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Parametric Models for data subject to missing

I Let Yi = (Yi1, · · · ,Yip) be the full data from subject i , where
Y1, · · · ,Yn are independent identically distributed.

I Assume a parametric model for Yi , i.e.,

(Yi1, · · · ,Yip) ∼ f (y1, · · · , yp | θ),

where θ ∈ Θ.

I Assume that Yi1, · · · ,Yip are subject to missing values. Let
Ri = (Ri1, · · · ,Rip) be the respective missing data indicators.
The missing data mechanism is modeled as

P(Ri1 = r1, · · · ,Rip = rp | Y1, · · · ,Yp) = πr(Y1, · · · ,Yp | γ),

where r = (r1, · · · , rp) and γ ∈ Γ.



The observed data likelihood

I Assume that θ is identifiable from the model
f (y1, · · · , yp | θ), θ ∈ Θ.

I Assume that γ is identifiable from the model
πr(y1, · · · , yp | γ), γ ∈ Γ.

I Denote the observed data by Ri (Yi ) = (ri1(Yi1), · · · , rip(Yip))
where rij(Yij) = Yij if rij = 1, and all possible values if rij = 0.

I The observed data likelihood is

n∏
i=1

∫
πRi

(Yi1, · · · ,Yip | γ)f (Yi1, · · · ,Yip | θ)dR̄i (Yi ),

where R̄i = 1− Ri .



The maximum likelihood approach

I Maximize the likelihood to obtain the parameter estimator for
θ and γ. Denote by θ̂ and γ̂.

I Use the inverse of the observed-data information matrix to
approximate the variance-covariate of the maximum likelihood
estimator.

I Make inference on the model parameters using a normal
approximation to the distribution of the maximum likelihood
estimator, or approximating the distribution of the likelihood
ratio statistic by a χ2.



Parametric likelihood approach for MAR and NMAR data

I For MAR data, the parametric likelihood approach is
advocated (Little and Rubin, 2002).

I For NMAR data, the parametric likelihood approach is also
proposed, e.g., Ibrahim et al (1999).

I In practice, the parametric likelihood approach can be more
difficult to apply to NMAR data. It is not uncommon the
computational algorithms behave erratically.

I Sensitivity analysis is often recommended to deal with the
problem.



Questions with the NMAR data

I Why does the maximum likelihood approach mostly behave
well with MAR data, while it often does not with NMAR data?

I When the maximum likelihood approach can still be trusted
under NMAR?

I Does a sensitivity analysis tell the story as we have hoped?

I What is a reasonable (right?) way to use the likelihood
approach and the sensitivity analysis with NMAR data?



Partial answers to the questions

I The cause of the problems with NMAR is the varying strength
of parameter identifiability.

I MAR missing data mostly preserve parameter identifiability of
the full data model.

I NMAR missing data often change parameter identifiability of
the full data model. Fully identifiable parameters may be
changed into unidentifiable, or more frequently weakly
identifiable parameters in parametric models.

I A weakly identifiable parameter (Chen, 2011) is defined as
identifiable for some values of the other parameters in the
model and unidentifiable at other values of the other
parameters.



MAR preserves parameter identifiability

I MAR defined as

P(R = r | Y) = P{R = r | r(Y)},

for all r and Y, is equivalent to

p{r̄(y) | r(y),R = r} = p{r̄(y) | r(y)},

for all r and y , where r̄ = 1− r.

I Result: For MAR missing data, if p{r̄(y) | r(y)} for all
missing data patterns are identifiable from the incompletely
observed data, the parameter identifiability under incompletely
observed data is unchanged from the fully observed data.



When MAR is “trouble-free”

I Under MAR, if P(R = 1 | Y) > 0, parameter identifiability in
the full data model f (y1, · · · , yp | θ) is preserved by MAR.

I When P(R = 1 | Y) > 0 does not hold, the parameter
identifiability may still be preserved as long as any parameter
in p{r̄(y) | r(y)} can be identified from p{r(y),R = r}

I If there is no unidentifiable or weakly identifiable parameter in
the full data model, there is no unidentifiable or weakly
identifiable parameters in the missing data model when either
of the foregoing conditions is satisfied.



Mapping a NMAR model to a MAR model

I Given a missing data model πr(y | γ) and a full data model
p(y | θ). Define a mapping

Aq(y) =
∑
r

∫
πr(y | γ)p(y | θ)d r̄(y)q{r̄(y) | r(y)},

where q is a density function on y .

I If there exists a density q(y) such that
Aq(y | θ, γ) = q(y | θ, γ), then a full data model q(y | θ, γ)
and a MAR missing data probability model

Pq(R = r | Y) =

∫
πr(y)p(y)d r̄(y)/q{r(y)},

is indistinguishable from the NMAR model πr(y | γ) and
p(y | θ) based on the observed data (Molenberghs et al,
2008).



The mapping under monotone NMAR

I Let 0 = r0 < r1 < · · · < rK be all the monotone missing data
patterns observed. Then

q{r1(y)} =
P(R ≥ r1 | r1(y)}p{r1(y)}

1− P(R = r0)
,

Pq(R = r1 | Y) = πr1{r1(y)} 1− P(R = r0)

P(R ≥ r1 | r1(y)}
,

where Pq denotes the probability calculated under the
equivalent-MAR model.

I In general,

q{rj(y)} =
P(R ≥ rj | rj(y)}p{rj(y)}

1−
∑j−1

k=0 Pq{R = rk | rk(y)}
,

Pq(R = rj | Y) = πrj{rj(y)}
1−

∑j−1
k=0 Pq{R = rk | rk(y)}
P{R ≥ rj | rj(y)})

.



Possible benefit of the MAR-equivalent transformation

I The MAR-equivalent mapping may be used for data analysis
as if the observed data were MAR.

I The likelihood analysis ignoring the missing data mechanism
model, if can be carried out, may be consistent and
asymptotically normal, but is not fully efficient.

I Doubly robust estimation approach may be constructed based
on the MAR-equivalent model for NMAR.

I All these are contingent on the parameter identifiability of the
MAR-equivalent full data model q(y | θ, γ).



Why NMAR is “troublesome”?

I The MAR-equivalent full data model q(y | γ, θ) often has
changed parameter identifiability from the original full data
model: weakly identifiable or unidentifiable parameters may
emerge.

I The weakly identifiable or unidentifiable parameters are
preserved by MAR if the MAR missing data mechanism model
is ignored.

I If the MAR missing data mechanism model is taken into
consideration, the identifiability may be improved because the
MAR missing data model may share parameters with the full
data model. However, the improvement may not be enough to
restore the parameter identifiability of the original full data
model.



A simple example: I

I Consider a simple example of NMAR with (Y1,Y2), where Y1

is binary and Y2 is continuous random variables.

P(Y1 = 1 | Y2) = Φ(α0 + α1Y2),

where Φ is a standard normal distribution function.

I The missing data forms two patterns: one is R = (1, 1) and
the other is R = (0, 1).

P(R = 1 | y1, y2) = π(y1, y2).

I The MAR-equivalent model has

q(y1, y2) =
π(y1, y2)p(y1, y2)∫
π(y1, y2)p(y1 | y2)dy1

,

Pq(R = 1 | y1, y2) =

∫
π(y1, y2)p(y1 | y2)dy1.



A simple example: II

I When π(y1, y2) = π(y1), the MAR-equivalent model has

q(y1 = 1 | y2) =
exp

{
γ0 + log Φ(α0+α1Y2)

1−Φ(α0+α1Y2)

}
1 + exp

{
γ0 + log Φ(α0+α1Y2)

1−Φ(α0+α1Y2)

} ,
where πk = π(k), k = 0, 1, and γ0 = log(π1/π0).

I γ0 and α0 are not identifiable from q(y1 | y2) when α1 = 0.

I When the missing data mechanism model is taken into
consideration,

Pq(R = 1 | y1, y2) = π0 [eγ0Φ(α0 + α1Y2) + {1− Φ(α0 + α1Y2)}] .

I π0 and thus γ0 are not identifiable when α1 = 0.



A simple example: III

I When α1 6= 0, γ0 and α0 are identifiable from q(y1 | y2) if the
observed y2 values have at least 3 distinctive values (Chen,
2011).

I When the missing data mechanism model is taken into
consideration, π0 is also identifiable when γ0, α0, α1 are
identifiable.

I Estimation of π0, π1, α0, α1 can be computationally difficult
when α1 is close to 0 but is not 0. The likelihood inference on
these parameters can also be problematic because it is hard to
tell if the true α1 = 0 or not from the data.



A general example: I

I Tang et al (2003) considered a general parametric model

P(Y1 | Y2) = f (Y1 | Y2, θ),

and Y1 is subject to missing values with

P(R = 1 | Y1,Y2) = π(Y1).

I Zhao and Shao (2014) considered an extension with

P(Y1 | Y2,Y3) = f (Y1 | Y2,Y3, θ),

and Y1 is subject to missing values with

P(R = 1 | Y1,Y2,Y3) = π(Y1,Y2).



A general example: II

I The MAR equivalent has

q(y1 | y2, y3) =
π(y1, y2)f (y1 | y2, y3)∫
π(y1, y2)f (y1 | y2, y3)dy1

,

Pq(R = 1 | Y1,Y2,Y3) =

∫
π(y1, y2)f (y1 | y2, y3)dy1.

I Let the odds ratio representation of f (y1 | y2, y3) be

f (y1 | y2, y3) =
η(y1; y3 | y2)f (y1 | y2, y30)∫
η(y1; y3 | y2)f (y1 | y2, y30)dy1

,

where η(y1, y3 | y2) is the conditional odds ratio of y1 versus
y3 conditional on y2.



A general example: III

I The odds ratio representation of q(y1 | y2, y3) is

q(y1 | y2, y3) =
η(y1; y3 | y2)f ∗(y1 | y2, y30)∫
η(y1; y3 | y2)f ∗(y1 | y2, y30)dy1

,

where

f ∗(y1 | y2, y30) =
π(y1, y2)f (y1 | y2, y30)∫
π(y1, y2)f (y1 | y2, y30)dy1

.

I η((y1; y3 | y2) is identified from the likelihood ignoring the
MAR-equivalent missing data mechanism model.

I If η(y1; y3 | y2) ≡ 1, parameters in f (y1 | y2) are
unidentifiable. In general, they are weakly identifiable.



Weakly identifiability in general NMAR problems

I For a general NMAR problem, weakly identifiability is almost
always an issue.

I Weakly identifiable model may or may not affect a specific
data analysis depending on where the actual parameter values
are.

I For the probit model, if α1 � 0, there is no problem with the
MLE. For α1 ≈ 0, the MLE does not behave well.

I For a specific NMAR data, there is uncertainty about wherea
the true parameter values are. So the weakly identifiability is
relevant to statistical inference even if the true parameter
value is close to but not equal to the unidentifiable point.



Estimation and inference with weakly identifiable
parameters

I Estimation and inference by the likelihood approach under
singular information matrix had been studied in Rotnitzky et
al (2000) when the parameters are identifiable.

I For model with weakly identifiable parameters, likelihood type
of inference was studied by Andrews and Cheng (2012).

I Likelihood ratio test under loss of identifiability were carefully
studied by Liu and Shao (2003).

I The results show that the likelihood ratio test at the point of
loss-of-identifiability follows a mixture of χ2 distributions
which can be hard to apply in practice. But the behavior of
the likelihood estimator is even more involved.



Measuring the strength of parameter identifiability by
Fisher information

I If there is an unidentifiable parameter in the model, Fisher
information matrix is singular everywhere.

I If there is a weakly identifiable parameter in the model, Fisher
information matrix is singular at some parameter values, but is
positive definite at other parameter values.

I Conditional Fisher information for a given parameter may
serve as a measure of strength of identifiability in weakly
identified model.

I The conditional Fisher information may be difficult to
compute because the maximum likelihood estimator itself is
computationally difficult to find around the
loss-of-identifability point.



Measuring the strength of parameter identifiability by K-L
information

I Given independent priors for each parameter in the model.

I Find the marginal posterior for each parameter.

I Compare the posterior and prior distributions for each
parameter by the Kullback-Leibler information.

KL(α) = −
∫

p(α) log
p{α | R,R(Y)}

p(α)
dα,

where p(α) is the prior for α.



Possible problems with identifiability strength
measurements

I For conditional Fisher information,
I finding the maximum likelihood estimator can be difficult.
I finding the conditional Fisher information can be difficult

because of the near singularity of the matrix.

I For the K-L information,
I implementing the approach can be computationally difficult,
I specifying different priors may lead to different strength

measurements.



Sensitivity analysis

I Global sensitivity analysis varies the model parameters in the
missing data mechanism model and examines θ as a function
of γ.

I Local sensitivity analysis examines the derivative of θ(γ) with
respect to γ.

I Insensitive to γ change means nonignorable missing data do
not affect the parameter estimator much.

I Sensitive to γ change means nonignorable missing data affect
the parameter estimator.



Interpretation of the sensitivity results

I Almost all the models for sensitivity analysis are wrong even if
the original model is correctly specified.

I Fixing parameters in a model, even at the correct values,
reduces the variability of the estimator.

I Use Bayesian approach and treat fixed γ as a sample from
posterior distribution, then

Var(θk | data) = E{Var(θk | γ, data)}+Var{E (θk | γ, data)}.



Inference based on the sensitivity analysis

I If p(γ | data) ≈ p(γ), Fixing parameter values is justifiable.

I The estimated variance of the θk estimator for approximate
inference may be approximated by

1

m

m∑
j=1

vkj +
1

m − 1

m∑
j=1

(θ̂kj − ¯̂
θk)2,

where

¯̂θk =
1

m

m∑
j=1

θ̂kj .

I Approximate inference on the parameter θk may now be
carried out.



Inference based on the sensitivity analysis

I If p(γ | data) 6= p(γ), Arbitrarily fixing parameter values is
questionable.

I Fixed γ should be sampled from the posterior of p(γ | data)
and then

1

m

m∑
j=1

vkj +
1

m − 1

m∑
j=1

(θ̂kj − ¯̂
θk)2,

where

¯̂
θk =

1

m

m∑
j=1

θ̂kj .

I Approximate inference on the parameter θk may now be
carried out.



A simulation

I The model:

q(y1 = 1 | y2) =
exp

{
γ0 + log Φ(α0+α1Y2)

1−Φ(α0+α1Y2)

}
1 + exp

{
γ0 + log Φ(α0+α1Y2)

1−Φ(α0+α1Y2)

} .
I γ0 = 0.693, α0 = −2, and α1 = 0.3.



Sensitivity analysis and MLE



A simulation study

I Covariate Z follows a normal distribution with mean zero and
unit variance.

I The observed data follow a nonlinear logistic regression model,

logitP(Y = 1|Z ) = α0 + log η(U;Z |β0, β1, p10, p01),

where η(Y = 1;Z |β0, β1, p10, p01)} is

{p10 + (1− p01)eβ0+β1Z}{1− p10 + p01e
β0+β1Z0}

{p10 + (1− p01)eβ0+β1Z0}{1− p10 + p01eβ0+β1Z}
.

I The parameters were set to β0 = −1, β1 = 1, p0 = 0.1, and
p1 = 0.2.

I The design has 1 : 1 ratio of cases versus controls.

I We assume p10 and p01 are known and estimate (α0, β0, β1)
from the observed data.



Simulation results

Slope(β1 = 1.0) Intercept(β0 = −1.0)
Methods Bias Mvar Evar Bias Mvar Evar

Sample Size=5000
Clogist. -0.37 0.0014 0.0017

MLE 0.01 0.0052 0.0067 0.01 0.00041 0.088
RMLE(T) 0.00 0.0051 0.0054

Sample Size=1000
Clogist. -0.36 0.0073 0.0082

MLE 0.08 0.029 0.037 0.00 0.0020 0.43
RMLE(T) 0.02 0.027 0.027

Sample Size=200
Clogist. -0.34 0.039 0.044

MLE 0.52 0.24 0.97 -0.04 0.010 3.89
RMLE(T) 0.07 0.16 0.16



Table legends

Bias=estimated-truth, Mvar:average of the estimated variance,
Evar:empirical estimate of the variance based on the parameter
estimates; Logist: logistic regression applied directly to the
case-control data, Clogist: Corrected logistic regression parameter
estimator, MLE: maximum likelihood estimator, PMLE: penalized
maximum likelihood estimator with λ = n1/4 and m guessed at
β0 + 1, RMLE(T): maximum likelihood estimator with β0 fixed at
the true value, RMLE(G): maximum likelihood estimator with β0

fixed at the guessed value.



What does the simulation result tell us?

I The MLE have small biases when the sample size is very large.
It can have a significantly large bias when the sample size is
not very large.

I The variance estimate of the MLE poorly estimate the true
variance, especially when the sample size is not very large.

I The variance of the MLE for β0 is particular difficult to
estimate which may reflect the limited information on β0 in
the case-control sample.

I The corrected logistic regression has very large biases which
are not reduced as the sample size increases.



Summary

I NMAR may be tranformed into MAR for data analysis.

I The transformation changes the parameter identifiability, and
as a result the transformed missing data mechanism model is
MAR but not ignorable.

I Weakly identifiable parameters in a model can have an effect
on statistical inference even when the true parameter values
are not at the loss-of-identifiability point.

I A measure of strength of parameter identifiability combined
with sensitivity analysis may serve as an approximation for
inference in practice.
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