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The Problem of Missing Data:

Full Data:

L =LK = (L0; L1; :::; LK)

Observed Data:

O =
�
R;L(R) = Lobs

�
;

R = (R0; R1; :::; RK)

Rj = 1 if Lj observed and 0 otherwise

L(R) are the observed components of L



Alternative Notation Related to Causality:

:

O = (R; L� = L(R)) ; L� =
�
L�0; L

�
1; :::; L

�
K

�
;

L�j = Lj (R) = Lj
�
Rj
�
= RjLj

� L�j = Lj if Rj = 1; L�j = � if Rj = 0 is equivalent alternative since Rj
observed.

�Missingness indicators R always observed. Not always required in missing
data.



�A Central Theme of this talk: Missing Data As Causal Inference Explains Much
of What is Old and What is New. Alternative Notation Useful for this

� Goals: Given n iid observations O and a modelM(R;L) for the joint distrib-
ution of (R;L) ; draw inferences concerning FL of L and possibly FRjL based
on data O and the implied modelMO for its distribution FO:

� I do not want to concentrate on complications (though real and interesting)
due to continuity and measurability issues when discussing identi�cation so I
will assume discrete distributions when considering identi�cation results.

� Inference generally continuous



Strategies for NMAR Motivated By The Following MAR Result:

�De�nition: Thehe nonparametric MAR model

MMAR
NP;(R;L) = MNP;(L)

O
MNP;MAR;(RjL)is the set of distributions for

(R;L) such that pr (R = rjL) 2MNP;MAR;(RjL)ie

pr (R = rjL) = pr
�
R = rjL(r)

�
= �

�
r;L(r)

�
is a function �

�
r;L(r)

�
of L only through L(r). Throughout we restrict to

the positive version of the model in which

prfR = 1jLg > 0 wp1

�Theorem (Gill,Van der Laan, JMR): Under the above positivity condition,
the modelMMAR

NP;O for the observed data implied byM
MAR
NP;O includes all dis-

tributions FO:



Futher FL and FRjL are identi�ed.



We therefore say the modelMMAR
NP;(R;L) is non-parametric just identi�ed (NPI)

because

(i) it is non parametric for FO

(ii) it identi�es FL even though it does not restrict the joint distributions FO
of the observed data or FL of the full data

(iii) it is just identi�ed because the model is not empirically testable based on
the observed data O owing to excluding no law FO

� Models like NP MAR that (for positive distributions) provide identi�cation
everywhere are to be distinguished from models that are generically identi�ed
i.e. that ar identi�ed except at exceptional laws F(R;L).



�MAR is a Set of Conditional Independences:

MAR: I (R = r)q L(rc)jL(r)



�Often Interested In Lower Dimensional Functionals  (FL) such as E[L3] in
which case we need not demand identi�cation of FL but only of the functional.

�A variation independent model M(R;L) = M(L)

O
M(RjL) with M(RjL)

satisfying MAR is said to be ignorable since the likelihood factorizes as

f
�
L(R); �

�
�
�
r;L(r); 


�

where � indexes laws FL inM(L) and 
 indexes laws inM(RjL):

�When MAR may not to be reasonable , JMR, Scharfstein and Rotnitzky intro-
duced a philosophy of sensitivity analysis based on non-ignorable NPI models
centered at an ignorable model.



�Simplest Example: L = (Y;W ) ; O = (W;R;RY ) with W high dim with
cont components

Model A is the semiparametric model for F(R;L) satisfying the sole restriction
that

pr [R = 1jW;Y ] = f� (
� (W ) + ��Y )g

where � is a known, smoothly increasing distribution function, 
� (W ) is a
unknown unrestricted function and �� is an unknown parameter. In particular
FL is unrestricted.

�Model B is the submodel of A in which �� is known.

�If �� = 0 Model B isMMAR
NP;(R;L)



�Model C1 is the submodel of A in which


� (W ) = 
 (W ; ��)

with 
 (�; �) a known function and �� an unknown vector parameter and

fY (yjw) = f (yjw;��)

with f (yjw;�) a known function and �� an unknown vector parameter.

�Model C2 di¤ers from C2 in the we replace the last parametric model by

fY (yjw;R = 1) = f1 (yjw;��)

with f1 (yjw;�) a known function and �� an unknown vector parameter.

Models C1 and C2 are the same if and only if �� = 0



Theorem: Assumimg

prfR = 1jLg > 0 wp1

(i) Models A and B contain all distributions FO; but C does not so models A
and B cannot be empirically tested. In particular, under model A any value of
the selection parameter is compatible with the observed data distribution FO.

(ii) Under model A; the distribution FO that generated the data does not
identify 
� (�) ; ��; FL or any functional of FL

(iii) Under model B = B (��) ; the distribution FO that generated the data
identi�es 
� (�) and FL; prfR = 1jLg even though the model B (��) left both

� (�) and FL unrestricted.



�Model B = B (��) is a NPI model since it places not restrictions on FO but
identi�es FL even though FL is NP.

�Under models C1 and C2 
� (�) ; ��; FL all tend to be identi�ed but iden-
ti�cation comes through the functionl form of the model 
� (W ) and either
fY (yjw) or fY (yjw;R = 1) :



�Philosophy of Sensitivity Analysis:

�Generally parametric or semiparametric models for


� (W ) ; fY (yjw) ; fY (yjw;R = 1) not based on subject matter knowledge.

�Not good to get identi�cation that way.

�Eric and Miao based on IV methods clear exceptions.

�From model A results, we conclude that �� is not NP identi�ed.

This combined with model B results suggests a sensitivity analysis strategy.



Sensitivity Analysis Strategy :

�For each value of �� assume it is the truth.

�Let FL (��; FO) be the unique FL implied by �� and the FO that generated
the data.

�Plot  (��) =  fFL (��; FO)g as a function of ��:

�This is feature not a bug that we have to assume �� known since the data
o¤er no information if FL and 


� (�) left unspeci�ed

�Estimation: Hence we only need estimate FO from iid data on O:

�Given a functional  (FL) ; say EFL [Y ] if W is high dimensional the NP
estimator of FO is unde�ned.



�The usual method is to estimate  (FL) under working parametric or semi-
parametric models (whose dimension may increase with sample size) with the
goal to make estimation of  (FL) as robust as possible:

�Consistent at a large submodel of model B(��) with second order bias other-
wise.

�Thus we search for so called DR estimators which if they exist will do so for
only some parametrizations.

�It was surprising to us in 1999 that DR estimators existed in such nonignorable
models as the likelihood no longer factors as

f
�
L(R); �

�
� (R;LR; 
)



�It turns out that if (and essentially only if) we take � to be expit (ie the logistic
distribution) in

pr [R = 1jW;Y ] = f� (
� (W ) + ��Y )g
and use the models


� (W ) = 
 (W ; ��)

fY (yjw;R = 1) = f1 (yjw;��)

then estimators based on solving the e¢ cient in�uence function for the NP
model B(��) will be CAN for EFL [Y ] in the union model in which one but
not necessarily both of the above working models is correct.

�We also obtain a bias that is a expected value of the product of the error of
each model in the limit.

�Explosion of DR estimators with better properties but same basic idea



�� is a lousy sensitivity parameter because it is on the odds ratio scale so hard
for subject matter experts to give a range. See Scharfstein et al Jasa discussion
paper 1999.



� Game Played:

�Took a missingess model for FRjL de�ned by conditonal independence (ie
fundamental non-parametric structural features)

MAR: I (R = r)q L(rc)jL(r)

that is NPI subject to positivity constraints.

�An example

MAR: I (R = r)q L(rc)jL(r)

�Then got rid of those independencies via an unidenti�ed sensitivity parameter
that we treat as known but vary in a sensitivity analysis. The model with the
known sensitivity parameter remains NPI.



�The parameter quanti�es on some scale the dependence of I (R = r) on L(rc)
given L(r).



�When we start from a NPI MAR model we go from MAR to MNAR.

�But we could start with a NMAR NPI model de�ned by conditional indepen-
dencies.

�Note we are restricting to models that identify the entire joint FL of L which
is not needed if only interested in a speci�c functional that depends on only a
subset of the components of L.



�NPI Ignorable Past-Nonignorable Future Missing (IPNFM) Model (for-
mally a Permutation Missingness Model)

�De�nition: The nonparametric (IPNFM) model

MIPNFM
NP;(R;L) = MNP;(L)

O
MNP;IPNFM;(RjL) associated with an order-

ing

LK = (L0; L1; :::; LK) of L (e.g. temporal) is the set of distributions for
(R;L) restricted by pr (R = rjL) 2MNP;IPNFM;(RjL)

�That is, for each k

pr
�
Rk = 1jRk�1; L

�
= pr

�
Rk = 1jOk�1; Lk+1

�
where



� Ok�1 =
�
Rk�1; L

�
k�1

�
;is the observed past data where L�j = RjLj

�Lk+1 =
�
Lk+1; :::; LK

�
is the future unobserved full data :

�MNP;IPNFM;(RjL) is equivalently de�ned by

Rk q LkjOk�1; Lk+1



�The model can be represented in a so-called missingness graph of Mohan and
Pearl which is a statistical DAG.

�A statistical DAG is a model that speci�es that each variable on the graph is
independent of its non-descendents given its parents.

�Using d-separation, we can see that in the 2 variable case

R1 q (L0; L1) jR0; L�0
R0 q L0jL1



We throughout assume the positivity condition that

1 > pr
�
Rk = 1jOk�1; Lk+1

�
> 0

so that at each time a subject has a positive probability to change their visit
status as this precludes monotone missing data.

�This is a visit process not a censoring process.. Error in my 1997 paper re
positivity.

�Theorem ( JMR, 1997 ): Suppose the above positivity condition holds

The model MIPNFM
NP;O for the observed data implied by MIPNFM

NP;(R;L)includes
all distributions FO:

Futher FL and FRjL are identi�ed.



�Hence the model NPI on distributions for distributions satisfying the positivity
condition.

� IPNFM model not substantively realistic for longitudinal data as it says for
the last occassion RKqLKjOK�1 which does not depend on unobserved L0s

� Robins 1997 give a substabtive non-longitudinal example re HIV testing where
the IPNFM model is plausible.

� Model also used without recognizing it when analyzing Cox model with cen-
soring with missing covariates

�Robins et al 1999 describe how to add a non-identi�ed sensitivity parameter
encoding the magnitude of the violation ofRkqLkjOk�1; Lk+1 on a particular
scale.



Estimation of E[h (L0; L1)] under IPNFM model

�h (L0; L1) = I (L0 = l0; L1 = l1) gives E[h (L0; L1)] = f (l0; l1)

�Obtain Identifying Formula E[h (L0; L1)]

E[h (L0; L1)]

= E[
R1R0

prfR1 = 1j R0 = 1; L1; L0gprfR0 = 1j L1; L0g
h (L0; L1)]

= E[
R1R0

prfR1 = 1j R0 = 1; L0gprfR0 = 1j L1g
h (L0; L1)]

�Thus need to identify prfR0 = 1j L1g:



�prfR0 = 1j L1g is given by prfR0 = 1j L1; 
 (FO)g solving

E

"
R1 fR0 � prfR0 = 1j L1; 
gq (L1)g

prfR1 = 1j R0; R0L0g

#
= 0

for a user supplied vector function q (L1) of 
 which is the dim of the cardinality
of the support of L1

� Immediately leads to estimator baed on specifying parametric models for
prfR1 = 1j R0; R0L0g and prfR0 = 1j L1g:



�Greater robustness: We can get 2K robustness as follows.

�We suppose we are in a world with L1 always observed.

-Full data still L0; L1 but now

�observed data Opseudo = R0; R0L0; L1

with R0 q L0jL1as in IPNFM:



�Then IF based on Opseudo is

if
�
Opseudo

�
= u

�
Opseudo

�
� E [h (L0; L1)]

u
�
Opseudo

�
=

R0h (L0; L1)

prfR0 = 1jL1g
�
(

R0
prfR0 = 1jL1g

� 1
)
E [h (L0; L1) jL1; R0 = 1]



�Now consider Opseudo = Fullpseudo as the (pseudo) full data and O as

the observed data. Then the in�uence function of E[u
�
Fullpseudo

�
] =

E [h (L0; L1)] based on data O is

R1u
�
Fullpseudo

�
prfR1 = 1j R0; R0L0g

�
(

R1
prfR1 = 1j R0; R0L0g

� 1
)
E
h
u
�
Fullpseudo

�
jR0; R0L0; R1 = 1

i
�E [h (L0; L1)]

� Note by using u
�
Fullpseudo

�
rather than R0h(L0;L1)

prfR0=1jL1g
in the last display

we guarantee that we do not have to add another term due to the unknown
prfR0 = 1jL1g:

To obtain 22 multiple robustness we need DR estimators of the paramet-
ric working models prfR0 = 1jL1; �g and E [h (L0; L1) jL1; R0 = 1;�] for
prfR0 = 1jL1g and E [h (L0; L1) jL1; R0 = 1]



which we obtain analogous to above.



�Causal Inference Point of View.

�Given treatments A0; A1; :::; Am; and response Ym measured after Am;

�Ym (am) is the value of Ym if contrary to fact we interveneed and set treatment
to am:

�The observed Ym is de�ned to be Ym
�
Am

�
�We observe AK; YK

If Ym
�
a��m�1; am

�
= Ym

�
a�m�1; am

�
; we can write Ym (am) has no direct

e¤ect am�1 not through am on Ym

Even more Ym (aK) = Ym (am)



Lets try this with missing data.

�Let L�j
�
rj = 1

�
be the value of L�j that would be recorded if possibly contrary

to fact I forced the jth variable to be observed

�Let L�j
�
rj = 0

�
be the be the value of L�j that would be recorded if possibly

contrary to fact I forced the jth variable to be unobserved. We have chosen
the convention 0 but we could have chosen �

�Then L�j = L�j
�
Rj
�

�By convention we also call L�j
�
rj = 1

�
by the name Lj

�Thus we �nd L�j = RjLj

�Note for missing data L�j (rK) = L�j
�
rj
�



�In graphs by changing intervention we do not need to put counterfactuals.

� Intervention e¤ect of �xing a given variable is identi�ed if all backdoor path
blocked by descendants.

�The intervened variable given its parents is replaced in the distribution by ind-
cator the variable takes it �xed vaue.is replaced in the probability distribution.
Gives the counterfactual intervention distribution



Example 3 New Mohan and Pearl model : R1

R1 q (R0; L1) jL0
R0 q (R1; L0) jL1

Can�t �x as no blocked backdoor paths:

But

E[
R1R0

prfR1 = 1j R0 = 1; L1; L0gprfR0 = 1j L1; L0g
h (L0; L1)]

= E[
R1R0

prfR1 = 1j R0 = 1; L0gprfR0 = 1j L1; R1 = 1g
h (L0; L1)]

New result of Mohan and Pearl

Not non parametric.



FO 8 parametrs. This model has 7.

So not NPI.

Conjecture: My model only graphical NPI model?


