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Regression Analysis of Data with Nonresponse

Consider bivariate data {xi , yi , i = 1,2, . . . ,n} where
• xis are fully observed,
• yis are only observed for i = 1, . . . ,m.

Denote Ri to be the missing-data indicator:
Ri = 1 if yi is observed and Ri = 0 otherwise.

Assume that

[yi | xi ] ∼ g(yi |xi ; θ) ∝ exp{θS(xi , yi) + a(θ)}
pr [Ri = 1 | xi , yi ] = w(xi , yi ;ψ)

and the parameter of interest is θ.

Goal: to avoid modeling w(xi , yi ;ψ).
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Likelihood-based Inference (I)

The observed data are Dobs = {xi ,Ri ,Riyi ; i = 1, . . . ,n}.

When w(xi , yi ;ψ) is parametrically modeled, the likelihood function is

L(θ, ψ;Dobs) =
n∏

i=1

p(Ri ,Riyi | xi ; θ, ψ)

=
m∏

i=1

g(yi | xi ; θ)w(xi , yi ;ψ)
n∏

i=m+1

∫
g(yi | xi ; θ){1 − w(xi , yi ;ψ)}dyi

When w(xi , yi ;ψ) = w(xi ;ψ), data are called missing at random
(MAR) and

L(θ, ψ;Dobs) ∝ L(θ;Dobs)L(ψ;Dobs) (Rubin, 1976).
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Likelihood-based Inference (II)

When data are MAR plus θ and ψ are distinct, the modeling of
w(x , y ;ψ) is not necessary under the likelihood-based
inference.

When data are not MAR, the missingness has to be modeled
and the inference on θ and ψ are made together.

Misspecification of the missing-data model w(x , y ;ψ) often
leads to biased estimate of θ.
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A conditional likelihood

Assume that

[yi | xi ] ∼ g(yi |xi ; θ) (A parametric regression)
pr [Ri = 1 | xi , yi ] = w(xi , yi ;ψ) = w(yi ;ψ).

Then [X |Y ,R = 1] = [X |Y ,R = 0] = [X |Y ].
Consider the following conditional likelihood:

CL(θ) =
∏

Ri=1

p(xi |yi ; θ,FX ) (FX is the CDF of X)

=
∏

Ri=1

g(yi |xi ; θ)p(xi)

p(yi ; θ,FX )
(Bayes formula)

∝
∏

Ri=1

g(yi |xi ; θ)∫
g(yi |x ; θ) dFX (x)

Requires knowing FX (·)!
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A pseudolikelihood method
(Tang, Little & Raghunathan, 2003)

In alternative, we may either
• model X ∼ f (x ;α), obtain α̂ = arg maxα

∏n
i=1 f (xi ;α), then

consider a pseudolikelihood function

PL1(θ) =
∏

Ri=1

g(yi |xi ; θ)∫
g(yi |x ; θ) dFX (x ; α̂)

• or substitute FX (·) by the empirical distribution Fn(·):

PL2(θ) =
∏

Ri=1

p(yi |xi ; θ)∫
p(yi |x ; θ) dFn(x)

=
∏

Ri=1

p(yi |xi ; θ)
1
n

∑n
j=1 p(yi |xj ; θ)
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Exponential tilting (Kim & Yu, 2011)

Consider the following semiparametric logistic regression model:

pr [Ri = 1 | xi , yi ] = logit−1{h(xi)− ψyi},

where h(·) is unspecified and ψ is either known or estimated from an
external dataset with the missing values recovered.
Subsequently we would have:

p(y |x , r = 0) = p(y |x , r = 1)
exp(ψy)

E [exp(ψy)|x , r = 1]
.

With both p(y |x , r = 1) and E [exp(ψy)|x , r = 1] empirically
estimated, one will obtain a density estimator for p(y |x , r = 0) and
estimate θ = E [H(X ,Y )] via:

θ̂ =
1
n
{
∑
ri=1

H(xi , yi) +
n∑

ri=0

Ê [H(xi , yi)|xi , ri = 0]}
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An instrumental variable approach
(Wang, Shao & Kim, 2014)

Assume that X = (Z ,U) and

E(Y |X ) = β0 + β1u + β2z
pr(R = 1|Z ,U,Y ) = pr(R = 1|U,Y ) = π(ψ; U,Y )

one may use the following estimating equations to estimate ψ:

n∑
i=1

{ ri

π(ψ; ui , yi)
− 1}(1,ui , zi) = 0.

Then estimate β’s via

n∑
i=1

ri

π(ψ̂; ui , yi)
(yi − β0 − β1ui + β2zi)(1,ui , zi) = 0.
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The likelihood function

From the following representation:

L(θ, ψ;Dobs) =
n∏

i=1

p(Ri ,Riyi | xi ; θ, ψ)

=
n∏

i=1

p(Ri ,Riyi , (1 − Ri)yi | xi ; θ, ψ)

p((1 − Ri)yi | Ri ,Riyi , xi ; θ, ψ)

=
n∏

i=1

p(Ri , yi | xi ; θ, ψ)

p((1 − Ri)yi | Ri ,Riyi , xi ; θ, ψ)

=
n∏

i=1

p(yi | xi ; θ)p(Ri | xi , yi ;ψ)

p((1 − Ri)yi | Ri ,Riyi , xi ; θ, ψ)
,
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The log-likelihood function

We have

l(θ, ψ; yobs) = log L(θ, ψ; yobs)

=
nX

i=1

{log p(yi | xi ; θ) + log p(Ri | xi , yi ;ψ)

− log p((1 − Ri)yi | Ri ,Riyi , xi ; θ, ψ)}.

Let

Q(θ, ψ; θ̃, ψ̃) =
nX

i=1

E [log p(yi | xi ; θ) + log p(Ri | xi , yi ;ψ) | Ri ,Riyi , xi ; θ̃, ψ̃],

H(θ, ψ; θ̃, ψ̃) =
nX

i=1

E [log p((1 − Ri)yi | Ri ,Riyi , xi ; θ, ψ) | Ri ,Riyi , xi ; θ̃, ψ̃].

Then we have l(θ, ψ; yobs) = Q(θ, ψ; θ̃, ψ̃)− H(θ, ψ; θ̃, ψ̃), for any (θ̃, ψ̃).
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The Expectation-Maximization (EM) Algorithm
(Dempster, Laird and Rubin, 1977)

From the Jansen’s inequality, we have
H(θ, ψ; θ̃, ψ̃) ≤ H(θ̃, ψ̃; θ̃, ψ̃).

The EM algorithm is an iterative algorithm to find a sequence
{(θ(t), ψ(t)), t = 0,1,2, . . .} such that

(θ(t+1), ψ(t+1)) = arg max(θ,ψ)Q(θ, ψ; θ(t), ψ(t)).

This assures that l(θ(t), ψ(t); yobs) ≤ l(θ(t+1), ψ(t+1); yobs).
Typically logistic or probit regression models are used for
w(x , y ;ψ).
Numerical integrations or the Monte Carlo method are often
necessary in the implementation.
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When ψ = ψ0 is known

Now consider when the true value of ψ, ψ0, is known:

l(θ, ψ0; yobs) = log L(θ, ψ0; yobs)

=
nX

i=1

{log p(yi | xi ; θ) + log p(Ri | xi , yi ;ψ0)

− log p((1 − Ri)yi | Di,obs; θ, ψ0)}.

With current estimate θ(t), the Q-function becomes

Q(θ; θ(t)) =
nX

i=1

E [log p(yi | xi ; θ) + log p(Ri | xi , yi ;ψ0) | Ri ,Riyi , xi ; θ
(t), ψ0]

∝
nX

i=1

E [log p(yi | xi ; θ) | Ri ,Riyi , xi ; θ
(t), ψ0],

because the second term does not involve θ.
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Another view of the likelihood

Without loss of generality, assume that the regression model follows a
canonical exponential family. Then

Ω(θ; θ(t)) =
mX

i=1

logg(yi | xi ; θ) +
nX

i=m+1

E [log g(yi | xi ; θ) | xi ,Ri = 0; θ(t), ψ0]

∝
mX

i=1

logg(yi | xi ; θ) +
nX

i=m+1

{θE [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0] + a(θ)},

we need to obtain E [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0] in order to carry out the EM
algorithm. With w(xi , yi ;ψ0) known,

E [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0] =

R
s(xi , yi)g(yi | xi ; θ

(t)){1 − w(xi , yi ;ψ0)} dyiR
g(yi | xi ; θ(t)){1 − w(xi , yi ;ψ0)} dyi
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An alternative look of the E-step

On the other hand,

E [S(xi , yi) | xi , θ
(t)] = E [E [S(xi , yi)|Ri , xi ]|xi ]

= E [S(xi , yi) | xi ,Ri = 1; θ(t)]pr [Ri = 1 | xi ; θ
(t), ψ0]

+E [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0]pr [Ri = 0 | xi ; θ
(t), ψ0],

We would have

E [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0]

=
E [S(xi , yi) | xi , θ

(t)]− E [S(xi , yi) | xi ,Ri = 1; θ(t), ψ0]pr [Ri = 1 | xi ; θ
(t), ψ0]

pr [Ri = 0 | xi ; θ(t), ψ0]
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Empirical replacements

It is noted that if we use some empirical estimates of
E [S(xi , yi) | xi ,Ri = 1; θ(t), ψ0] and pr [Ri = 0 | xi ; θ

(t), ψ0] to replace them, we
would be able to carry out an iterative algorithm as the following:
At the E-stepbE [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0]

=
E [S(xi , yi) | xi , θ

(t)]− bE [S(xi , yi) | xi ,Ri = 1] bpr [Ri = 1 | xi ]

1 − bpr [Ri = 1 | xi ]

At the M-step, find θ = θ(t+1) that solves:

θ(t+1) = arg maxθQ∗(θ; θ(t))

:= arg maxθ[θ{
mX

i=1

S(xi , yi) +
nX

i=m+1

bE [S(xi ,Y ) | xi ,Ri = 0; θ(t)]}+ na(θ)]
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An important observation

• In usual an EM algorithm, θ(t) may be far away from the truth
θ0.

•However, in order for the empirical estimates p̂r [Ri = 1 | xi ]

and Ê [S(xi , yi) | xi ,Ri = 1] to be self-consistent with the
corresponding terms under (θ(t), ψ0), it is required that θ(t) is a
consistent estimate of θ.

• Therefore we should start with a consistent initial estimate of
θ and carry out this iterative algorithm to obtain another
consistent estimate of θ at convergence.
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A short summary of the modified EM

1 Choose initial value of θ(0) from
• either a complete dataset from subjects with similar characteristics
• or a completed subset recovered from recalls.

2 Compute the Nadaraya-Watson estimates or local polynomial estimates
for pr [R = 1 | xi ] and E [S(xi ,Y ) | xi ,R = 1], for each
i = m + 1,m + 2, . . . , n.

3 At the E-step of the t th iteration, calculatebE [S(xi , yi) | xi ,Ri = 0; θ(t), ψ0].
4 At the M-step of the t th iteration, find θ = θ(t+1) that solves:

nX
i=1

E [S(xi , yi) | xi ; θ] =
mX

i=1

S(xi , yi) +
nX

i=m+1

bE [S(xi ,Y ) | xi ,Ri = 0; θ(t)]

With a complete external dataset {xi , yi ; i = n + 1, . . . , n + nE}, we
would solve θ = θ(t+1) from:

nX
i=1

E [S(xi , yi) | xi ; θ] +

n+nEX
i=n+1

E [S(xi , yi) | xi ; θ]

=
mX

i=1

S(xi , yi) +
nX

i=m+1

bE [S(xi ,Y ) | xi ,Ri = 0; θ(t)] +

n+nEX
i=n+1

S(xi , yi) 18 / 33



Introduction An approximated EM algorithm Simulation studies Discussion

Here we design an iterative algorithm with a sequence
{θ(t), t = 0,1,2, . . .} such that

θ(t+1) = arg maxθQ
∗(θ; θ(t))

= arg maxθ{Q(θ; θ(t)) + o(1)}

This algorithm will yield
l(θ(t+1), ψ0; yobs) ≥ l(θ(t), ψ0; yobs) + o(1).
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An example in contingency table analysis

Consider discrete data {xi , yi , zi , i = 1, . . . ,n}:
• xis and yis are fully observed.
• zi is observed for i = 1, . . . , c; missing for i = c + 1, . . . ,n.

Let m = n − c. Essentially the observed include the fully
classified table {cjkl} and the partially classified table
{mjk+}.

• Complete external data
DE = {xi , yi , zi , i = n + 1, . . . ,n + nE} are fully observed.

• A log-linear model is assumed with parameter θ, which
leads to πjkl = pr [X = i ,Y = j ,Z = l],
j = 1, . . . , J; k = 1, . . . ,K ; l = 1, . . . ,L.

• Initial estimates {π(0)
jkl } are derived from the external

complete data DE .
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Implementation under the discrete setting

• Initial estimations:

bpr [z = l|x = j, y = k ,R = 1] =

Pc
i=1 I{xi = j, yi = k , zi = l}Pc

i=1 I{xi = j, yi = k}
=

cjkl

cjk+

bpr [R = 1|x = j , y = k ] =

Pc
i=1 I{xi = j, yi = k}Pn
i=1 I{xi = j, yi = k}

=
cjk+

njk+
.

• At the t th step, for (j, k , l), we update

Sjkl = cjkl +
nX

i=c+1

I{xi = j , yi = k} bpr [z = l |x = j , y = k ,R = 0]

= cjkl + mjk+

pr [z = l |x = j , y = k ; θ(t)]− cjkl
cjk+

cjk+

njk+

1 − cjk+

njk+

= cjkl + mjk+

π
(t)
jkl

π
(t)
jk+

− cjkl
njk+

mjk+

njk+

= njk+

π
(t)
jkl

π
(t)
jk+
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Impression on the discrete setting

• In the E-step, we ended up as if imputing all Zis based on
(xi , yi), including those observed ones.

• If we include the external data DE in the algorithm with
updating the sufficient statistics through

S∗
jkl = nE

jkl + Sjkl = nE
jkl + njk+

π
(t)
jkl

π
(t)
jk+

,

the modified EM algorithm is equivalent to running a
regular EM algorithm on the fully classified table {nE

jkl} and
the partial classified table {njk+}, or, removing the
observed zis from the complete cases (not part of the
external complete data).
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Implementation under the continuous setting

Consider the regression analysis of [Y |X ] where Y is
continuous and subject to nonresponse

• If X is discrete, the empirical approximations are:

Ê [S(xi ,Y )|xi = k , ri = 1] =

∑
rj=1,xj=xi=k s(xi , yj)

#{j : rj = 1, xj = xi = k}

p̂r [Ri = 1|xi = k ] =
#{j : rj = 1, xj = xi = k}

#{j : xj = xi = k}

• If X is continuous, we use either the Nadaraya-Watson
estimate or local polynomial estimate as
Ê [S(xi ,Y )|xi = k , ri = 1]; a kernel estimator for
p̂r [Ri = 1|xi = k ].
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Simulation settings when data are NMAR

• We simulated bivariate data {xi , yi , i = 1,2, . . . ,N} following:
(i) xi ∼ N(0,1) or xi ∼ Bin(5,0.3).
(ii) [yi |xi ] ∼ N(β0 + β1xi , σ

2), where θ = (β0, β1, σ
2) = (1,1,1).

• Keep nE = 200 of the above observations as the external
datasets for obtaining initial values for θ.
• Simulate missing yis from the rest n = 1000 subjects with:
pr [Ri = 1 | xi , yi ] = Φ(ψ0 + ψ1xi + ψ2yi), where Φ() is the CDF
of the Gaussian distribution.
• Compare the complete-case estimate (θ̂cc) based on the
1000 observations with missing data, MLE from the external
data (θ̂E ) and the proposed approximated EM estimates (θ̂AEM ).
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Simulation results with X ∼ N(0,1)

Methods β0 β1 σ2

Complete-case analysis Empirical Bias* 2009 -1388 -486
Empirical SD* 380 422 468
Coverage of 95% CI 0% 8.8% 79.5%

MLEs from external subset Empirical Bias* -26 9 -103
Empirical SD* 705 707 970
Coverage of 95% CI 96.1% 93.8% 92.6%

Approximated EM** Empirical Bias* -97 -11 -161
Empirical SD* 551 472 624
Coverage of 95% CI 95.0% 95.2% 93.4%

The proportion of nonresponse was about 40%.
* Empirical biases and SDs were the actual numbers times 1000.
** The Epanechnikov kernel was used in the approximated EM. Bootstrap
was used to derive the standard errors of the bθAEM
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Simulation results with X ∼ Bin(5,0.3)

Methods β0 β1 σ2

Complete-case analysis Empirical Bias* 156 -1412 -354
Empirical SD* 574 446 477
Coverage of 95% CI 94.6% 11.6% 86.5%

MLEs from external subset Empirical Bias* -12 25 -111
Empirical SD* 1245 688 976
Coverage of 95% CI 94.7% 94.2% 92.5%

Approximated EM** Empirical Bias* -16 27 -50
Empirical SD* 662 492 731
Coverage of 95% CI 94.7% 93.9% 93.6%

The proportion of nonresponse was about 40%

* Empirical biases and SDs were the actual numbers times 1000.
** The empirical averages were used in the approximated EM. Bootstrap was
used to derive the standard errors of the bθAEM .
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Simulation settings when data MAR

• We simulated bivariate data {xi , yi , i = 1,2, . . . ,N} following:
(i) xi ∼ N(0,1).
(ii) [yi |xi ] ∼ N(β0 + β1xi , σ

2), where θ = (β0, β1, σ
2) = (1,1,1).

• Keep nE = 200 of the above observations as the external
datasets for obtaining initial values for θ.
• Simulate missing yis from the rest n = 1000 subjects with:
pr [Ri = 1 | xi , yi ] = Φ(ψ0 + ψ1xi), where Φ() is the CDF of the
Gaussian distribution.
• Compare the complete-case estimate (θ̂cc) based on the
1000 observations with missing data, MLE from the external
data (θ̂E ) and the proposed approximated EM estimates (θ̂AEM ).
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Simulation results with X ∼ N(0,1)

Methods β0 β1 σ2

Complete-case analysis Empirical Bias* -12 1 -24
Empirical SD* 386 411 488
Coverage of 95% CI 94% 94.5% 93.4%

MLEs from external subset Empirical Bias* -26 9 -103
Empirical SD* 705 707 970
Coverage of 95% CI 96.1% 93.8% 92.6%

Approximated EM** Empirical Bias* 11 11 -73
Empirical SD* 556 472 641
Coverage of 95% CI 93.9% 94.5% 93.7%

The proportion of nonresponse was about 40%.
* Empirical biases and SDs were the actual numbers times 1000.
** The Epanechnikov kernel was used in the modified EM. Bootstrap was
used to derive the standard errors of the bθAEM
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Without an external complete dataset ...

If one could obtain a reliable initial estimate θ(0) and the
associated variance-covariance matrix estimate V̂ , then we can
use it as the initial and perform the M-steps via

θ̂(t+1) = arg maxθ {(θ − θ(0))T V̂−1(θ − θ(0)) +
1
n

Q∗(θ; θ(t))}
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Without external complete dataset ...

Consider missing-data mechanisms such as

pr [Ri = 1 | xi , yi ] = w(xi , yi ;ψ) = w(yi ;ψ),

There are two approaches for implementing the approximated
EM algorithm for data with outcome-dependent nonresponses:

1 Use the pseudolikelihood estimate as the initial estimate
and run the approximated EM.

2 Use the pseudolikelihood estimate as the initial estimate
and incorporate the pseudolikehood function as a
component in each M-step:

θ̂(t+1) = arg maxθ {lpl(θ) + Q∗(θ; θ(t))}

The second approach is more computationally intensive.
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Future works

• Need to monitor
{l(θ(t);ψ0),Q∗(θ(t+1); θ(t))−Q(θ(t+1); θ(t)); t = 0,1,2 . . .}.

• Search for a target function l(θ; P(X ,Y ,R)
n , θ(0)) so that θ̂AEM is

a stationary point of l(θ; P(X ,Y ,R)
n , θ(0)).

• Variance estimation.

• Link to integrative data analysis.
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