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Regression Analysis of Data with Nonresponse

Consider bivariate data {x;, y;, i =1,2,...,n} where
e x;s are fully observed,
e y;s are only observed fori=1,...,m.
Denote R; to be the missing-data indicator:
R; = 1if y; is observed and R; = 0 otherwise.
Assume that

i | Xil ~ g(yilxi; 0) < exp{0S(x;, yi) + a(0)}
priRi =1 xi, yi] = w(x;, yi; )

and the parameter of interest is 6.

Goal: to avoid modeling w(x;, yj; ).
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Likelihood-based Inference (I)

The observed data are Dops = {X;, Ri, Riyi;i =1,...,n}.

When w(x;, yi; 1) is parametrically modeled, the likelihood function is

n

L(6,1; Dobs) = HP(R:', Riyi | xi;6,v)

i=1

m
H (i | X 0)w(xi, yis H /QYI|X/ H1 = w(xi, yii¥)} dy;

i=m+1

When w(x;, yi; ) = w(x;; ¢), data are called missing at random
(MAR) and

L(8,1; Dops) o< L(8; Dops)L(1); Dops) ~ (Rubin, 1976).
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Likelihood-based Inference (ll)

When data are MAR plus 6 and v are distinct, the modeling of
w(x, y; ) is not necessary under the likelihood-based
inference.

When data are not MAR, the missingness has to be modeled
and the inference on 6 and ¢ are made together.

Misspecification of the missing-data model w(x, y; v) often
leads to biased estimate of 6.
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A conditional likelihood

Assume that
i | xi] ~ g(yilxi; 6) (A parametric regression)
priRi =11 X, yil = w(xi, yi; ¥) = w(yi; ¥).

Then [X|Y,R =1] = [X|Y,R = 0] = [X]Y].
Consider the following conditional likelihood:

cL®) = ] p(xily:6,Fx) (Fxisthe CDF of X)
Ri=1
= H 9(ilxi; 6)p(xi) (Bayes formula)

YIGFX)

a(yilxi; 6)
b H T y,|x 6) dFx(x)

Ri=1

Requires knowing Fx(-)!
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A pseudolikelihood method

(Tang, Little & Raghunathan, 2003)

In alternative, we may either
e model X ~ f(x; a), obtain @ = arg max,, [[_; f(X;; «), then
consider a pseudolikelihood function

g(yilxi; 0)
PL4(
1 Hfgy,|x0dFXch)
e or substitute Fx(-) by the empirical distribution Fp(-):

p(yilxi; 0)
H fp(y,|x 0) an( )

_ H p(yilxi; 0
.

el ) 3/ 1p(y,|X, 0)

PL>(0)
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Exponential tilting (kim & Yu, 2011)

Consider the following semiparametric logistic regression model:
pr(Ri =1 X, yi] = logit~' {h(x;) — i},

where h(-) is unspecified and ¢ is either known or estimated from an
external dataset with the missing values recovered.
Subsequently we would have:

exp(yy)
Elexp(yy)lx, r=1]

With both p(y|x,r = 1) and E[exp(yy)|x, r = 1] empirically
estimated, one will obtain a density estimator for p(y|x,r = 0) and
estimate § = E[H(X, Y)] via:

pylx,r=0)=p(ylx,r=1)

6= ,17{2 H(xi, yi) + Z E[H(xi. yi)|xi, ri = O]}

ri=1 ri=0
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An instrumental variable approach

(Wang, Shao & Kim, 2014)
Assume that X = (Z, U) and

E(YIX) = flo + B1u + bz
pr(R=1|Z,U,Y) = pr(R=1|U,Y) = n(t; U, Y)

one may use the following estimating equations to estimate :

n r
_ T _11,u,z)=o0.
;{W(w:ui,y/') y(. . 2)

Then estimate 3’s via

n

> m(yi — Bo — B1uj + B2z))(1,u;, z) = 0.
i=1 » Y X
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The likelihood function

From the following representation:

L(97 ¥, 7-)obs)

:3

p(Rth.yl | XI 9 w)
]

ﬁ P(Ri, Riyi,(1 — Ri)yi | x;;0,%)
(1 = Ri)yi | Ri, Riyi, xi:.0,¢)
ﬁ p(Ri, yi | Xi:0,7)

o P((1 = Ry)yi | Ri, Riyi, %10, ¢)
AR TEGIEN/AD
=1 p((1 = Ry | Ri, Riyi, xi;0,4)

10/33
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The log-likelihood function

We have
/(va;yobs) = log L(&"b?}’obs)
n
= ) {logp(y: | xi;0) +log p(Ri | xi, yi; ¥)

it

—logp((1 — Ri)yi | Ri, Riyi, Xi; 0, )}
Let
QO,v:0,9) = > Ellogp(y: | xi;0) +log p(Ri | xi, yi: ) | Ri, Riyi, xi: 6, 01,

i=1

H©O,v:0,9) = > Ellogp((1— R)yi | Ri, Riyi, Xi: 6,4) | Ri, Riyi, xi; 6, 9.

i=1

Then we have /(6, v; Yobs) = Q(8,%; 8,4) — H(6,v; 8, 1), for any (6, ).

11/33
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The Expectation-Maximization (EM) Algorithm

(Dempster, Laird and Rubin, 1977)

From the Jansen’s inequality, we have

H(0,¢:0,8) < H(,8:0,4).

The EM algorithm is an iterative algorithm to find a sequence
{00, (0), t=0,1,2,...} such that

( (t+1) d} t+1)) = arg maX 6.) (0 ,¢ 0 (1) ¢(l‘)

This assures that /(60 D: yops) < 1O Dy ).
Typically logistic or probit regression models are used for
w(x,y; ).

Numerical integrations or the Monte Carlo method are often
necessary in the implementation.

12/33
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When v = 19 is known

Now consider when the true value of 1, 1o, is known:
/(9, o; yobs) = log L(97 o; }/obs)

n
> " {log p(y; | xi:6) +log p(Ri | Xi, ¥is o)
i=1

—log p((1 — Ri)Yi | Di,obs; 0, 0)}-
With current estimate 60, the Q-function becomes
n
Q0;:0Y) = > Eflogp(y; | xi6) +log p(R; | xi, yiivo) | Ri, Riyi, xi: 6%, 4]

i=1

o > Eflogp(y; | x;;0) | Ri, Riyi, xi; 0, o],

i=1

because the second term does not involve 6.

13/33
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Another view of the likelihood

Without loss of generality, assume that the regression model follows a
canonical exponential family. Then

m n
Q0:09) = > logg(yi| xi:0)+ > Ellogg(yi | xi:6) | xi, Ri = 0;0", 4]

i=1 i=m+1

m n
Y logg(yi | xi:0) + > {OE[S(xi, yi) | xi, Ri = 0;6' ] + a(6)},

i=1 i=m-+1

we need to obtain E[S(x;, y;) | x;, R = 0; 0", ] in order to carry out the EM
algorithm. With w(x;, yi: 10) known,

LYY | X 001 — w(xi, vis o)} dyi
E[S(x:,y:) | i, Ri = 0; 0 4po] = J s(xi, y)g(yi | xi; h Y 170 I
[S(xi, yi) | X, » o] J9(yi | xi: 00){1 — w(x;, yi; 100} dyi

14/33
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An alternative look of the E-step

On the other hand,

E[S(x, yi) | 1,6 E[E[S(x:, yi)| Ri, xil| xi]
= E[S(,yi) | xi, B = 1;00pr[Ri = 1| xi; 0, o]
+E[S(xi, yi) | xi, Ry = 0;0 yholpr[Ry = 0 | xi; 0, o],
We would have
E[S(xi, y:) | xi, Ri = 0; 6 4]
_E[S(xi, ¥) | xi,00] — E[S(x:, yi) | xi, R = 1;00 o] pr[Ri = 1| xi; 01, 4]
B prRi = 0 | x;; 01, 1]

15/33
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Empirical replacements

It is noted that if we use some empirical estimates of

E[S(xi,¥:) | xi, Ri = 1; 69 4ho] and pr[R: = 0 | xi; 6, 0] to replace them, we
would be able to carry out an iterative algorithm as the following:

At the E-step

E[S(xi 1) | X, Ry = 0;09, ]
o E[S(X,,y,) ‘ x,-,H(')] — E[S(Xi,y/) | Xi, R/ = 1]5"[:‘?, =1 ‘ X,']
1 —ﬁr[R,-:1 |X/]

At the M-step, find 8 = 6" that solves:
oY = arg max,Q"(6;6")

= arg maxa[a{zm: S(xi,yi) + Z E[S(x, Y) | xi, R = 0;60U]} + na(6)]

i=1 i=m+1

16/33
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An important observation

e In usual an EM algorithm, 8() may be far away from the truth
0.

eHowever, in order for the empirical estimates pr[R; = 1 | xj]
and E[S(x,-,y,-) | xi, Rj = 1] to be self-consistent with the
corresponding terms under (80, v), it is required that #() is a
consistent estimate of 6.

e Therefore we should start with a consistent initial estimate of

# and carry out this iterative algorithm to obtain another
consistent estimate of ¢ at convergence.

17/33
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A short summary of the modified EM

@ Choose initial value of 6© from
e either a complete dataset from subjects with similar characteristics
e or a completed subset recovered from recalls.

@ Compute the Nadaraya-Watson estimates or local polynomial estimates
for pr[R =1 x;] and E[S(x;, Y) | x;, R = 1], for each
i=m+1m+2,...,n

Q At the E-step of the tth iteration, calculate
E[S(X,‘,y,') | Xi, R,' = O; 0(1),11)0].

© Atthe M-step of the tth iteration, find = #*" that solves:

n
> E[S(xi 1) | xi; 0] = ZS(XI,}’/ + Z E[S(x;, Y) | xi, Ri = 0;6"]
i=1 i=m+1
With a complete external dataset {x,y;;i=n+1,...,n+ ng}, we
would solve 6 = 6+") from:
n+ng
ZE[S Xi, Vi) | xi; 0] + Z E[S(xi, yi) | xi; 0]
i=1 i=n+1
m n+ng

:ZS(X,-,}/, Z E[S Xi, ‘X/ /*O 0 ]+ Z SX/,y: 18/33



An approximated EM algorithm
0oo00e

Here we design an iterative algorithm with a sequence
{60, t=0,1,2,...} such that

o+ = arg max,Q*(9; 61)
= arg max,{Q(9; 0 + o(1)}

This algorithm will yield
10 o; Yobs) > 10, 2)o; Yobs) + 0(1).

19/33
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An example in contingency table analysis

Consider discrete data {x;, y;, zj,i = 1,...,n}:
e x;s and y;s are fully observed.
e ziisobservedfori=1,...,c;missingfori=c+1,...,n.

Let m = n— c. Essentially the observed include the fully
classified table {cy} and the partially classified table

{mik+}-
e Complete external data
De = {x;,¥i,zi,i=n+1,...,n+ nF} are fully observed.

e Alog-linear model is assumed with parameter 6, which
leads to mjy = pr(X =i, Y =j,Z =1],
j=1,....J; k=1,... K; I=1,... L

e Initial estimates {w},?,)} are derived from the external
complete data Dg.

20/33
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Implementation under the discrete setting

o Initial estimations:

Siallxi=jyi=kz=1} cu
o Kxi=j,yi =k} Cik+

S =0y =k G

S Hxi=jyi=k} e

e At the tth step, for (j, k, /), we update

priz=lx=jy=kR=1]=

priR=1x=jy=K=

n
Sw=cu+ Y Hxi=jyi=kipriz=Ix=jy=k R=0]

i=c+1

priz=Il|x =j,y = k; 0] — 4 G

— ) Cik+ Mik+
= Cjxi + Mik+ ks
Njk4
()
Tkl Skl o
T y
. , o, Tkr o T
= Cjkl + Mik+ B n/k+T
Njk+ Tjk+

21/33
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Impression on the discrete setting

¢ In the E-step, we ended up as if imputing all Z;s based on
(xi, yi), including those observed ones.

¢ If we include the external data Dg in the algorithm with
updating the sufficient statistics through
(1)
.
* E E Kl
ik = Mgt + Sjkt = Migg + Mt 7{1) ,
T jk+

the modified EM algorithm is equivalent to running a
regular EM algorithm on the fully classified table {n;f(,} and
the partial classified table {nj. }, or, removing the
observed z;s from the complete cases (not part of the
external complete data).

22/33
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Implementation under the continuous setting

Consider the regression analysis of [Y|X] where Y is
continuous and subject to nonresponse

e If X is discrete, the empirical approximations are:

. er:1 Xi=Xi=K S(X,‘, y/)
_#{10215)(]:)(121(}
B = 15— %= K}

# - X = Xxi = k}

e If X is continuous, we use either the Nadaraya-Watson
estimate or local polynomial estimate as
E[S(xi, Y)|x; = k, r; = 1]; a kernel estimator for
pr{R; = 1|x; = k.

E[S(x;, Y)|xi = Kk, r; = 1]

[/DT[R,': 1‘X,’ = k] =

23/33



Simulation studies

Simulation settings when data are NMAR

e We simulated bivariate data {x;, y;,i = 1,2,..., N} following:

(i) x; ~N(0,1) or x; ~ Bin(5,0.3).

(i) [yilx] ~ N(Bo + B1xi,02), where 6 = (8o, 31,0%) = (1,1,1).
e Keep ng = 200 of the above observations as the external
datasets for obtaining initial values for 6.

e Simulate missing y;s from the rest n = 1000 subjects with:
prlR; = 1| x;, yi] = ®(vo + ¥1X; + ¢2y;), where &() is the CDF
of the Gaussian distribution.

e Compare the complete-case estimate (500) based on the
1000 observations with missing data, MLE from the external
data (5,:—) and the proposed approximated EM estimates (5AEM).

24/33
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Simulation results with X ~ N(0, 1)

Methods Bo B4 o2
Complete-case analysis Empirical Bias* 2009 -1388  -486
Empirical SD* 380 422 468
Coverage of 95% Cl 0% 8.8% 79.5%
MLEs from external subset Empirical Bias* -26 9 -103
Empirical SD* 705 707 970
Coverage of 95% Cl  96.1% 93.8% 92.6%
Approximated EM** Empirical Bias* -97 -11 -161
Empirical SD* 551 472 624

Coverage of 95% ClI  95.0% 95.2% 93.4%

The proportion of nonresponse was about 40%.
* Empirical biases and SDs were the actual numbers times 1000.

** The Epanechnikov kernel was used in the approximated EM. Bootstrap
was used to derive the standard errors of the §AEM

25/33



Simulation studies

Simulation results with X ~ Bin(5,0.3)

Methods Bo B4 o2
Complete-case analysis Empirical Bias* 156 -1412  -354
Empirical SD* 574 446 477
Coverage of 95% Cl 94.6% 11.6% 86.5%
MLEs from external subset Empirical Bias* -12 25 -111
Empirical SD* 1245 688 976
Coverage of 95% ClI  94.7% 94.2% 92.5%
Approximated EM** Empirical Bias* -16 27 -50
Empirical SD* 662 492 731

Coverage of 95% ClI  94.7% 93.9% 93.6%
The proportion of nonresponse was about 40%

* Empirical biases and SDs were the actual numbers times 1000.
** The empirical averages were used in the approximated EM. Bootstrap was
used to derive the standard errors of the Gaeu.

26/33



Simulation studies

Simulation settings when data MAR

e We simulated bivariate data {x;, y;,i = 1,2,..., N} following:

(i) x; ~ N(0,1).

(i) [yilx] ~ N(Bo + B1xi,02), where 6 = (8o, 31,0%) = (1,1,1).
e Keep ng = 200 of the above observations as the external
datasets for obtaining initial values for 6.

e Simulate missing y;s from the rest n = 1000 subjects with:
pr[Ri = 1| xi, ¥i] = ®(¢o + 11 X;), where ®() is the CDF of the
Gaussian distribution.

e Compare the complete-case estimate (500) based on the
1000 observations with missing data, MLE from the external
data (5,:—) and the proposed approximated EM estimates (5AEM).

27/33



Simulation studies

Simulation results with X ~ N(0, 1)

Methods Bo B4 o2
Complete-case analysis Empirical Bias* -12 1 -24
Empirical SD* 386 411 488
Coverage of 95% Cl  94% 94.5% 93.4%
MLEs from external subset Empirical Bias* -26 9 -103
Empirical SD* 705 707 970
Coverage of 95% Cl  96.1% 93.8% 92.6%
Approximated EM** Empirical Bias* 11 11 -73
Empirical SD* 556 472 641

Coverage of 95% ClI  93.9% 94.5% 93.7%

The proportion of nonresponse was about 40%.
* Empirical biases and SDs were the actual numbers times 1000.

** The Epanechnikov kernel was used in the modified EM. Bootstrap was
used to derive the standard errors of the (3AEM

28/33



Discussion

Without an external complete dataset ...

If one could obtain a reliable initial estimate §(*) and the
associated variance-covariance matrix estimate V, then we can
use it as the initial and perform the M-steps via

91 = arg maxy {(6 — 6)TV1(6 — 6©) + %o*(e; o)

29/33



Discussion

Without external complete dataset ...

Consider missing-data mechanisms such as
priRi =1 X, yil = w(x;, yi; ¥) = w(yi; ),

There are two approaches for implementing the approximated
EM algorithm for data with outcome-dependent nonresponses:

@ Use the pseudolikelihood estimate as the initial estimate
and run the approximated EM.

@ Use the pseudolikelihood estimate as the initial estimate
and incorporate the pseudolikehood function as a
component in each M-step:

0+ = arg maxy {I(0) + Q*(6;61)}

The second approach is more computationally intensive.

30/33
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Future works

e Need to monitor
{1(6D; 1), Q*(0UFD; 90y — QA+ 9D t = 0,1,2.. ..

o Search for a target function /(6; P{“"™ 6(0)) so that Gaep is
a stationary point of /(g; PV 9(0)y,

e Variance estimation.

e Link to integrative data analysis.

31/33
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