Non-ignorable Missing Data:Old and New

James Robins

The Problem of Missing Data:

$$
\begin{gathered}
\text { Full Data: } \\
\mathbf{L}=\bar{L}_{K}=\left(L_{0}, L_{1}, \ldots, L_{K}\right) \\
\text { Observed Data: }
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{O}=\left(R, L_{(R)}=L_{o b s}\right) \\
\mathbf{R}=\left(R_{0}, R_{1}, \ldots, R_{K}\right)
\end{gathered}
$$

$R_{j}=1$ if L_{j} observed and 0 otherwise
$L_{(\mathbf{R})}$ are the observed components of L

Alternative Notation Related to Causality:

$$
\begin{gathered}
\mathbf{O}=\left(\mathbf{R}, L^{*}=L(R)\right), L^{*}=\left(L_{0}^{*}, L_{1}^{*}, \ldots, L_{K}^{*}\right) \\
L_{j}^{*}=L_{j}(\mathbf{R})=L_{j}\left(R_{j}\right)=R_{j} L_{j}
\end{gathered}
$$

- $L_{j}^{*}=L_{j}$ if $R_{j}=1, L_{j}^{*}=$. if $R_{j}=0$ is equivalent alternative since R_{j} observed.
-Missingness indicators \mathbf{R} always observed. Not always required in missing data.
-A Central Theme of this talk: Missing Data As Causal Inference Explains Much of What is Old and What is New. Alternative Notation Useful for this
. Goals: Given n iid observations O and a model $\mathcal{M}_{(\mathbf{R}, \mathbf{L})}$ for the joint distribution of (\mathbf{R}, \mathbf{L}), draw inferences concerning $F_{\mathbf{L}}$ of L and possibly $F_{\mathbf{R} \mid L}$ based on data O and the implied model \mathcal{M}_{O} for its distribution F_{O}.
- I do not want to concentrate on complications (though real and interesting) due to continuity and measurability issues when discussing identification so I will assume discrete distributions when considering identification results.
- Inference generally continuous

Strategies for NMAR Motivated By The Following MAR Result:

-Definition: Thehe nonparametric MAR model
$\mathcal{M}_{N P,(\mathbf{R}, \mathbf{L})}^{M A R}=\mathcal{M}_{N P,(\mathbf{L})} \bigotimes \mathcal{M}_{N P, M A R,(\mathbf{R} \mid \mathbf{L})}$ is the set of distributions for (\mathbf{R}, \mathbf{L}) such that $\operatorname{pr}(\mathbf{R}=\mathbf{r} \mid \mathbf{L}) \in \mathcal{M}_{N P, M A R,(\mathbf{R} \mid \mathbf{L})}$ ie

$$
\operatorname{pr}(\mathbf{R}=\mathbf{r} \mid \mathbf{L})=\operatorname{pr}\left(\mathbf{R}=\mathbf{r} \mid \mathbf{L}_{(\mathbf{r})}\right)=\pi\left(\mathbf{r}, \mathbf{L}_{(\mathbf{r})}\right)
$$

is a function $\pi\left(\mathbf{r}, \mathbf{L}_{(\mathbf{r})}\right)$ of \mathbf{L} only through $\mathbf{L}_{(\mathbf{r})}$. Throughout we restrict to the positive version of the model in which

$$
\operatorname{pr}\{\mathbf{R}=\mathbf{1} \mid L\}>0 w p 1
$$

-Theorem (Gill,Van der Laan, JMR): Under the above positivity condition, the model $\mathcal{M}_{N P, O}^{M A R}$ for the observed data implied by $\mathcal{M}_{N P, O}^{M A R}$ includes all distributions F_{O}.

Futher F_{L} and $F_{R \mid L}$ are identified.

We therefore say the model $\mathcal{M}_{N P,(\mathbf{R}, \mathbf{L})}^{M A R}$ is non-parametric just identified (NPI) because
(i) it is non parametric for F_{O}
(ii) it identifies F_{L} even though it does not restrict the joint distributions F_{O} of the observed data or F_{L} of the full data
(iii) it is just identified because the model is not empirically testable based on the observed data O owing to excluding no law F_{O}

- Models like NP MAR that (for positive distributions) provide identification everywhere are to be distinguished from models that are generically identified i.e. that ar identified except at exceptional laws $F_{(R, L)}$.
-MAR is a Set of Conditional Independences:

$$
\text { MAR: } I(\mathbf{R}=\mathbf{r}) \amalg L_{\left(\mathbf{r}^{c}\right)} \mid L_{(\mathbf{r})}
$$

- Often Interested In Lower Dimensional Functionals $\psi\left(F_{L}\right)$ such as $E\left[L_{3}\right]$ in which case we need not demand identification of F_{L} but only of the functional.
. A variation independent model $\mathcal{M}_{(\mathbf{R}, \mathbf{L})}=\mathcal{M}_{(\mathbf{L})} \bigotimes \mathcal{M}_{(\mathbf{R} \mid \mathbf{L})}$ with $\mathcal{M}_{(\mathbf{R} \mid \mathbf{L})}$ satisfying $M A R$ is said to be ignorable since the likelihood factorizes as

$$
f\left(L_{(R)} ; \theta\right) \pi\left(\mathbf{r}, \mathbf{L}_{(\mathbf{r})} ; \gamma\right)
$$

where θ indexes laws F_{L} in $\mathcal{M}_{(\mathbf{L})}$ and γ indexes laws in $\mathcal{M}_{(\mathbf{R} \mid \mathbf{L})}$.
-When MAR may not to be reasonable, JMR, Scharfstein and Rotnitzky introduced a philosophy of sensitivity analysis based on non-ignorable NPI models centered at an ignorable model.
-Simplest Example: $L=(Y, W), O=(W, R, R Y)$ with W high dim with cont components

Model \mathcal{A} is the semiparametric model for $F_{(R, L)}$ satisfying the sole restriction that

$$
\operatorname{pr}[R=1 \mid W, Y]=\left\{\phi\left(\gamma^{*}(W)+\alpha^{*} Y\right)\right\}
$$

where ϕ is a known, smoothly increasing distribution function, $\gamma^{*}(W)$ is a unknown unrestricted function and α^{*} is an unknown parameter. In particular F_{L} is unrestricted.

- Model \mathcal{B} is the submodel of A in which α^{*} is known.
.If $\alpha^{*}=0$ Model \mathcal{B} is $\mathcal{M}_{N P,(\mathbf{R}, \mathbf{L})}^{M A R}$
- Model $\mathcal{C} 1$ is the submodel of A in which

$$
\gamma^{*}(W)=\gamma\left(W ; v^{*}\right)
$$

with $\gamma(\because ; \cdot)$ a known function and v^{*} an unknown vector parameter and

$$
f_{Y}(y \mid w)=f\left(y \mid w ; \beta^{*}\right)
$$

with $f(y \mid w ; \beta)$ a known function and β^{*} an unknown vector parameter.

- Model $\mathcal{C} 2$ differs from $\mathcal{C} 2$ in the we replace the last parametric model by

$$
f_{Y}(y \mid w, R=1)=f_{1}\left(y \mid w ; \beta^{*}\right)
$$

with $f_{1}(y \mid w ; \beta)$ a known function and β^{*} an unknown vector parameter.

Models $\mathcal{C} 1$ and $\mathcal{C} 2$ are the same if and only if $\alpha^{*}=0$

Theorem: Assumimg

$$
\operatorname{pr}\{R=1 \mid L\}>0 w p 1
$$

(i) Models A and B contain all distributions F_{O}, but C does not so models A and B cannot be empirically tested. In particular, under model A any value of the selection parameter is compatible with the observed data distribution F_{O}.
(ii) Under model A, the distribution F_{O} that generated the data does not identify $\gamma^{*}(\cdot), \alpha^{*}, F_{L}$ or any functional of F_{L}
(iii) Under model $B=B\left(\alpha^{*}\right)$, the distribution F_{O} that generated the data identifies $\gamma^{*}(\cdot)$ and $F_{L}, \operatorname{pr}\{\mathbf{R}=\mathbf{1} \mid L\}$ even though the model $B\left(\alpha^{*}\right)$ left both $\gamma^{*}(\cdot)$ and F_{L} unrestricted.

- Model $B=B\left(\alpha^{*}\right)$ is a NPI model since it places not restrictions on F_{O} but identifies F_{L} even though F_{L} is NP.
-Under models C1 and C2 $\gamma^{*}(\cdot), \alpha^{*}, F_{L}$ all tend to be identified but identification comes through the functionl form of the model $\gamma^{*}(W)$ and either $f_{Y}(y \mid w)$ or $f_{Y}(y \mid w, R=1)$.

.Philosophy of Sensitivity Analysis:

-Generally parametric or semiparametric models for
$\gamma^{*}(W), f_{Y}(y \mid w), f_{Y}(y \mid w, R=1)$ not based on subject matter knowledge.
-Not good to get identification that way.
-Eric and Miao based on IV methods clear exceptions.
-From model A results, we conclude that α^{*} is not NP identified.

This combined with model B results suggests a sensitivity analysis strategy.

Sensitivity Analysis Strategy :

-For each value of α^{*} assume it is the truth.
.Let $F_{L}\left(\alpha^{*}, F_{O}\right)$ be the unique F_{L} implied by α^{*} and the F_{O} that generated the data.
.Plot $\psi\left(\alpha^{*}\right)=\psi\left\{F_{L}\left(\alpha^{*}, F_{O}\right)\right\}$ as a function of α^{*}.
-This is feature not a bug that we have to assume α^{*} known since the data offer no information if F_{L} and $\gamma^{*}(\cdot)$ left unspecified
-Estimation: Hence we only need estimate F_{O} from iid data on O.
-Given a functional $\psi\left(F_{L}\right)$, say $E_{F_{L}}[Y]$ if W is high dimensional the NP estimator of F_{O} is undefined.
-The usual method is to estimate $\psi\left(F_{L}\right)$ under working parametric or semiparametric models (whose dimension may increase with sample size) with the goal to make estimation of $\psi\left(F_{L}\right)$ as robust as possible:
-Consistent at a large submodel of model $\mathrm{B}\left(\alpha^{*}\right)$ with second order bias otherwise.
-Thus we search for so called DR estimators which if they exist will do so for only some parametrizations.
-It was surprising to us in 1999 that DR estimators existed in such nonignorable models as the likelihood no longer factors as

$$
f\left(L_{(R)} ; \theta\right) \pi\left(\mathbf{R}, \mathbf{L}_{R} ; \gamma\right)
$$

- It turns out that if (and essentially only if) we take ϕ to be expit (ie the logistic distribution) in

$$
\operatorname{pr}[R=1 \mid W, Y]=\left\{\phi\left(\gamma^{*}(W)+\alpha^{*} Y\right)\right\}
$$

and use the models

$$
\begin{gathered}
\gamma^{*}(W)=\gamma\left(W ; v^{*}\right) \\
f_{Y}(y \mid w, R=1)=f_{1}\left(y \mid w ; \beta^{*}\right)
\end{gathered}
$$

then estimators based on solving the efficient influence function for the NP model $\mathrm{B}\left(\alpha^{*}\right)$ will be CAN for $E_{F_{L}}[Y]$ in the union model in which one but not necessarily both of the above working models is correct.
-We also obtain a bias that is a expected value of the product of the error of each model in the limit.
-Explosion of DR estimators with better properties but same basic idea
α^{*} is a lousy sensitivity parameter because it is on the odds ratio scale so hard for subject matter experts to give a range. See Scharfstein et al Jasa discussion paper 1999.

- Game Played:

-Took a missingess model for $F_{R \mid L}$ defined by conditonal independence (ie fundamental non-parametric structural features)

$$
\text { MAR: } I(\mathbf{R}=\mathbf{r}) \amalg L_{\left(\mathbf{r}^{c}\right)} \mid L_{(\mathbf{r})}
$$

that is NPI subject to positivity constraints.
-An example

$$
\text { MAR: } I(\mathbf{R}=\mathbf{r}) \amalg L_{\left(\mathbf{r}^{c}\right)} \mid L_{(\mathbf{r})}
$$

-Then got rid of those independencies via an unidentified sensitivity parameter that we treat as known but vary in a sensitivity analysis. The model with the known sensitivity parameter remains NPI.
-The parameter quantifies on some scale the dependence of $I(\mathbf{R}=\mathbf{r})$ on $L_{\left(\mathbf{r}^{c}\right)}$ given $L_{(r)}$.
-When we start from a NPI MAR model we go from MAR to MNAR.
-But we could start with a NMAR NPI model defined by conditional independencies.

- Note we are restricting to models that identify the entire joint F_{L} of L which is not needed if only interested in a specific functional that depends on only a subset of the components of L.
-NPI Ignorable Past-Nonignorable Future Missing (IPNFM) Model (formally a Permutation Missingness Model)
-Definition: The nonparametric (IPNFM) model
$\mathcal{M}_{N P,(\mathbf{R}, \mathbf{L})}^{I P N F M}=\mathcal{M}_{N P,(\mathbf{L})} \bigotimes \mathcal{M}_{N P, I P N F M,(\mathbf{R} \mid \mathbf{L})}$ associated with an ordering
$\bar{L}_{K}=\left(L_{0}, L_{1}, \ldots, L_{K}\right)$ of L (e.g. temporal) is the set of distributions for (\mathbf{R}, \mathbf{L}) restricted by $\operatorname{pr}(\mathbf{R}=\mathbf{r} \mid \mathbf{L}) \in \mathcal{M}_{N P, I P N F M,(\mathbf{R} \mid \mathbf{L})}$
-That is, for each k

$$
\operatorname{pr}\left(R_{k}=1 \mid \bar{R}_{k-1}, L\right)=\operatorname{pr}\left(R_{k}=1 \mid \bar{O}_{k-1}, \underline{L}_{k+1}\right)
$$

where

- $\bar{O}_{k-1}=\left(\bar{R}_{k-1}, \bar{L}_{k-1}^{*}\right)$, is the observed past data where $L_{j}^{*}=R_{j} L_{j}$
$\cdot \underline{L}_{k+1}=\left(L_{k+1}, \ldots, L_{K}\right)$ is the future unobserved full data .
- $\mathcal{M}_{N P, I P N F M,(\mathbf{R} \mid \mathbf{L})}$ is equivalently defined by

$$
R_{k} \amalg \bar{L}_{k} \mid \bar{O}_{k-1}, \underline{L}_{k+1}
$$

-The model can be represented in a so-called missingness graph of Mohan and Pearl which is a statistical DAG.
-A statistical DAG is a model that specifies that each variable on the graph is independent of its non-descendents given its parents.
-Using d-separation, we can see that in the 2 variable case

$$
\begin{aligned}
& R_{1} \amalg\left(L_{0}, L_{1}\right) \mid R_{0}, L_{0}^{*} \\
& R_{0} \amalg L_{0} \mid L_{1}
\end{aligned}
$$

We throughout assume the positivity condition that

$$
1>\operatorname{pr}\left(R_{k}=1 \mid \bar{O}_{k-1}, \underline{L}_{k+1}\right)>0
$$

so that at each time a subject has a positive probability to change their visit status as this precludes monotone missing data.
-This is a visit process not a censoring process.. Error in my 1997 paper re positivity.
-Theorem (JMR, 1997): Suppose the above positivity condition holds

The model $\mathcal{M}_{N P, \mathbf{O}}^{I P P N F M}$ for the observed data implied by $\mathcal{M}_{N P,(\mathbf{R}, \mathbf{L})}^{I P N F M}$ includes all distributions F_{O}.

Futher F_{L} and $F_{R \mid L}$ are identified.
-Hence the model NPI on distributions for distributions satisfying the positivity condition.

- IPNFM model not substantively realistic for longitudinal data as it says for the last occassion $R_{K} \amalg \bar{L}_{K} \mid \bar{O}_{K-1}$ which does not depend on unobserved $L^{\prime} s$
- Robins 1997 give a substabtive non-longitudinal example re HIV testing where the $I P N F M$ model is plausible.
- Model also used without recognizing it when analyzing Cox model with censoring with missing covariates
-Robins et al 1999 describe how to add a non-identified sensitivity parameter encoding the magnitude of the violation of $R_{k} \amalg \bar{L}_{k} \mid \bar{O}_{k-1}, \underline{L}_{k+1}$ on a particular scale.

Estimation of $E\left[h\left(L_{0}, L_{1}\right)\right]$ under $I P N F M$ model
$\cdot h\left(L_{0}, L_{1}\right)=I\left(L_{0}=l_{0}, L_{1}=l_{1}\right)$ gives $E\left[h\left(L_{0}, L_{1}\right)\right]=f\left(l_{0}, l_{1}\right)$

- Obtain Identifying Formula $E\left[h\left(L_{0}, L_{1}\right)\right]$

$$
\begin{aligned}
& E\left[h\left(L_{0}, L_{1}\right)\right] \\
= & E\left[\frac{R_{1} R_{0}}{p r\left\{R_{1}=1 \mid R_{0}=1, L_{1}, L_{0}\right\} p r\left\{R_{0}=1 \mid L_{1}, L_{0}\right\}} h\left(L_{0}, L_{1}\right)\right] \\
= & E\left[\frac{R_{1} R_{0}}{p r\left\{R_{1}=1 \mid R_{0}=1, L_{0}\right\} p r\left\{R_{0}=1 \mid L_{1}\right\}} h\left(L_{0}, L_{1}\right)\right]
\end{aligned}
$$

-Thus need to identify $\operatorname{pr}\left\{R_{0}=1 \mid L_{1}\right\}$.
$\cdot \operatorname{pr}\left\{R_{0}=1 \mid L_{1}\right\}$ is given by $\operatorname{pr}\left\{R_{0}=1 \mid L_{1} ; \gamma\left(F_{O}\right)\right\}$ solving

$$
E\left[\frac{R_{1}\left\{R_{0}-p r\left\{R_{0}=1 \mid L_{1} ; \gamma\right\} q\left(L_{1}\right)\right\}}{\operatorname{pr}\left\{R_{1}=1 \mid R_{0}, R_{0} L_{0}\right\}}\right]=0
$$

for a user supplied vector function $q\left(L_{1}\right)$ of γ which is the dim of the cardinality of the support of L_{1}

- Immediately leads to estimator baed on specifying parametric models for $\operatorname{pr}\left\{R_{1}=1 \mid R_{0}, R_{0} L_{0}\right\}$ and $p r\left\{R_{0}=1 \mid L_{1}\right\}$.
-Greater robustness: We can get 2^{K} robustness as follows.
-We suppose we are in a world with L_{1} always observed.
-Full data still L_{0}, L_{1} but now
-observed data $O_{\text {pseudo }}=R_{0}, R_{0} L_{0}, L_{1}$
with $R_{0} \amalg L_{0} \mid L_{1}$ as in IPNFM.
-Then IF based on $O_{\text {pseudo }}$ is

$$
\begin{aligned}
& \text { if }\left(O_{\text {pseudo }}\right) \\
= & u\left(O_{\text {pseudo }}\right)-E\left[h\left(L_{0}, L_{1}\right)\right] \\
& u\left(O_{\text {pseudo }}\right) \\
= & \frac{R_{0} h\left(L_{0}, L_{1}\right)}{p r\left\{R_{0}=1 \mid L_{1}\right\}}-\left\{\frac{R_{0}}{p r\left\{R_{0}=1 \mid L_{1}\right\}}-1\right\} E\left[h\left(L_{0}, L_{1}\right) \mid L_{1}, R_{0}=1\right]
\end{aligned}
$$

-Now consider $O_{\text {pseudo }}=$ Full $_{\text {pseudo }}$ as the (pseudo) full data and O as the observed data. Then the influence function of $E\left[u\left(F u l l_{p s e u d o}\right)\right]=$ $E\left[h\left(L_{0}, L_{1}\right)\right]$ based on data O is

$$
\begin{aligned}
& \quad \frac{R_{1} u\left(\text { Full }_{\text {pseudo }}\right)}{\operatorname{pr}\left\{R_{1}=1 \mid R_{0}, R_{0} L_{0}\right\}} \\
& -\left\{\frac{R_{1}}{\operatorname{pr}\left\{R_{1}=1 \mid R_{0}, R_{0} L_{0}\right\}}-1\right\} E\left[u\left(\text { Full }_{\text {pseudo }}\right) \mid R_{0}, R_{0} L_{0}, R_{1}=1\right] \\
& -E\left[h\left(L_{0}, L_{1}\right)\right]
\end{aligned}
$$

- Note by using $u\left(\right.$ Full $\left._{\text {pseudo }}\right)$ rather than $\frac{R_{0} h\left(L_{0}, L_{1}\right)}{\operatorname{pr}\left\{R_{0}=1 \mid L_{1}\right\}}$ in the last display we guarantee that we do not have to add another term due to the unknown $\operatorname{pr}\left\{R_{0}=1 \mid L_{1}\right\}$.

To obtain 2^{2} multiple robustness we need DR estimators of the parametric working models $\operatorname{pr}\left\{R_{0}=1 \mid L_{1} ; \tau\right\}$ and $E\left[h\left(L_{0}, L_{1}\right) \mid L_{1}, R_{0}=1 ; \lambda\right]$ for $\operatorname{pr}\left\{R_{0}=1 \mid L_{1}\right\}$ and $E\left[h\left(L_{0}, L_{1}\right) \mid L_{1}, R_{0}=1\right]$
which we obtain analogous to above.

.Causal Inference Point of View.

-Given treatments $A_{0}, A_{1}, \ldots, A_{m}$, and response Y_{m} measured after A_{m},
$\cdot Y_{m}\left(\bar{a}_{m}\right)$ is the value of Y_{m} if contrary to fact we interveneed and set treatment to \bar{a}_{m}.
.The observed Y_{m} is defined to be $Y_{m}\left(\bar{A}_{m}\right)$
-We observe \bar{A}_{K}, Y_{K}
If $Y_{m}\left(\bar{a}_{m-1}^{* *}, a_{m}\right)=Y_{m}\left(\bar{a}_{m-1}^{*}, a_{m}\right)$, we can write $Y_{m}\left(a_{m}\right)$ has no direct effect \bar{a}_{m-1} not through a_{m} on Y_{m}

Even more $Y_{m}\left(\bar{a}_{K}\right)=Y_{m}\left(a_{m}\right)$

Lets try this with missing data.

-Let $L_{j}^{*}\left(r_{j}=1\right)$ be the value of L_{j}^{*} that would be recorded if possibly contrary to fact I forced the jth variable to be observed
-Let $L_{j}^{*}\left(r_{j}=0\right)$ be the be the value of L_{j}^{*} that would be recorded if possibly contrary to fact I forced the jth variable to be unobserved. We have chosen the convention 0 but we could have chosen .
-Then $L_{j}^{*}=L_{j}^{*}\left(R_{j}\right)$
-By convention we also call $L_{j}^{*}\left(r_{j}=1\right)$ by the name L_{j}
-Thus we find $L_{j}^{*}=R_{j} L_{j}$

- Note for missing data $L_{j}^{*}\left(\bar{r}_{K}\right)=L_{j}^{*}\left(r_{j}\right)$
-In graphs by changing intervention we do not need to put counterfactuals.
- Intervention effect of fixing a given variable is identified if all backdoor path blocked by descendants.
-The intervened variable given its parents is replaced in the distribution by indcator the variable takes it fixed vaue.is replaced in the probability distribution. Gives the counterfactual intervention distribution

Example 3 New Mohan and Pearl model : R_{1}

$$
\begin{aligned}
& R_{1} \amalg\left(R_{0}, L_{1}\right) \mid L_{0} \\
& R_{0} \amalg\left(R_{1}, L_{0}\right) \mid L_{1}
\end{aligned}
$$

Can't fix as no blocked backdoor paths:

But

$$
\left.\left.\left.\begin{array}{rl}
& E\left[\frac{R_{1} R_{0}}{p r\left\{R_{1}=1 \mid R_{0}=1, L_{1}, L_{0}\right\} p r\left\{R_{0}=1 \mid L_{1}, L_{0}\right\}}\right. \\
= & E\left[\frac{R_{1} R_{0}}{p r\left\{R_{1}=1 \mid R_{0}=1, L_{0}\right\} p r\left\{R_{0}=1 \mid L_{1}, R_{1}=1\right\}}\right.
\end{array} h\left(L_{0}, L_{1}\right)\right] ~ L_{1}\right)\right] .
$$

New result of Mohan and Pearl

Not non parametric.
$F_{O} 8$ parametrs. This model has 7.

So not NPI.

Conjecture: My model only graphical NPI model?

