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The Problem of Missing Data:
Full Data:
L=Lyg= (Lo, L1,...,Lg)
Observed Data:
O = (R, L(r) = Lovs)
R = (Rg, R1, ..., RK)
R; =1 if L; observed and O otherwise

L(R) are the observed components of L



Alternative Notation Related to Causality:

O=(R,L*=L(R)),L*= ( ("3, T,...,L?(>,

L¥ = L;(R) = L; (R;) = R;L;

. L;f = L; if Rj =1, L; = - if Rj = 0 is equivalent alternative since R;
observed.

-Missingness indicators R always observed. Not always required in missing
data.



-A Central Theme of this talk: Missing Data As Causal Inference Explains Much
of What is Old and What is New. Alternative Notation Useful for this

- Goals: Given n iid observations O and a model Mg 1,) for the joint distrib-
ution of (R, L), draw inferences concerning Fy, of L and possibly FRIL based
on data O and the implied model M for its distribution F.

- | do not want to concentrate on complications (though real and interesting)
due to continuity and measurability issues when discussing identification so |
will assume discrete distributions when considering identification results.

- Inference generally continuous



Strategies for NMAR Motivated By The Following MAR Result:

-Definition: Thehe nonparametric MAR model

M%ﬁﬁR L) = MNP,(L) ® MNP,MAR,(R|L)iS the set of distributions for

(R, L) such that pr (R =r|L) € Myp yrar (RL)%E

pr (R = I‘|L) = pr (R = I'|L(r)> =T (I‘, L(I‘))

is a function 7 (r,L(r)) of L only through L(r). Throughout we restrict to
the positive version of the model in which

pr{R =1|L} > 0 wpl

-Theorem (Gill,Van der Laan, JMR): Under the above positivity condition,
the model ./\/l%jég for the observed data implied by M%ﬁg includes all dis-
tributions Fp.



Futher F'7, and Fgy, are identified.



We therefore say the model MMAR IS non-parametric just identified (NPI
y NP,(R,L)

because
(i) it is non parametric for F

(i) it identifies F;, even though it does not restrict the joint distributions F
of the observed data or Fj of the full data

(iii) it is just identified because the model is not empirically testable based on
the observed data O owing to excluding no law F

- Models like NP MAR that (for positive distributions) provide identification
everywhere are to be distinguished from models that are generically identified
I.e. that ar identified except at exceptional laws F(R,L)-



‘-MAR is a Set of Conditional Independences:

MAR: I (R — I') I L(I‘C)‘L(r)



-Often Interested In Lower Dimensional Functionals ¢ (F7,) such as E[L3] in
which case we need not demand identification of F';, but only of the functional.

‘A variation independent model MR 1) = Mr,) ®M(R|L) with Mg 1)
satisfying M AR is said to be ignorable since the likelihood factorizes as

F (Leryi0) 7 (v, Leyiv)
where 6 indexes laws F in M(L) and -y indexes laws in M(R|L)-
‘When MAR may not to be reasonable , JMR, Scharfstein and Rotnitzky intro-

duced a philosophy of sensitivity analysis based on non-ignorable NPl models
centered at an ignorable model.



.Simplest Example: L = (Y, W), O = (W, R, RY) with W high dim with
cont components

Model A is the semiparametric model for F(R,L) satisfying the sole restriction
that

priR=1W, Y] ={¢ (v (W) + a"Y)}

where ¢ is a known, smoothly increasing distribution function, v* (W) is a
unknown unrestricted function and o™ is an unknown parameter. In particular
F'; is unrestricted.

-Model B is the submodel of A in which o™ is known.

If & = 0 Model B is MNPk 1)



‘Model C1 is the submodel of A in which
7 (W) =~ (W;v7)
with + (+;-) a known function and v* an unknown vector parameter and

fy (y|lw) = f (y|w; B7)

with f (y|w; 8) a known function and 8* an unknown vector parameter.

-Model C2 differs from C2 in the we replace the last parametric model by

fy (y|lw, R =1) = f1 (y|w; 5%)

with f1 (y|w; B) a known function and 3* an unknown vector parameter.

Models C1 and C2 are the same if and only if & =0



Theorem: Assumimg

pr{R =1|L} > 0 wpl

(i) Models A and B contain all distributions Fp, but C' does not so models A
and B cannot be empirically tested. In particular, under model A any value of
the selection parameter is compatible with the observed data distribution Fy.

(i) Under model A, the distribution F|y that generated the data does not
identify v* (), o™, F}, or any functional of F7,

(iii) Under model B = B (a™), the distribution Fp that generated the data

identifies v* (-) and F,, pr{R = 1|L} even though the model B (a*) left both
~v*(+) and F, unrestricted.



‘Model B = B (a™) is a NPI model since it places not restrictions on Fy but
identifies F'7, even though F7, is NP.

-‘Under models C1 and C2 ~* (-),a*, FT, all tend to be identified but iden-
tification comes through the functionl form of the model v* (W) and either

fy (ylw) or fy (ylw, R =1).



-Philosophy of Sensitivity Analysis:

-Generally parametric or semiparametric models for

~v* (W), fy (y|lw), fy (y|w, R = 1) not based on subject matter knowledge.
‘Not good to get identification that way.

-Eric and Miao based on IV methods clear exceptions.

-From model A results, we conclude that o™ is not NP identified.

This combined with model B results suggests a sensitivity analysis strategy.



Sensitivity Analysis Strategy :
-For each value of o™ assume it is the truth.

-Let Fy, (a*, Fp) be the unique F7, implied by a* and the F, that generated
the data.

Plot ¢ (a®) = v {F, (o™, Fp)} as a function of ao*.

-This is feature not a bug that we have to assume o™ known since the data
offer no information if F;, and ~* (-) left unspecified

-Estimation: Hence we only need estimate F(p from iid data on O.

-Given a functional ¢ (Fp), say Ep, [Y] if W is high dimensional the NP
estimator of Fy is undefined.



-The usual method is to estimate v (F7,) under working parametric or semi-
parametric models (whose dimension may increase with sample size) with the
goal to make estimation of v (F7,) as robust as possible:

-Consistent at a large submodel of model B(a™) with second order bias other-

wise.

-Thus we search for so called DR estimators which if they exist will do so for

only some parametrizations.

-1t was surprising to us in 1999 that DR estimators existed in such nonignorable
models as the likelihood no longer factors as

S (L(R); 9) ™ (R, Lg; )



It turns out that if (and essentially only if) we take ¢ to be expit (ie the logistic
distribution) in

prR=1W,Y] ={o(v* (W) +a"Y)}
and use the models

v (W) =~ (W;v")

fy (ylw, R =1) = f1 (y|lw; 5%)

then estimators based on solving the efficient influence function for the NP

model B(a™) will be CAN for Ep, [Y] in the union model in which one but
not necessarily both of the above working models is correct.

‘We also obtain a bias that is a expected value of the product of the error of
each model in the limit.

-Explosion of DR estimators with better properties but same basic idea



o™ is a lousy sensitivity parameter because it is on the odds ratio scale so hard
for subject matter experts to give a range. See Scharfstein et al Jasa discussion

paper 1999.



- Game Played:

-Took a missingess model for FR|L defined by conditonal independence (ie
fundamental non-parametric structural features)

MAR: I (R — I') I L(rc)’L(r)

that is NPI subject to positivity constraints.

-An example

MAR: I (R = 1) IT L(yey| Ly

-Then got rid of those independencies via an unidentified sensitivity parameter
that we treat as known but vary in a sensitivity analysis. The model with the
known sensitivity parameter remains NPI.



-The parameter quantifies on some scale the dependence of I (R =r) on L(rc)
given L(r).



‘When we start from a NPl MAR model we go from MAR to MNAR.

-But we could start with a NMAR NPI model defined by conditional indepen-
dencies.

‘Note we are restricting to models that identify the entire joint F; of L which
is not needed if only interested in a specific functional that depends on only a
subset of the components of L.



‘NP1 Ignorable Past-Nonignorable Future Missing (IPNFM) Model (for-
mally a Permutation Missingness Model)

-Definition: The nonparametric (IPNFM) model

NP(RL) — MNP,(L) ®MNP,IPNFM,(R‘L) associated with an order-
Ing

MIPNFM

Ly = (Lg,L1,...,Lg) of L (e.g. temporal) is the set of distributions for
(R, L) restricted by pr (R = I'|L) < MNP,IPNFM,(R|L)

-That is, for each k

pr (R = 1[Ry_1, L) = pr Ry = 1|0k _1, Liy1)

where



c Op_1 = (}_%k_l,f}z_l) is the observed past data where LY = R;L;
-Lypy1 = (Lgi1,..., L) is the future unobserved full data .

'MNP,IPNFM,(R|L) Is equivalently defined by

Ry I Ly|Op 1, Ly 11



-The model can be represented in a so-called missingness graph of Mohan and
Pearl which is a statistical DAG.

-A statistical DAG is a model that specifies that each variable on the graph is
independent of its non-descendents given its parents.

-Using d-separation, we can see that in the 2 variable case

Ry U (Lo, L1) | Ro, Lg
Ro IT Lg| L4



We throughout assume the positivity condition that

1> pr (Rk = 1|6k—17Lk—|—1) >0

so that at each time a subject has a positive probability to change their visit
status as this precludes monotone missing data.

-This is a visit process not a censoring process.. Error in my 1997 paper re
positivity.

-Theorem ( JMR, 1997 ): Suppose the above positivity condition holds

The model M{VPPNCZ;M for the observed data implied by M{VPP]\iﬁl\f)includes
all distributions Fp.

Futher F, and FR]L are identified.



‘Hence the model NPI on distributions for distributions satisfying the positivity
condition.

- PN F' M model not substantively realistic for longitudinal data as it says for
the last occassion Ry II L |O g1 which does not depend on unobserved L's

- Robins 1997 give a substabtive non-longitudinal example re HIV testing where
the I PN F M model is plausible.

- Model also used without recognizing it when analyzing Cox model with cen-
soring with missing covariates

‘Robins et al 1999 describe how to add a non-identified sensitivity parameter
encoding the magnitude of the violation of RiIIL|Oy_1, Lj 1 on a particular
scale.



Estimation of E[h(Lg, L1)] under I PN F M model
-h (Lo, L1) = I (Lo = lo, L1 = l1) gives E[h (Lo, L1)] = f (lo, 1)

-Obtain Identifying Formula E[h (Lg, L1)]

E[h (Lo, L1)]
| R1Rp
= — — — h (Lo, L1)]
pr{R1 =1| Ro =1, L1, Lo}pr{Ro = 1| L1, Lo}
| R1Ro
= FE h (Lg, L1)]

pr{R1 =1| Ro =1, Lo}pr{Ro = 1| L1}

-Thus need to identify pr{Ro = 1| L1}.



-pr{Rg = 1| L1} is given by pr{Rg = 1| L1;~v (Fp)} solving

Ri1{Ry —pr{Ro = 1| L1;v}q(L1)}
pr{R1 = 1| Ry, RoLo}

for a user supplied vector function g (L1) of v which is the dim of the cardinality

E =0

of the support of Ly

- Immediately leads to estimator baed on specifying parametric models for
pr{R1 = 1| Ro, RoLo} and pr{Ro = 1| L1}.



-Greater robustness: We can get 2K robustness as follows.
‘We suppose we are in a world with L4 always observed.
-Full data still Lg, L1 but now
—observed data O)geydo = Ro, RoLo, L1

with Rg IT Lg|Lqas in IPNEFM.



‘Then IF based on O,geqdo i

of (Opseudo)
= u (Opseud0> — E'[h (Lo, L1)]
u (Opseudo)

Roh (Lo, L1) { o _
pr{Rg = 1|L1} pr{Ro = 1|L1}

1} E[h (Lo, L1) L1, Rg = 1]



‘Now consider Opgendo = Fullygeydo as the (pseudo) full data and O as

the observed data. Then the influence function of Efu (Fullpseud())] =
E [h (Lg, L1)] based on data O is

Ry (Fullpseqdo)
pr{R1 = 1| Ro, RoLo}
Ry
_ — 1V EJu (Full Ry, RoLg, Ry = 1
{pT{Rl = 1| Ro, RoLo} } u (Pullpseudo) 1o Folo, s
—E[h (Lo, L1)]
. Note by using u (Fullpseud0> rather than —20ME0L1) h the [ast display
pr{Ro=1|L1}
we guarantee that we do not have to add another term due to the unknown

pr{Ro = 1|L1}.

To obtain 22 multiple robustness we need DR estimators of the paramet-
ric working models pr{Rqg = 1|Lq;7} and E[h(Lg, L1)|L1, Rg = 1; A] for
pr{Ro = 1|L1} and E[h (Lo, L1) [L1, Ro = 1]



which we obtain analogous to above.



.Causal Inference Point of View.

-Given treatments Ag, A1, ..., Am, and response Y;, measured after Ay,

Y (@m) is the value of Yy, if contrary to fact we interveneed and set treatment
to am.

- The observed Y, is defined to be Y, (Zm>

‘We observe Ay, Y

If Yo, (E;‘:_l, am) =Y (6,7;1_1, am> , we can write Yy, (am) has no direct
effect a,,,_1 not through a,, on Yy,

Even more Yy, (@) = Y (am)



Lets try this with missing data.

‘Let L; (rj = 1) be the value of L;f that would be recorded if possibly contrary
to fact | forced the jth variable to be observed

Let L;’f (rj = O) be the be the value of L;fthat would be recorded if possibly
contrary to fact | forced the jth variable to be unobserved. We have chosen
the convention O but we could have chosen -

Then L* = L* (R;)

-By convention we also call L;f (rj = 1) by the name L;

-Thus we find L;f = R;L;

‘Note for missing data L (Tr) = L3 (Tj)



-In graphs by changing intervention we do not need to put counterfactuals.

- Intervention effect of fixing a given variable is identified if all backdoor path
blocked by descendants.

-The intervened variable given its parents is replaced in the distribution by ind-
cator the variable takes it fixed vaue.is replaced in the probability distribution.
Gives the counterfactual intervention distribution



Example 3 New Mohan and Pearl model : R;

R; I (Rg, L1) | Lo
Ro II (R, Lo) | L1

Can't fix as no blocked backdoor paths:

But
| R1 R
B — — — h (Lo, L1)]
pr{R1 =1| Ro =1, L1, Lo}pr{Ro = 1| L1, Lo}
| R1Ry
= F h (Lo, L1)]

pr{R1 =1 Ro =1, Lo}pr{Ro = 1| L1, R; = 1}
New result of Mohan and Pearl

Not non parametric.



Fo 8 parametrs. This model has 7.

So not NPI.

Conjecture: My model only graphical NPl model?



