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Introduction

• (X ,Y ): random variable, y is subject to missingness

• Response indicator function

δi =

{
1 if yi is observed
0 otherwise.

• Nonignorable nonresponse

f (y | x) 6= f (y | x, δ = 1).

• In general,

f (y | x, δ = 1) =
P(δ = 1 | x, y)

P(δ = 1 | x)
f (y | x).

Thus, P(δ = 1 | x, y) 6= P(δ = 1 | x) implies nonignorable nonresponse.
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Observed likelihood

• f (y | x; θ): model of y on x

• g(δ | x, y ;φ): model of δ on (x, y)

• Observed likelihood

Lobs(θ, φ) =
∏
δi=1

f (yi | xi ; θ) g (δi | xi , yi ;φ)

×
∏
δi=0

∫
f (yi | xi ; θ) g (δi | xi , yi ;φ) dyi

• Under what conditions are the parameters identifiable (or estimable)?
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Lemma

Suppose that we can decompose the covariate vector x = (u, z) such that

g(δ|y , x) = g(δ|y , u) (1)

and, for any given u, there exist zu,1 and zu,2 such that

f (y |u, z = zu,1) 6= f (y |u, z = zu,2). (2)

Under some other minor conditions, all the parameters in f and g are identifiable.
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Remark

• Condition (1) means
δ ⊥ z | y , u.

• That is, given (y , u), z does not help in explaining δ.

Figure: A DAG for understanding nonresponse instrumental variable Z

Z U

Y δ

• We may call z the nonresponse instrument variable.

• Rigorous theory developed by Wang et al. (2014).
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Introduction

Remark

• MCAR (Missing Completely at random): P(δ | y) does not depend on y.

• MAR (Missing at random): P(δ | y) = P(δ | yobs)
• NMAR (Not Missing at random): P(δ | y) 6= P(δ | yobs)
• Thus, MCAR is a special case of MAR.
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Parameter estimation under nonresponse instrument
variable

• Full likelihood-based ML estimation

• Generalized method of moment (GMM) approach (Section 6.3 of KS)

• Conditional likelihood approach (Section 6.2 of KS)

• Pseudo likelihood approach (Section 6.4 of KS)

• Exponential tilting method (Section 6.5 of KS)

• Latent variable approach (Section 6.6 of KS)

Reference
Kim, J.K. and Shao, J. (2013). “Statistical Methods for Handling Incomplete Data”,
Chapman & Hall / CRC.
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Full likelihood-based ML estimation

• Wish to find η̂ = (θ̂, φ̂), that maximizes the observed likelihood

Lobs(η) =
∏
δi=1

f (yi | xi ; θ) g (δi | xi , yi ;φ)

×
∏
δi=0

∫
f (yi | xi ; θ) g (δi | xi , yi ;φ) dyi

• Mean score theorem: Under some regularity conditions, finding the MLE by
maximizing the observed likelihood is equivalent to finding the solution to

S̄(η) ≡ E{S(η) | yobs , δ; η} = 0,

where yobs is the observed data. The conditional expectation of the score function
is called mean score function.
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EM algorithm

• Interested in finding η̂ that maximizes Lobs(η). The MLE can be obtained by
solving Sobs(η) = 0, which is equivalent to solving S̄(η) = 0 by the mean score
theorem.

• EM algorithm provides an alternative method of solving S̄(η) = 0 by writing

S̄(η) = E {S(η) | yobs , δ; η}

and using the following iterative method:

η̂(t+1) ← solve E
{
S(η) | yobs , δ; η̂(t)

}
= 0.
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EM algorithm

Definition

Let η(t) be the current value of the parameter estimate of η. The EM algorithm can be
defined as iteratively carrying out the following E-step and M-steps:

• E-step: Compute

Q
(
η | η(t)

)
= E

{
ln f (y, δ; η) | yobs, δ, η(t)

}
• M-step: Find η(t+1) that maximizes Q(η | η(t)) w.r.t. η.
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Monte Carlo EM

Motivation: Monte Carlo samples in the EM algorithm can be used as imputed values.

Monte Carlo EM

1 In the EM algorithm defined by

• [E-step] Compute

Q
(
η | η(t)

)
= E

{
ln f (y, δ; η) | yobs, δ; η(t)

}
• [M-step] Find η(t+1) that maximizes Q

(
η | η(t)

)
,

E-step is computationally cumbersome because it involves integral.

2 Wei and Tanner (1990): In the E-step, first draw

y∗(1)mis , · · · , y
∗(m)
mis ∼ f

(
ymis | yobs, δ; η(t)

)
and approximate

Q
(
η | η(t)

)
∼=

1

m

m∑
j=1

ln f
(
yobs , y

∗(j)
mis , δ; η

)
.
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Monte Carlo EM

Example 1

• Suppose that
yi ∼ f (yi | xi ; θ)

Assume that xi is always observed but we observe yi only when δi = 1 where
δi ∼ Bernoulli [πi (φ)] and

πi (φ) =
exp (φ0 + φ1xi + φ2yi )

1 + exp (φ0 + φ1xi + φ2yi )
.

• To implement the MCEM method, in the E-step, we need to generate samples from

f (yi | xi , δi = 0; θ̂, φ̂) =
f (yi | xi ; θ̂){1− πi (φ̂)}∫
f (yi | xi ; θ̂){1− πi (φ̂)}dyi

.
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Monte Carlo EM

Example 1 (Cont’d)

• We can use the following rejection method to generate samples from

f (yi | xi , δi = 0; θ̂, φ̂):

1 Generate y∗
i from f (yi | xi ; θ̂).

2 Using y∗
i , compute

π∗
i (φ̂) =

exp(φ̂0 + φ̂1xi + φ̂2y
∗
i )

1 + exp(φ̂0 + φ̂1xi + φ̂2y∗
i )
.

Accept y∗
i with probability 1− π∗

i (φ̂).
3 If y∗

i is not accepted, then goto Step 1.
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Monte Carlo EM

Example 1 (Cont’d)

• Using the m imputed values of yi , denoted by y
∗(1)
i , · · · , y∗(m)

i , and the M-step can
be implemented by solving

n∑
i=1

m∑
j=1

S
(
θ; xi , y

∗(j)
i

)
= 0

and
n∑

i=1

m∑
j=1

{
δi − π(φ; xi , y

∗(j)
i )

}(
1, xi , y

∗(j)
i

)
= 0,

where S (θ; xi , yi ) = ∂ log f (yi | xi ; θ)/∂θ.
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Remark

• Identifiability condition is needed to guarantee the convergence of EM sequence.

• The fully parametric model approach is known to be sensitive to the failure of
model assumptions: Little (1985), Kenward and Molenberghs (1988).

• Sensitivity analysis is often recommended: Scharfstein et al. (1999).
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Partial Likelihood approach

• A classical likelihood-based approach for parameter estimation under non ignorable
nonresponse is to maximize Lobs(θ, φ) with respect to (θ, φ), where

Lobs(θ, φ) =
∏
δi=1

f (yi | xi ; θ) g (δi | xi , yi ;φ)

×
∏
δi=0

∫
f (yi | xi ; θ) g (δi | xi , yi ;φ) dyi

• Such approach can be called full likelihood-based approach because it uses full
information available in the observed data.

• On the other hand, partial likelihood-based approach (or conditional likelihood
approach) uses a subset of the sample.
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Conditional Likelihood approach

Idea

• Since
f (y | x)g(δ | x, y) = f1(y | x, δ)g1(δ | x),

for some f1 and g1, we can write

Lobs(θ) =
∏
δi=1

f1 (yi | xi , δi = 1) g1 (δi | xi )

×
∏
δi=0

∫
f1 (yi | xi , δi = 0) g1 (δi | xi ) dyi

=
∏
δi=1

f1 (yi | xi , δi = 1)×
n∏

i=1

g1 (δi | xi ) .

• The conditional likelihood is defined to be the first component:

Lc(θ) =
∏
δi=1

f1 (yi | xi , δi = 1) =
∏
δi=1

f (yi | xi ; θ)π(xi , yi )∫
f (y | xi ; θ)π(xi , y)dy

,

where π(x, yi ) = Pr(δi = 1 | xi , yi ). Popular in biased sampling literature.
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Pseudo Likelihood approach

Idea

• Consider bivariate (xi , yi ) with density f (y | x ; θ)h(x) where yi are subject to
missingness.

• We are interested in estimating θ.

• Suppose that Pr(δ = 1 | x , y) depends only on y . (i.e. x is nonresponse
instrument)

• Note that f (x | y , δ) = f (x | y).

• Thus, we can consider the following conditional likelihood

Lc(θ) =
∏
δi=1

f (xi | yi , δi = 1) =
∏
δi=1

f (xi | yi ).

• We can consider maximizing the pseudo likelihood

Lp(θ) =
∏
δi=1

f (yi | xi ; θ)ĥ(xi )∫
f (yi | x ; θ)ĥ(x)dx

,

where ĥ(x) is a consistent estimator of the marginal density of x .
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Pseudo Likelihood approach

Idea

• We may use the empirical density in ĥ(x). That is, ĥ(x) = 1/n if x = xi . In this
case,

Lc(θ) =
∏
δi=1

f (yi | xi ; θ)∑n
k=1 f (yi | xk ; θ)

.

• We can extend the idea to the case of x = (u, z) where z is a nonresponse
instrument. In this case, the conditional likelihood becomes∏

i :δi=1

p(zi | yi , ui ) =
∏
i :δi=1

f (yi | ui , zi ; θ)p(zi |ui )∫
f (yi | ui , z; θ)p(z|ui )dz

. (3)
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Pseudo Likelihood approach

• Let p̂(z|u) be an estimated conditional probability density of z given u. Substituting
this estimate into the likelihood in (3), we obtain the following pseudo likelihood:∏

i :δi=1

f (yi | ui , zi ; θ)p̂(zi |ui )∫
f (yi | ui , z; θ)p̂(z|ui )dz

. (4)

• The pseudo maximum likelihood estimator (PMLE) of θ, denoted by θ̂p, can be
obtained by solving

Sp(θ; α̂) ≡
∑
δi=1

[S(θ; xi , yi )− E{S(θ; ui , z, yi ) | yi , ui ; θ, α̂}] = 0

for θ, where S(θ; x, y) = S(θ; u, z, y) = ∂ log f (y | x; θ)/∂θ and

E{S(θ; ui , z, yi ) | yi , ui ; θ, α̂} =

∫
S(θ; ui , z, yi )f (yi | ui , z; θ)p(z | ui ; α̂)dz∫

f (yi | ui , z; θ)p(z | ui ; α̂)dz
.
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Pseudo Likelihood approach

• The Fisher-scoring method for obtaining the PMLE is given by

θ̂(t+1)
p = θ̂(t)p +

{
Ip
(
θ̂(t), α̂

)}−1

Sp(θ̂(t), α̂)

where

Ip (θ, α̂) =
∑
δi=1

[
E{S(θ; ui , z, yi )

⊗2 | yi , ui ; θ, α̂} − E{S(θ; ui , z, yi ) | yi , ui ; θ, α̂}⊗2
]
.

• First considered by Tang et al. (2003) and further developed by Zhao and Shao
(2015).
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Basic setup

• (X ,Y ): random variable

• θ: Defined by solving
E{U(θ;X ,Y )} = 0.

• yi is subject to missingness

δi =

{
1 if yi responds
0 if yi is missing.

• Want to find wi such that the solution θ̂w to

n∑
i=1

δiwiU(θ; xi , yi ) = 0

is consistent for θ.
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Basic Setup

• Result 1: The choice of

wi =
1

E(δi | xi , yi )
(5)

makes the resulting estimator θ̂w consistent.

• Result 2: If δi ∼ Bernoulli(πi ), then using wi = 1/πi also makes the resulting
estimator consistent, but it is less efficient than θ̂w using wi in (5).
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Parameter estimation : GMM method

• Because z is a nonresponse instrumental variable, we may assume

P(δ = 1 | x, y) = π(φ0 + φ1u + φ2y)

for some (φ0, φ1, φ2).

• Kott and Chang (2010): Construct a set of estimating equations such as

n∑
i=1

{
δi

π(φ0 + φ1ui + φ2yi )
− 1

}
(1, ui , zi ) = 0

that are unbiased to zero.

• May have overidentified situation: Use the generalized method of moments
(GMM).
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GMM method

Example 2

• Suppose that we are interested in estimating the parameters in the regression
model

yi = β0 + β1x1i + β2x2i + ei (6)

where E(ei | xi ) = 0.

• Assume that yi is subject to missingness and assume that

P(δi = 1 | x1i , xi2, yi ) =
exp(φ0 + φ1x1i + φ2yi )

1 + exp(φ0 + φ1x1i + φ2yi )
.

Thus, x2i is the nonresponse instrument variable in this setup.
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Example 2 (Cont’d)

• A consistent estimator of φ can be obtained by solving

Û2(φ) ≡
n∑

i=1

{
δ

π(φ; x1i , yi )
− 1

}
(1, x1i , x2i ) = (0, 0, 0). (7)

Roughly speaking, the solution to (7) exists almost surely if E{∂Û2(φ)/∂φ} is of
full rank in the neighborhood of the true value of φ. If x2 is vector, then (7) is
overidentified and the solution to (7) does not exist. In the case, the GMM
algorithm can be used.

• Finding the solution to Û2(φ) = 0 can be obtained by finding the minimizer of
Q(φ) = Û2(φ)′Û2(φ) or QW (φ) = Û2(φ)′WÛ2(φ) where W = {V (Û2)}−1.
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Example 2 (Cont’d)

• Once the solution φ̂ to (7) is obtained, then a consistent estimator of
β = (β0, β1, β2) can be obtained by solving

Û1(β, φ̂) ≡
n∑

i=1

δi
π̂i
{yi − β0 − β1x1i − β2x2i} (1, x1i , x2i ) = (0, 0, 0) (8)

for β.
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Asymptotic Properties

• The asymptotic variance of β̂ obtained from (8) with φ̂ computed from the GMM
can be obtained by

V (θ̂) ∼=
(

Γ′aΣ−1
a Γa

)−1

where

Γa = E{∂Û(θ)/∂θ}
Σa = V (Û)

Û = (Û ′1, Û
′
2)′

and θ = (β, φ).

• Rigorous theory developed by Wang et al. (2014).
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Exponential tilting method

Motivation

• Parameter θ defined by E{U(θ;X ,Y )} = 0.

• We are interested in estimating θ from an expected estimating equation:

n∑
i=1

[δiU(θ; xi , yi ) + (1− δi )E{U(θ; xi ,Y ) | xi , δi = 0}] = 0. (9)

• The conditional expectation in (9) can be evaluated by using

f (y |x, δ = 0) = f (y |x)
P(δ = 0|x, y)

E{P(δ = 0|x, y)|x} (10)

which requires correct specification of f (y | x; θ). Known to be sensitive to the
choice of f (y | x; θ).
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Exponential tilting method

Idea
Instead of specifying a parametric model for f (y | x), consider specifying a parametric
model for f (y | x, δ = 1), denoted by f1(y | x). In this case,

f0 (yi | xi ) = f1 (yi | xi )×
O (xi , yi )

E {O (xi ,Yi ) | xi , δi = 1} , (11)

where fδ (yi | xi ) = f (yi | xi , δi = δ) and

O (xi , yi ) =
Pr (δi = 0 | xi , yi )
Pr (δi = 1 | xi , yi )

(12)

is the conditional odds of nonresponse.
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Remark

• If the response probability follows from a logistic regression model

π(xi , yi ) ≡ Pr (δi = 1 | xi , yi ) =
exp {g(xi ) + φyi}

1 + exp {g(xi ) + φyi}
, (13)

where g(x) is completely unspecified, the expression (11) can be simplified to

f0 (yi | xi ) = f1 (yi | xi )×
exp (γyi )

E {exp (γY ) | xi , δi = 1} , (14)

where γ = −φ and f1 (y | x) is the conditional density of y given x and δ = 1.

• Model (14) states that the density for the nonrespondents is an exponential tilting
of the density for the respondents. The parameter γ is the tilting parameter that
determines the amount of departure from the ignorability of the response
mechanism. If γ = 0, the the response mechanism is ignorable and
f0(y |x) = f1(y |x).
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Estimation of tilting parameter

• Sverchkov (2008) considered direct maximization of the observed likelihood for φ:
Given a parametric model for f1(y | x) and π(x, y ;φ), find φ̂ that maximizes

lobs(φ) =
n∑

i=1

δi log π(xi , yi ;φ) +
n∑

i=1

(1− δi ) log

∫
{1− π(xi , y ;φ)}f̂1(y | xi )dy .

• Riddles et al. (2015) proposed an alternative computational tool that avoids
computing the above integration using an EM-type algorithm.

• Semiparametric extension (Morikawa et al., 2015): Use a nonparametric density for
f1(y | x).
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A Toy Example: Categorical Data (All dichotomous)

Example (SRS, n = 10)
ID Weight x1 x2 y

1 0.1 1 0 1
2 0.1 1 1 1
3 0.1 0 1 M
4 0.1 1 0 0
5 0.1 0 1 1
6 0.1 1 0 M
7 0.1 0 1 M
8 0.1 1 0 0
9 0.1 0 0 0

10 0.1 1 1 0
M: Missing
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A Toy Example (Cont’d)

Assume P(δ = 1 | x1, x2, y) = π(x1, y)

ID Weight x1 x2 y

1 0.1 1 0 1
2 0.1 1 1 1
3 0.1 · w3,0 0 1 0

0.1 · w3,1 0 1 1
4 0.1 1 0 0
5 0.1 0 1 1

w3,j = P̂(Y = j | X1 = 0,X2 = 1, δ = 0)

∝ P̂(Y = j | X1 = 0,X2 = 1, δ = 1)
1− π̂(0, j)

π̂(0, j)

with
w3,0 + w3,1 = 1
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A Toy Example (Cont’d)

ID Weight x1 x2 y

6 0.1 · w6,0 1 0 0
0.1 · w6,1 1 0 1

7 0.1 · w7,0 0 1 0
0.1 · w7,1 0 1 1

8 0.1 1 0 0
9 0.1 0 0 0

10 0.1 1 1 0

w6,j ∝ P̂(Y = j | X1 = 1,X2 = 0, δ = 1)
1− π̂(1, j)

π̂(1, j)

w7,j ∝ P̂(Y = j | X1 = 0,X2 = 1, δ = 1)
1− π̂(0, j)

π̂(0, j)

with
w6,0 + w6,1 = w7,0 + w7,1 = 1.
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Example (Cont’d)

• E-step: Compute the conditional probability using the estimated response
probability π̂ab.

• M-step: Update the response probability using the fractional weights. For fully
nonparametric model,

π̂ab =

∑
δi=1 I (x1i = a, yi = b)∑

δi=1 I (x1i = a, yi = b) +
∑
δi=0

∑1
j=0 wi,j I (x1i = a, y∗ij = b)

• The solution from the proposed method is π̂11 = 1, π̂10 = 3/4, π̂01 = 1/3, π̂00 = 1.
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A Toy Example (Cont’d)

Example (Cont’d)

• The method can be viewed as a fractional imputation method of Kim (2011).

• On the other hand, GMM method is more close to nonresponse weighting
adjustment.
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A Toy Example (Cont’d)

Example GMM method
ID Wgt 1 Wgt2 x1 x2 y

1 0.1 0.1π̂−1
11 1 0 1

2 0.1 0.1π̂−1
11 1 1 1

3 0.1 0.0 0 1 M
4 0.1 0.1π̂−1

10 1 0 0
5 0.1 0.1π̂−1

01 0 1 1
6 0.1 0.0 1 0 M
7 0.1 0.0 0 1 M
8 0.1 0.1π̂−1

10 1 0 0
9 0.1 0.1π̂−1

00 0 0 0
10 0.1 0.1π̂−1

10 1 1 0
M: Missing
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A Toy Example (Cont’d)

• GMM method: Calibration equation∑
i

δi
π̂i

I (x1i = a, x2i = b) =
∑
i

I (x1i = a, x2i = b).

1 X1 = 1,X2 = 1: π̂−1
11 + π̂−1

10 = 2
2 X1 = 1,X2 = 0: π̂−1

11 + π̂−1
10 + π̂−1

10 = 4
3 X1 = 0,X2 = 1: π̂−1

01 = 3
4 X1 = 0,X2 = 0: π̂−1

00 = 1.

• The solution of GMM method does not exist.
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Concluding remarks

• Uses a model for the response probability.

• Parameter estimation for response model can be implemented using the idea of
maximum likelihood method.

• Instrumental variable needed for identifiability of the response model.

• Likelihood-based approach vs GMM approach

• Less tools for model diagnostics or model validation
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