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Disclaimer

This report is released to inform interested parties

of ongoing research and to encourage discussion

of work in progress. The views expressed are the

author’s and not necessarily the Census Bureau’s.
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Outline

1. Standard Household Survey Data Structure

• Propensity Covariates observed at Interview

• MAR & Conditional Independence of Y, R given X

2. Modified Estimating Equations – Alternative Forms

3. Consequences for Nonresponse Adjustment

in Complex Surveys
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Survey- or Biased- Sampling Motivation

Data {X(1)
i , Ri, Ri · (X(2)

i , Yi) : i ∈ S}

S ⊂ U probability sample from frame U

Inclusion prob’s πi , Ri response indicator

(likely depend on both X
(1)
i , and X

(2)
i )

X
(1)
i , X

(2)
i predictive (unit-level) covariates

Yi attribute of interest with desired population mean µY
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Predictive covariates X
(1)
i ≡

(
X

(11)
i

X
(12)
i

)
, X

(2)
i ≡

(
X

(21)
i

X
(22)
i

)

Known totals µ
X(11) , µ

X(21) of X
(11)
i and X

(21)
i

X
(11)
i includes 1 (intercept)

Ri response indicator conditionally indep. of Yi given Xi

(1) X
(1)
i components, e.g., from paradata on modes of interim

refusal in multiple contact attempts, without known means.

(2) Regression on X
(a)
i = (X(11)

i , X
(21)
i ) may leave residuals

dependent on propensity predictors Xi.

(3) Cond. indep. Ri, Yi may hold given Xi but not given X
(1)
i .

(therefore informative )
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Problem Setting

Working linear outcome model E(Y |X(a)) = β′ X(a)

in terms of X(a) = (X(11), X(21))

E(X(a)) = µa known

Estimate mean of Y as β̂′ µa

Nonresponse adjustment via Inverse Probability Weighting

with respect to ‘propensity ’

p0(X, γ) = P(R = 1 |X)

Survey analysts do not use estimating equations with such

propensities; instead, do post-stratified ratio adjustment for

nonresponse, followed by regression estimation.
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American Community Survey Variables

Covariates:

X(1) = (Multi-unit, Base-Wt, URBAN, CTY, Nghbd*),

X(11) = (Geography down to block-group, Multi-Unit)

X(2) = (BLD-type, OWNER, AGE, SEX, HISP, RACE)

X(21) = (AGE, SEX, HISP, RACE)

* summary in planning data base (PDB) at block-gp level

Housing-type covariates not available in ACS before interview

• Individual ACS covariates may be missing and imputed

• unit-level covariates displace PDB covariates

• Imputations do not much affect block-group ACS covariates
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Notes from Semiparametric Theory, I

I.I.D. Data (R, X(1), R · (X(2), Y )) observable

X = (X(1), X(2)), X(j) = (X(j1), X(j2)), X(a) = (X(11), X(21))

Ignore survey (biased-sampling) aspect and restrict (X, Y, R)

only by joint densities satisfying

(i◦) Y, R conditionally independent given X

(ii◦) µa = E(X(a)) known

(iii◦) E(Y |X(a)) = β′ X(a)

(iv◦) p2(x2|x1) ≡ P(X(2) = x2 |X(1) = x1) known
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Semiparametric theory (Tsiatis 2006) ⇒ Regular Asympt.
Linear Estimators of β satisfy estimating equation

n∑

i=1

Ri

p0(Xi)
g(X(a)

i ) (Yi − β′ X(a)
i ) = 0 (1)

In regression-type estimator

µ̂Y = β̂′ µa = n−1
n∑

i=1

Ri Yi/p0(Xi) + β̂′ (µa − µ̂ IPW
X(a))

is ‘double-robust’ by def’n because model-assisted design-based.

Optimal Estimating Equation of form (1) has

g(X(a)) = X(a)
/

E

(
(Y − X(a)′β)2

p0(X)

∣∣∣∣ X
(a)

)

with

a.var
(√

n (β̂−β)
)

=
{

E

[
X(a)⊗2

/
E

( (Y − X(a)′β)2

p0(X)

∣∣∣∣ X
(a)

)] }−1
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Semiparametric Theory, II

Idea of Pfeffermann and Sverchkov (1999, 2009):

to estimate µY by β̂′ µa with β̂ coefficients estimated from

∑

i∈S

wi Ri

ÊRS(wi |X
(a)
i )

X
(a)
i (Yi − β′ X(a)

i ) = 0

where wi/ ÊRS(wi |X
(a)
i ) is a ‘smoothed weight’, with

cond. exp. given sample-inclusion and response.

wi may depend on (Yi, Xi); denominator uses (misspecified) in-

sample parametric model, e.g. WLS regression of wi on X
(a)
i .

If denom. converges in prob. to nonrandom function of X
(a)
i , at

1/
√

n rate, then β estimator is consistent in superpopulation

if linear outcome model E(Yi |X
(a)
i ) = β′ X(a)

i holds.
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Alternative Estimating Equations for γ

For β use (1). Forms for γ include the following:

(I) (with thanks to Z. Tan) When enough totals are known

dim(h(X(1)
i )) + dim(X(21)

i ) = dim(γ)

one general form is based on external calibration totals:

n∑

i=1

h(X(1)
i )

(
Ri

p0(Xi, γ)
− 1

)
= 0 (2)

n∑

i=1

(
X

(21)
i

Ri

p0(Xi, γ)
− µ

X(21)

)
= 0 (3)
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(II) If p2(x2|x1) completely known, p0(·, γ) = P (R=1,x2 |x1, γ)
p2(x2|x1)

.

For sufficient set of q’s ,

n∑

i=1

q(X(1)
i )

(
Ri I

[X(2)
i =x2]

− P(R = 1, x2 |X(1)
i , γ)

)
= 0

More often, not all joint cell-values are known (‘raking’).

(III) Treat external calibration data as over-determining

a model p2(x2|x1, α).

Compatibility conditions between external (α) and internal (γ)

survey models: (for sufficiently large set of q, B )

n∑

i=1

q(X(1)
i )

(
Ri I

[X(2)
i ∈B]

− p0(Xi, γ) p2(X
(2)
i ∈ B |X(1)

i , α)
)

= 0
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External versus Current Data Model

α in p2(x2 | x1, α) based on high-quality external data;

• variability not always quantified

• estimation may also use current-survey data

γ must use internal survey data relating Xi to Ri

“Control” information may be very highly detailed from sources
such as US Pop. Estimates down to county-level demographi-
cally cross-classified (13 Age-Gp by 6 Race/Hisp by Sex), but
many cells are too small to be 100% reliable, so can work with
model p(x, α) suppressing highest-order interactions.

THEN eq’ns in (II), (III) can be used, to solve exactly or to
minimize weighted sum of squares to estimate survey propensity
parameters γ.
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Survey Forms of Estimating Equations

1st step in transition: Poisson sampling, efficiency results

2nd step: “high-entropy” sampling (Hajek 1964, Tan 2014)

(includes SRS and other PPS rejective sampling)

still maintain efficiency results

General complex surveys: no likelihood-based optimality re-

sults, but apply same inverse-propensity-weighted estimating

equations with survey weights.

wi : (possibly adjusted, not yet calibrated) weights

p0(x, γ) d-dim logistic regression, dim(X(a)) � d � dim(X)
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Estimating equations

∑

i∈S

wi h(X(1)
i )

(
Ri

p0(Xi, γ)
− 1

)
= 0

∑

i∈S

wi

(
X

(21)
i

Ri

p0(Xi, γ)
− µ

X(21)

)
= 0

∑

i∈S

wi X
(1)
i

(
Ri I

[X(2)
i ∈Bk]

− p0(Xi, γ) p2(X
(2)
i ∈ Bk |X

(1)
i , α)

)
= 0

and

∑

i∈S

wi
Ri

p0(Xi, γ)
g(X(a)

i ) (Yi − β′ X(a)
i ) = 0
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Discussion on Search for Covariates

Kreuter, Olson, Wagner et al. (2010), Using Proxy Measures

and other Correlates of Survey Outcomes to Adjust for

Non-response, JRSSA highly cited

• argue via correlations that variables highly dependent both

on Survey Outcomes and Response indicator are hard to find.

• same assertion difficult to justify in large surveys if single

variables can be replaced by blocks of interacting variables.

• X(a) outcome variables could simultaneously interact with a

subset of X variables that strongly interact with block of key

variables in propensity p0(X) = P(R = 1|X)

• Stronger possibility if propensity involves outcome variables.

16



Summary

(1) Propensities may involve covariates observed at interview;

survey world does this only through poststratified regression.

(2) In IID/Poisson-sampling settings, weighted regression esti-

mates from
∑

i∈S wi
Ri h(X(a)

i )
p0(Xi,γ̂) (Yi − β′ X(a)

i ) are efficient.

(3) Weight-smoothing strategies may help but do not improve

on (2) in noninformative-sampling settings.

(4) External control data can usually not supply fully cross-

classified totals or stable calibrated survey weights. Must be

incorporated through (α) models forced to be compatible with

propensity (γ) parameter estimates.

This is a direction of further research.
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Thank you !

Eric.V.Slud@census.gov
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