Survey Samples for Observational Studies

Concluding Remarks

Using Z in Pseudo EL Through Imputation

• For each $Q_k = S_{1k} \cup S_{0k}$:

 $(y_{1i}, z_i), i \in S_{1k}$ plus $z_i, i \in S_{0k}$

 $(y_{0i}, z_i), i \in S_{0k}$ plus $z_i, i \in S_{1k}$

- Build a model using $\{(y_{1i}, z_i), i \in S_{1k}\}$ Predict y_{1i} for $i \in S_{0k}$ using $z_i, i \in S_{0k}$
- Build a model using $\{(y_{0i}, z_i), i \in S_{0k}\}$ Predict y_{0i} for $i \in S_{1k}$ using $z_i, i \in S_{1k}$
- Using the two imputed stratified samples for pseudo EL inference

2 Survey Samples for Observational Studies

Survey Samples for Observational Studies

Concluding Remarks

Concluding Remarks

- Confidence intervals or hypothesis tests using the EL ratio statistic have better performances than the conventional normal theory methods
- Performances of imputation-based EL approach to pretest-posttest studies depend on two crucial conditions:
 - Prediction power of the baseline variables Z
 - Reliability of the model used for imputation
- Linear regression models are convenient, but kernel regression models can also be used
- Efficient computational procedures for EL are available for practical implementations
- We are currently conducting further simulation studies on mode effects in survey data collection

Acknowledgement

This talk is partially based on Min Chen's PhD dissertation research at the University of Waterloo

- Chen, M., Wu, C. and Thompson, M.E. (2015). An Imputation Based Empirical Likelihood Approach to Pretest-Posttest Studies. *The Canadian Journal of Statistics*, **43**, 378–402.
- Chen, M., Wu, C. and Thompson, M.E. (2015). Mann-Whitney Test with Empirical Likelihood Methods for Pretest-Posttest Studies. Revised for *Journal of Nonparametric Statistics*.
- Wu, C. and Yan, Y. (2012). Weighted Empirical Likelihood Inference for Two-sample Problems. *Statistics and Its Interface*, 5, 345–354.