An Approximated Expectation-Maximization Algorithm for Analysis of Data with Missing Values

Gong Tang

Department of Biostatistics, GSPH
University of Pittsburgh

NISS Workshop on Nonignorable Nonresponse
November 12-13, 2015
(9) Introduction

- Background \& Current Approaches
- Expectation-Maximization (EM) Algorithm for Regression Analysis of Data with Nonresponse
(2) An approximated EM algorithm
- The algorithm
- Application in contingency table analysis
- Application in regression analyses with a continuous outcome

3 Simulation studies
4 Discussion

Regression Analysis of Data with Nonresponse

Consider bivariate data $\left\{x_{i}, y_{i}, i=1,2, \ldots, n\right\}$ where

- x_{i} s are fully observed,
- $y_{i} s$ are only observed for $i=1, \ldots, m$.

Denote R_{i} to be the missing-data indicator:
$R_{i}=1$ if y_{i} is observed and $R_{i}=0$ otherwise.
Assume that

$$
\begin{aligned}
& {\left[y_{i} \mid x_{i}\right] \sim g\left(y_{i} \mid x_{i} ; \theta\right) \propto \exp \left\{\theta S\left(x_{i}, y_{i}\right)+a(\theta)\right\}} \\
& \operatorname{pr}\left[R_{i}=1 \mid x_{i}, y_{i}\right]=w\left(x_{i}, y_{i} ; \psi\right)
\end{aligned}
$$

and the parameter of interest is θ.

Goal: to avoid modeling $w\left(x_{i}, y_{i} ; \psi\right)$.

Likelihood-based Inference (I)

The observed data are $\mathcal{D}_{\text {obs }}=\left\{x_{i}, R_{i}, R_{i} y_{i} ; i=1, \ldots, n\right\}$.
When $w\left(x_{i}, y_{i} ; \psi\right)$ is parametrically modeled, the likelihood function is

$$
\begin{aligned}
& L\left(\theta, \psi ; \mathcal{D}_{\text {obs }}\right)=\prod_{i=1}^{n} p\left(R_{i}, R_{i} y_{i} \mid x_{i} ; \theta, \psi\right) \\
& =\prod_{i=1}^{m} g\left(y_{i} \mid x_{i} ; \theta\right) w\left(x_{i}, y_{i} ; \psi\right) \prod_{i=m+1}^{n} \int g\left(y_{i} \mid x_{i} ; \theta\right)\left\{1-w\left(x_{i}, y_{i} ; \psi\right)\right\} d y_{i}
\end{aligned}
$$

When $w\left(x_{i}, y_{i} ; \psi\right)=w\left(x_{i} ; \psi\right)$, data are called missing at random (MAR) and

$$
L\left(\theta, \psi ; \mathcal{D}_{o b s}\right) \propto L\left(\theta ; \mathcal{D}_{o b s}\right) L\left(\psi ; \mathcal{D}_{o b s}\right) \quad(\text { Rubin, 1976 }) .
$$

Likelihood-based Inference (II)

When data are MAR plus θ and ψ are distinct, the modeling of $w(x, y ; \psi)$ is not necessary under the likelihood-based inference.

When data are not MAR, the missingness has to be modeled and the inference on θ and ψ are made together.

Misspecification of the missing-data model $w(x, y ; \psi)$ often leads to biased estimate of θ.

A conditional likelihood

Assume that

$$
\begin{aligned}
& {\left[y_{i} \mid x_{i}\right] \sim g\left(y_{i} \mid x_{i} ; \theta\right) \quad \text { (A parametric regression) }} \\
& \operatorname{pr}\left[R_{i}=1 \mid x_{i}, y_{i}\right]=w\left(x_{i}, y_{i} ; \psi\right)=w\left(y_{i} ; \psi\right) .
\end{aligned}
$$

Then $[X \mid Y, R=1]=[X \mid Y, R=0]=[X \mid Y]$.
Consider the following conditional likelihood:

$$
\begin{aligned}
C L(\theta) & =\prod_{R_{i}=1} p\left(x_{i} \mid y_{i} ; \theta, F_{X}\right) \quad\left(F_{X} \text { is the CDF of } X\right) \\
& =\prod_{R_{i}=1} \frac{g\left(y_{i} \mid x_{i} ; \theta\right) p\left(x_{i}\right)}{p\left(y_{i} ; \theta, F_{X}\right)} \quad \text { (Bayes formula) } \\
& \propto \prod_{R_{i}=1} \frac{g\left(y_{i} \mid x_{i} ; \theta\right)}{\int g\left(y_{i} \mid x ; \theta\right) d F_{X}(x)}
\end{aligned}
$$

Requires knowing $F_{X}(\cdot)$!

A pseudolikelihood method

(Tang, Little \& Raghunathan, 2003)
In alternative, we may either

- model $X \sim f(x ; \alpha)$, obtain $\widehat{\alpha}=\arg \max _{\alpha} \prod_{i=1}^{n} f\left(x_{i} ; \alpha\right)$, then consider a pseudolikelihood function

$$
P L_{1}(\theta)=\prod_{R_{i}=1} \frac{g\left(y_{i} \mid x_{i} ; \theta\right)}{\int g\left(y_{i} \mid x ; \theta\right) d F_{X}(x ; \widehat{\alpha})}
$$

- or substitute $F_{X}(\cdot)$ by the empirical distribution $F_{n}(\cdot)$:

$$
\begin{aligned}
P L_{2}(\theta) & =\prod_{R_{i}=1} \frac{p\left(y_{i} \mid x_{i} ; \theta\right)}{\int p\left(y_{i} \mid x_{;} ; \theta\right) d F_{n}(x)} \\
& =\prod_{R_{i}=1} \frac{p\left(y_{i} \mid x_{i} ; \theta\right)}{\frac{1}{n} \sum_{j=1}^{n} p\left(y_{i} \mid x_{j} ; \theta\right)}
\end{aligned}
$$

Exponential tilting (Kim \& Yu, 2011)

Consider the following semiparametric logistic regression model:

$$
\operatorname{pr}\left[R_{i}=1 \mid x_{i}, y_{i}\right]=\operatorname{logit}^{-1}\left\{h\left(x_{i}\right)-\psi y_{i}\right\},
$$

where $h(\cdot)$ is unspecified and ψ is either known or estimated from an external dataset with the missing values recovered. Subsequently we would have:

$$
p(y \mid x, r=0)=p(y \mid x, r=1) \frac{\exp (\psi y)}{E[\exp (\psi y) \mid x, r=1]} .
$$

With both $p(y \mid x, r=1)$ and $E[\exp (\psi y) \mid x, r=1]$ empirically estimated, one will obtain a density estimator for $p(y \mid x, r=0)$ and estimate $\theta=E[H(X, Y)]$ via:

$$
\widehat{\theta}=\frac{1}{n}\left\{\sum_{r_{i}=1} H\left(x_{i}, y_{i}\right)+\sum_{r_{i}=0}^{n} \widehat{E}\left[H\left(x_{i}, y_{i}\right) \mid x_{i}, r_{i}=0\right]\right\}
$$

An instrumental variable approach

(Wang, Shao \& Kim, 2014)
Assume that $X=(Z, U)$ and

$$
\begin{aligned}
& E(Y \mid X)=\beta_{0}+\beta_{1} u+\beta_{2} z \\
& \operatorname{pr}(R=1 \mid Z, U, Y)=\operatorname{pr}(R=1 \mid U, Y)=\pi(\psi ; U, Y)
\end{aligned}
$$

one may use the following estimating equations to estimate ψ :

$$
\sum_{i=1}^{n}\left\{\frac{r_{i}}{\pi\left(\psi ; u_{i}, y_{i}\right)}-1\right\}\left(1, u_{i}, z_{i}\right)=0
$$

Then estimate β 's via

$$
\sum_{i=1}^{n} \frac{r_{i}}{\pi\left(\widehat{\psi} ; u_{i}, y_{i}\right)}\left(y_{i}-\beta_{0}-\beta_{1} u_{i}+\beta_{2} z_{i}\right)\left(1, u_{i}, z_{i}\right)=0
$$

The likelihood function

From the following representation:

$$
\begin{aligned}
L\left(\theta, \psi ; \mathcal{D}_{o b s}\right) & =\prod_{i=1}^{n} p\left(R_{i}, R_{i} y_{i} \mid x_{i} ; \theta, \psi\right) \\
& =\prod_{i=1}^{n} \frac{p\left(R_{i}, R_{i} y_{i},\left(1-R_{i}\right) y_{i} \mid x_{i} ; \theta, \psi\right)}{p\left(\left(1-R_{i}\right) y_{i} \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta, \psi\right)} \\
& =\prod_{i=1}^{n} \frac{p\left(R_{i}, y_{i} \mid x_{i} ; \theta, \psi\right)}{p\left(\left(1-R_{i}\right) y_{i} \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta, \psi\right)} \\
& =\prod_{i=1}^{n} \frac{p\left(y_{i} \mid x_{i} ; \theta\right) p\left(R_{i} \mid x_{i}, y_{i} ; \psi\right)}{p\left(\left(1-R_{i}\right) y_{i} \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta, \psi\right)},
\end{aligned}
$$

The log-likelihood function

We have

$$
\begin{aligned}
I\left(\theta, \psi ; y_{o b s}\right)= & \log L\left(\theta, \psi ; y_{o b s}\right) \\
= & \sum_{i=1}^{n}\left\{\log p\left(y_{i} \mid x_{i} ; \theta\right)+\log p\left(R_{i} \mid x_{i}, y_{i} ; \psi\right)\right. \\
& \left.-\log p\left(\left(1-R_{i}\right) y_{i} \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta, \psi\right)\right\} .
\end{aligned}
$$

Let
$Q(\theta, \psi ; \tilde{\theta}, \tilde{\psi})=\sum_{i=1}^{n} E\left[\log p\left(y_{i} \mid x_{i} ; \theta\right)+\log p\left(R_{i} \mid x_{i}, y_{i} ; \psi\right) \mid R_{i}, R_{i} y_{i}, x_{i} ; \tilde{\theta}, \tilde{\psi}\right]$,
$H(\theta, \psi ; \tilde{\theta}, \tilde{\psi})=\sum_{i=1}^{n} E\left[\log p\left(\left(1-R_{i}\right) y_{i} \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta, \psi\right) \mid R_{i}, R_{i} y_{i}, x_{i} ; \tilde{\theta}, \tilde{\psi}\right]$.
Then we have $I\left(\theta, \psi ; y_{o b s}\right)=Q(\theta, \psi ; \tilde{\theta}, \tilde{\psi})-H(\theta, \psi ; \tilde{\theta}, \tilde{\psi})$, for any $(\tilde{\theta}, \tilde{\psi})$.

The Expectation-Maximization (EM) Algorithm

(Dempster, Laird and Rubin, 1977)

From the Jansen's inequality, we have

$$
H(\theta, \psi ; \tilde{\theta}, \tilde{\psi}) \leq H(\tilde{\theta}, \tilde{\psi} ; \tilde{\theta}, \tilde{\psi})
$$

The EM algorithm is an iterative algorithm to find a sequence $\left\{\left(\theta^{(t)}, \psi^{(t)}\right), t=0,1,2, \ldots\right\}$ such that

$$
\left(\theta^{(t+1)}, \psi^{(t+1)}\right)=\arg \max _{(\theta, \psi)} Q\left(\theta, \psi ; \theta^{(t)}, \psi^{(t)}\right)
$$

This assures that $I\left(\theta^{(t)}, \psi^{(t)} ; y_{o b s}\right) \leq I\left(\theta^{(t+1)}, \psi^{(t+1)} ; y_{o b s}\right)$. Typically logistic or probit regression models are used for $w(x, y ; \psi)$.
Numerical integrations or the Monte Carlo method are often necessary in the implementation.

When $\psi=\psi_{0}$ is known

Now consider when the true value of ψ, ψ_{0}, is known:

$$
\begin{aligned}
I\left(\theta, \psi_{0} ; y_{o b s}\right)= & \log L\left(\theta, \psi_{0} ; y_{o b s}\right) \\
= & \sum_{i=1}^{n}\left\{\log p\left(y_{i} \mid x_{i} ; \theta\right)+\log p\left(R_{i} \mid x_{i}, y_{i} ; \psi_{0}\right)\right. \\
& \left.-\log p\left(\left(1-R_{i}\right) y_{i} \mid \mathcal{D}_{i, \text { obs }} ; \theta, \psi_{0}\right)\right\}
\end{aligned}
$$

With current estimate $\theta^{(t)}$, the Q-function becomes

$$
\begin{aligned}
Q\left(\theta ; \theta^{(t)}\right) & =\sum_{i=1}^{n} E\left[\log p\left(y_{i} \mid x_{i} ; \theta\right)+\log p\left(R_{i} \mid x_{i}, y_{i} ; \psi_{0}\right) \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta^{(t)}, \psi_{0}\right] \\
& \propto \sum_{i=1}^{n} E\left[\log p\left(y_{i} \mid x_{i} ; \theta\right) \mid R_{i}, R_{i} y_{i}, x_{i} ; \theta^{(t)}, \psi_{0}\right]
\end{aligned}
$$

because the second term does not involve θ.

Another view of the likelinood

Without loss of generality, assume that the regression model follows a canonical exponential family. Then

$$
\begin{aligned}
\Omega\left(\theta ; \theta^{(t)}\right) & =\sum_{i=1}^{m} \log g\left(y_{i} \mid x_{i} ; \theta\right)+\sum_{i=m+1}^{n} E\left[\log g\left(y_{i} \mid x_{i} ; \theta\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right] \\
& \propto \sum_{i=1}^{m} \log g\left(y_{i} \mid x_{i} ; \theta\right)+\sum_{i=m+1}^{n}\left\{\theta E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right]+a(\theta)\right\},
\end{aligned}
$$

we need to obtain $E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right]$ in order to carry out the EM algorithm. With $w\left(x_{i}, y_{i} ; \psi_{0}\right)$ known,
$E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right]=\frac{\int s\left(x_{i}, y_{i}\right) g\left(y_{i} \mid x_{i} ; \theta^{(t)}\right)\left\{1-w\left(x_{i}, y_{i} ; \psi_{0}\right)\right\} d y_{i}}{\int g\left(y_{i} \mid x_{i} ; \theta^{(t)}\right)\left\{1-w\left(x_{i}, y_{i} ; \psi_{0}\right)\right\} d y_{i}}$

An alternative look of the E-step

On the other hand,

$$
\begin{aligned}
E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, \theta^{(t)}\right]= & E\left[E\left[S\left(x_{i}, y_{i}\right) \mid R_{i}, x_{i}\right] \mid x_{i}\right] \\
= & E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=1 ; \theta^{(t)}\right] \operatorname{pr}\left[R_{i}=1 \mid x_{i} ; \theta^{(t)}, \psi_{0}\right] \\
& +E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right] \operatorname{pr}\left[R_{i}=0 \mid x_{i} ; \theta^{(t)}, \psi_{0}\right]
\end{aligned}
$$

We would have

$$
\begin{aligned}
& E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right] \\
& =\frac{E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, \theta^{(t)}\right]-E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=1 ; \theta^{(t)}, \psi_{0}\right] p r\left[R_{i}=1 \mid x_{i} ; \theta^{(t)}, \psi_{0}\right]}{\operatorname{pr}\left[R_{i}=0 \mid x_{i} ; \theta^{(t)}, \psi_{0}\right]}
\end{aligned}
$$

Empirical replacements

It is noted that if we use some empirical estimates of $E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=1 ; \theta^{(t)}, \psi_{0}\right]$ and $\operatorname{pr}\left[R_{i}=0 \mid x_{i} ; \theta^{(t)}, \psi_{0}\right]$ to replace them, we would be able to carry out an iterative algorithm as the following:
At the E-step

$$
\begin{aligned}
& \widehat{E}\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right] \\
& =\frac{E\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, \theta^{(t)}\right]-\widehat{E}\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=1\right] \widehat{p r}\left[R_{i}=1 \mid x_{i}\right]}{1-\widehat{p} r\left[R_{i}=1 \mid x_{i}\right]}
\end{aligned}
$$

At the M-step, find $\theta=\theta^{(t+1)}$ that solves:
$\theta^{(t+1)}=\arg \max _{\theta} Q^{*}\left(\theta ; \theta^{(t)}\right)$

$$
:=\arg \max _{\theta}\left[\theta\left\{\sum_{i=1}^{m} S\left(x_{i}, y_{i}\right)+\sum_{i=m+1}^{n} \widehat{E}\left[S\left(x_{i}, Y\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}\right]\right\}+n a(\theta)\right]
$$

An important observation

- In usual an EM algorithm, $\theta^{(t)}$ may be far away from the truth θ_{0}.
-However, in order for the empirical estimates $\widehat{p r}\left[R_{i}=1 \mid x_{i}\right]$ and $\widehat{E}\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=1\right]$ to be self-consistent with the corresponding terms under $\left(\theta^{(t)}, \psi_{0}\right)$, it is required that $\theta^{(t)}$ is a consistent estimate of θ.
- Therefore we should start with a consistent initial estimate of θ and carry out this iterative algorithm to obtain another consistent estimate of θ at convergence.

A short summary of the modified EM

(1) Choose initial value of $\theta^{(0)}$ from

- either a complete dataset from subjects with similar characteristics
- or a completed subset recovered from recalls.
(2) Compute the Nadaraya-Watson estimates or local polynomial estimates for $\operatorname{pr}\left[R=1 \mid x_{i}\right]$ and $E\left[S\left(x_{i}, Y\right) \mid x_{i}, R=1\right]$, for each
$i=m+1, m+2, \ldots, n$.
(3) At the E-step of the t th iteration, calculate
$\widehat{E}\left[S\left(x_{i}, y_{i}\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}, \psi_{0}\right]$.
(4) At the M -step of the t th iteration, find $\theta=\theta^{(t+1)}$ that solves:

$$
\sum_{i=1}^{n} E\left[S\left(x_{i}, y_{i}\right) \mid x_{i} ; \theta\right]=\sum_{i=1}^{m} S\left(x_{i}, y_{i}\right)+\sum_{i=m+1}^{n} \widehat{E}\left[S\left(x_{i}, Y\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}\right]
$$

With a complete external dataset $\left\{x_{i}, y_{i} ; i=n+1, \ldots, n+n_{E}\right\}$, we would solve $\theta=\theta^{(t+1)}$ from:

$$
\begin{aligned}
& \sum_{i=1}^{n} E\left[S\left(x_{i}, y_{i}\right) \mid x_{i} ; \theta\right]+\sum_{i=n+1}^{n+n_{E}} E\left[S\left(x_{i}, y_{i}\right) \mid x_{i} ; \theta\right] \\
& =\sum^{m} S\left(x_{i}, y_{i}\right)+\sum^{n} \widehat{E}\left[S\left(x_{i}, Y\right) \mid x_{i}, R_{i}=0 ; \theta^{(t)}\right]+\sum^{n+n_{E}} S \overline{(} x_{i}, y_{i} \overline{)}
\end{aligned}
$$

Here we design an iterative algorithm with a sequence $\left\{\theta^{(t)}, t=0,1,2, \ldots\right\}$ such that

$$
\begin{aligned}
\theta^{(t+1)} & =\arg \max _{\theta} Q^{*}\left(\theta ; \theta^{(t)}\right) \\
& =\arg \max _{\theta}\left\{Q\left(\theta ; \theta^{(t)}\right)+o(1)\right\}
\end{aligned}
$$

This algorithm will yield $I\left(\theta^{(t+1)}, \psi_{0} ; y_{o b s}\right) \geq I\left(\theta^{(t)}, \psi_{0} ; y_{o b s}\right)+o(1)$.

An example in contingency table analysis

Consider discrete data $\left\{x_{i}, y_{i}, z_{i}, i=1, \ldots, n\right\}$:

- $x_{i} \mathrm{~s}$ and $y_{i} \mathrm{~s}$ are fully observed.
- z_{i} is observed for $i=1, \ldots, c$; missing for $i=c+1, \ldots, n$. Let $m=n-c$. Essentially the observed include the fully classified table $\left\{c_{j k l}\right\}$ and the partially classified table $\left\{m_{j k+}\right\}$.
- Complete external data
$\mathcal{D}_{E}=\left\{x_{i}, y_{i}, z_{i}, i=n+1, \ldots, n+n^{E}\right\}$ are fully observed.
- A log-linear model is assumed with parameter θ, which leads to $\pi_{j k l}=\operatorname{pr}[X=i, Y=j, Z=l]$, $j=1, \ldots, J ; k=1, \ldots, K ; I=1, \ldots, L$.
- Initial estimates $\left\{\pi_{j k l}^{(0)}\right\}$ are derived from the external complete data \mathcal{D}_{E}.

Implementation under the discrete setting

- Initial estimations:

$$
\begin{aligned}
& \widehat{p r}[z=\| x=j, y=k, R=1]=\frac{\sum_{i=1}^{c} \mid\left\{x_{i}=j, y_{i}=k, z_{i}=l\right\}}{\sum_{i=1}^{c}\left\{\left\{x_{i}=j, y_{i}=k\right\}\right.}=\frac{c_{j k l}}{c_{j k+}} \\
& \widehat{\operatorname{pr}}[R=1 \mid x=j, y=k]=\frac{\sum_{i=1}^{c} I\left\{x_{i}=j, y_{i}=k\right\}}{\sum_{i=1}^{n} I\left\{x_{i}=j, y_{i}=k\right\}}=\frac{c_{j k+}}{n_{j k+}} .
\end{aligned}
$$

- At the t th step, for (j, k, l), we update

$$
\begin{aligned}
& S_{j k l}=c_{j k l}+\sum_{i=c+1}^{n} l\left\{x_{i}=j, y_{i}=k\right\} \widehat{p r}[z=\| \mid x=j, y=k, R=0] \\
& =c_{j k l}+m_{j k+} \frac{p r\left[z=l \mid x=j, y=k ; \theta^{(t)}\right]-\frac{c_{i k l}}{c_{j k+} c_{j k+}} c_{j k+}}{1-\frac{c_{j k+}}{n_{j k+}}} \\
& =c_{j k l}+m_{j k+} \frac{\frac{\pi_{j k+}^{(t)}}{\pi_{j k+}^{(t)}}-\frac{c_{j k l}}{n_{j k+}}}{\frac{m_{j k+}}{n_{j k+}}}=n_{j k+} \frac{\pi_{j k l}^{(t)}}{\pi_{j k++}^{(t)}}
\end{aligned}
$$

Impression on the discrete setting

- In the E-step, we ended up as if imputing all Z_{i} s based on $\left(x_{i}, y_{i}\right)$, including those observed ones.
- If we include the external data \mathcal{D}_{E} in the algorithm with updating the sufficient statistics through

$$
S_{j k l}^{*}=n_{j k l}^{E}+S_{j k l}=n_{j k l}^{E}+n_{j k+} \frac{\pi_{j k l}^{(t)}}{\pi_{j k+}^{(t)}},
$$

the modified EM algorithm is equivalent to running a regular EM algorithm on the fully classified table $\left\{n_{j k l}^{E}\right\}$ and the partial classified table $\left\{n_{j k+}\right\}$, or, removing the observed z_{i} s from the complete cases (not part of the external complete data).

Implementation under the continuous setting

Consider the regression analysis of $[Y \mid X]$ where Y is continuous and subject to nonresponse

- If X is discrete, the empirical approximations are:

$$
\begin{aligned}
& \widehat{E}\left[S\left(x_{i}, Y\right) \mid x_{i}=k, r_{i}=1\right]=\frac{\sum_{r_{j}=1, x_{j}=x_{i}=k} s\left(x_{i}, y_{j}\right)}{\#\left\{j: r_{j}=1, x_{j}=x_{i}=k\right\}} \\
& \widehat{p r}\left[R_{i}=1 \mid x_{i}=k\right]=\frac{\#\left\{j: r_{j}=1, x_{j}=x_{i}=k\right\}}{\#\left\{j: x_{j}=x_{i}=k\right\}}
\end{aligned}
$$

- If X is continuous, we use either the Nadaraya-Watson estimate or local polynomial estimate as $\hat{E}\left[S\left(x_{i}, Y\right) \mid x_{i}=k, r_{i}=1\right]$; a kernel estimator for $\widehat{p r}\left[R_{i}=1 \mid x_{i}=k\right]$.

Simulation settings when data are NMAR

- We simulated bivariate data $\left\{x_{i}, y_{i}, i=1,2, \ldots, N\right\}$ following:
(i) $x_{i} \sim N(0,1)$ or $x_{i} \sim \operatorname{Bin}(5,0.3)$.
(ii) $\left[y_{i} \mid x_{i}\right] \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$, where $\theta=\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=(1,1,1)$.
- Keep $n_{E}=200$ of the above observations as the external datasets for obtaining initial values for θ.
- Simulate missing y_{i} s from the rest $n=1000$ subjects with: $\operatorname{pr}\left[R_{i}=1 \mid x_{i}, y_{i}\right]=\Phi\left(\psi_{0}+\psi_{1} x_{i}+\psi_{2} y_{i}\right)$, where $\Phi()$ is the CDF of the Gaussian distribution.
- Compare the complete-case estimate $\left(\widehat{\theta}_{c c}\right)$ based on the 1000 observations with missing data, MLE from the external data $\left(\widehat{\theta}_{E}\right)$ and the proposed approximated EM estimates $\left(\widehat{\theta}_{A E M}\right)$.

Simulation results with $X \sim N(0,1)$

Methods		β_{0}	β_{1}	σ^{2}
Complete-case analysis	Empirical Bias*	2009	-1388	-486
	Empirical SD*	380	422	468
	Coverage of 95\% CI	0%	8.8%	79.5%
MLEs from external subset	Empirical Bias*	-26	9	-103
	Empirical SD*	705	707	970
	Coverage of 95\% CI	96.1%	93.8%	92.6%
Approximated EM**	Empirical Bias*	-97	-11	-161
	Empirical SD*	551	472	624
	Coverage of 95\% CI	95.0%	95.2%	93.4%

The proportion of nonresponse was about 40%.

* Empirical biases and SDs were the actual numbers times 1000.
** The Epanechnikov kernel was used in the approximated EM. Bootstrap was used to derive the standard errors of the $\widehat{\theta}_{A E M}$

Simulation results with $X \sim \operatorname{Bin}(5,0.3)$

Methods		β_{0}	β_{1}	σ^{2}
Complete-case analysis	Empirical Bias*	156	-1412	-354
	Empirical SD*	574	446	477
	Coverage of 95\% CI	94.6%	11.6%	86.5%
MLEs from external subset	Empirical Bias*	-12	25	-111
	Empirical SD*	1245	688	976
	Coverage of 95\% CI	94.7%	94.2%	92.5%
Approximated EM**	Empirical Bias*	-16	27	-50
	Empirical SD*	662	492	731
	Coverage of 95\% CI	94.7%	93.9%	93.6%

The proportion of nonresponse was about 40\%

* Empirical biases and SDs were the actual numbers times 1000.
** The empirical averages were used in the approximated EM. Bootstrap was used to derive the standard errors of the $\widehat{\theta}_{A E M}$.

Simulation settings when data MAR

- We simulated bivariate data $\left\{x_{i}, y_{i}, i=1,2, \ldots, N\right\}$ following:
(i) $x_{i} \sim N(0,1)$.
(ii) $\left[y_{i} \mid x_{i}\right] \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$, where $\theta=\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=(1,1,1)$.
- Keep $n_{E}=200$ of the above observations as the external datasets for obtaining initial values for θ.
- Simulate missing y_{i} s from the rest $n=1000$ subjects with: $\operatorname{pr}\left[R_{i}=1 \mid x_{i}, y_{i}\right]=\Phi\left(\psi_{0}+\psi_{1} x_{i}\right)$, where $\Phi()$ is the CDF of the Gaussian distribution.
- Compare the complete-case estimate ($\widehat{\theta}_{c c}$) based on the 1000 observations with missing data, MLE from the external data $\left(\widehat{\theta}_{E}\right)$ and the proposed approximated EM estimates $\left(\widehat{\theta}_{A E M}\right)$.

Simulation results with $X \sim N(0,1)$

Methods		β_{0}	β_{1}	σ^{2}
Complete-case analysis	Empirical Bias*	-12	1	-24
	Empirical SD*	386	411	488
	Coverage of 95\% CI	94%	94.5%	93.4%
MLEs from external subset	Empirical Bias*	-26	9	-103
	Empirical SD*	705	707	970
	Coverage of 95\% CI	96.1%	93.8%	92.6%
Approximated EM**	Empirical Bias*	11	11	-73
	Empirical SD*	556	472	641
	Coverage of 95\% CI	93.9%	94.5%	93.7%

The proportion of nonresponse was about 40%.

* Empirical biases and SDs were the actual numbers times 1000.
** The Epanechnikov kernel was used in the modified EM. Bootstrap was used to derive the standard errors of the $\widehat{\theta}_{A E M}$

Without an external complete dataset ...

If one could obtain a reliable initial estimate $\theta^{(0)}$ and the associated variance-covariance matrix estimate \widehat{V}, then we can use it as the initial and perform the M -steps via
$\widehat{\theta}^{(t+1)}=\arg \max _{\theta}\left\{\left(\theta-\theta^{(0)}\right)^{T} \widehat{V}^{-1}\left(\theta-\theta^{(0)}\right)+\frac{1}{n} Q^{*}\left(\theta ; \theta^{(t)}\right)\right\}$

Without external complete dataset ...

Consider missing-data mechanisms such as

$$
\operatorname{pr}\left[R_{i}=1 \mid x_{i}, y_{i}\right]=w\left(x_{i}, y_{i} ; \psi\right)=w\left(y_{i} ; \psi\right),
$$

There are two approaches for implementing the approximated EM algorithm for data with outcome-dependent nonresponses:
(1) Use the pseudolikelihood estimate as the initial estimate and run the approximated EM.
(2) Use the pseudolikelihood estimate as the initial estimate and incorporate the pseudolikehood function as a component in each M-step:

$$
\widehat{\theta}^{(t+1)}=\arg \max _{\theta}\left\{I_{p l}(\theta)+Q^{*}\left(\theta ; \theta^{(t)}\right)\right\}
$$

The second approach is more computationally intensive.

Future works

- Need to monitor
$\left\{I\left(\theta^{(t)} ; \psi_{0}\right), Q^{*}\left(\theta^{(t+1)} ; \theta^{(t)}\right)-Q\left(\theta^{(t+1)} ; \theta^{(t))} ; t=0,1,2 \ldots\right\}\right.$.
- Search for a target function $I\left(\theta ; P_{n}^{(X, Y, R)}, \theta^{(0)}\right)$ so that $\widehat{\theta}_{A E M}$ is a stationary point of $I\left(\theta ; P_{n}^{(X, Y, R)}, \theta^{(0)}\right)$.
- Variance estimation.
- Link to integrative data analysis.

Acknowledgment

Megan Hunt Olson, University of Wisconsin, Green Bay. Yang Zhang, Amgen Inc.

Reference

1. Dempster, A. P., N. M. Laird and D. B. Rubin (1977).

Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B 39, 1-37.
2. Tang, G., Little, R.J.A. and Raghunathan, T. (2003). Analysis of Multivariate Missing Data with Nonignorable Nonresponse.
Biometrika, 90, 747-764.
3. Kim, J. K. and C. L. Yu (2011). A semi-parametric estimation of mean functionals with non-ignorable missing data, Journal of the American Statistical Association 106, 157-165.
4. Wang, S., J. Shao and J. K. Kim (2014). Identifiability and estimation in problems with nonignorable nonresponse, Statistica Sinica 24, 1097-1116.

