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A statement

I am a simple minded person. I don’t know how to derive
complicated mathematical formula. If you have such a problem,
please do not ask me. Professor Jae Kim is the right person to ask.
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Missing not at random data and biased sampling problem

Denote X as salary in a survey. Di = 1 is the i-th individual responses,
and 0 otherwise.

P(Di = 1|xi ) = π(xi )

where π(x) is a monotone decreasing function. Denote the observed data
as

(X1,D1 = 1), ...., (Xn1 ,Dn1 = 1), (?,Dn1+1 = 0), ..., (?,Dn = 0)
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Likelihood

Assume Xi , i = 1, 2, ..., n ∼ f (x). The likelihood is

L =

n1∏
i=1

{π(xi )f (xi )}
n∏

i=n1+1

∫
{1− π(x)}f (x)dx

It can be decomposed as L = L1L2, where

L1 =

n1∏
i=1

π(xi )f (xi )∫
π(x)f (x)dx

L2 = {
∫
π(x)f (x)dx}n1{1−

∫
π(x)f (x)dx}n−n1

The first term is the contribution from X |D = 1, which is called
biased sampling likelihood.
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Example

π(x) = exp(−xθ),X ∼ exp(λ)

L1 =
π(x)f (x)∫
π(x)f (x)dx

∝ exp(−(θ + λ)x)

In other words it is an exponential distribution with rate θ + λ.
Based on L1 alone it is not possible to identify θ and λ!
However the second term L2 contributes an estimating equation

E [n1/n] = P(D = 1) =

∫
π(x)f (x)dx = λ

∫
exp(−(θ + λ)x)dx

Therefore it is possible to identify θ and λ by using L = L1L2. The
missing data likelihood L is more informative than the biased
sampling likelihood L1!
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Biased sampling problem

Suppose the targeted population has a density f (x). Due to various
reason we can not have direct observations from f (x). Instead, the
observed data have density

X ∼ w(x)f (x)∫
w(x)f (x)dx

w(x) = x , x2, x3 are corresponding to length biased, area biased and
volume biased sampling, respectively.
Patil, G. P. , and Rao, C. R. (1978). Weighted distributions and
size-biased sampling with applications to wildlife populations and human
families. Biometrics, 179-189.
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Nonparametric MLE for biased sampling data

Suppose

X1, ...,Xn ∼
w(x)dF (x)∫
w(x)dF (x)

where w(x) is known. We are interested in estimating F ! The likelihood
is

L = max
n∏

i=1

w(xi )dF (xi )∫
w(x)dF (x)

F̂ (x) =

∑n
i=1 w(xi )

−1I (xi ≤ x)∑n
i=1 w

−1(xi )

In the special case w(x) = 1, X1, ...,Xn ∼ F , then

F̂ (x) =
n∑

i=1

n−1I (xi ≤ x)
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How do make inference from biased and unbiased data

X ∼ f (x), Y ∼ w(y)f (y)∫
w(y)f (y)dy

The likelihood is

n0∏
i=1

dF (xi )]

 n1∏
j=1

w(yj)dF (yj)∫
w(y)dF (y)


Vardi (1982, 1985) gave us answers!
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Case and control study

The logistic regression model is given by

P(D = 1|x) =
exp(α + xβ)

1 + exp(α + xβ)
, X ∼ h(x)

Case data:
X1, ...,Xn1 ∼ f (x |D = 1)

Control data
Z1, ...,Zn0 ∼ f (X |D = 0)

where n1 and n0 are fixed! In general

n1/(n1 + n0) 6= P(D = 1)
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Equivalency

Using Bayes’ formula

f (x |D = 1) =
P(D = 1|x)h(x)

P(D = 1)
, f (x |D = 0) =

P(D = 0|x)h(x)

P(D = 0)

P(D = 1|x) =
exp(α + xβ)

1 + exp(α + xβ)

f (x |D = 1)/f (x |D = 0) =
P(D = 0)

P(D = 1)
exp(α+ xβ) = exp(α∗ + xβ)

α∗ = α + log{P(D = 0)/P(D = 1)}
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Semiparametric model

The exponential tilting model for two densities is given by

f (x) = exp(α + xβ)g(x) =
exp(xβ)g(x)∫
exp(xβ)g(x)dx

where the baseline density g(x) is not specified! Qin and Zhang
(1997).
This is similar to the two sample proportional hazard model (Cox
model) where the two hazards λ1(t) and λ2(t) satisfies

λ2(t) = θλ1(t)
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Examples

In normal case

f (x)/g(x) = exp{−(x − µ1)2/σ2 + (x − µ2)2/σ2} = exp(α + xβ)

α = 0.5(µ22 − µ22)/σ2, β = (µ2 − µ1)/σ2

In Poisson case
f (x)/g(x) = exp(α + xβ)

α = λ2 − λ1, β = log λ2 − log λ1

What happens for N(µ1, σ
2
1) and N(µ2, σ

2
2)?
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Examples

f (x)/g(x) = exp{−(x−µ1)2/σ21+(x−µ2)2/σ22} = exp(α+xβ+γx2)

What the is connection between (µ1, µ2, σ1, σ2) and (α, β, γ)?
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Heckman selection bias sampling model

Heckman (1979 Econometrica).

Y1 = x1β + ε1, Y2 = x2γ + ε2

where (ε1, ε2) are bivariate normal. Y1 is observable if and only if
Y2 > 0

P(Y1 = y1|Y2 > 0, x1, x2)

=
P(Y2 > 0|Y1 = y1, x1, x2)P(Y1 = y1|x1, x2)

P(Y2 > 0|x1, x2)

=
F̄2(0|y1, x1, x2)φ(y1|x1)

Φ(x2γ/σ2)

where F̄2(0|y1, x2, x2) is the selection bias!
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Inference

E [Y1|Y2 > 0] = x1β + ρσ1
φ(x2γ)

Φ(zγ)
6= x1β

The complete data only inference is biased!
Heckman’s two-stage estimator!
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Choice based sampling

In econometrics, the case and control sampling is called choice
based sampling.
Econometricians Daniel McFadden and James Heckman won the
2000 Nobel Prize in economics for their works on discrete choice
models and selection bias.
Heckman, James J. (1979): Sample Selection Bias as a
Specification Error, Econometrica 47, 153-161. (Heckman got the
Nobel prize for this article.)
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Case and control study

A leading biostatistician in the world N. Breslow (2003 Biometrics)
complained Nobel Prize in physiology and medicine never award for
work on case-control studies in biostatistics or epidemiology.
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Call back problem in survey

Let Y be a random vector of interested in a survey. Di = 1 if
individual i responses in the i-th call.

P(Di = 1|y) =
exp(αi + yβ)

1 + exp(αi + yβ)
:= πi (y), i = 1, 2

We are interested in estimating µ = E (Y ). The density of Y , f (y)
is arbitrary! Note that we have to assume β is common in the first
and second calls in order the model is identifiable!
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Some existing approaches

Alho (1990 Biometrika), Wood, White and Hotopf (2006 JRSSA),
Troxel, Lipsitz and Brennan. (1997 Biometrics), Wang (1999
Biometrics), Daniels, M. J., Jackson, D., Feng, W., and White, I.
R. (2015 Biometrics), Kim and Im (2014 Biometrika) and others?
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Likelihood

L = [π1(y , β)f (y)]D1 [{1− π1(y)}π2(y)f (y)](1−D1)D2

[

∫
{1− π1(y)}{1− π2(y)}f (y)dy ](1−D1)(1−D2)

Alho (1990, Biometrika)

E

[
{D1 + (1− D1)D2}Y

π1(Y , β) + {1− π1(y , β)}π2(y , β)

]
= E (Y ) = µ

The problem is how to estimate α1, α2 and β?
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Maximum semiparametric likelihood estimation

Qin and Follmann (2014 Biometrika) are able to find the maximum
semiparametric likelihood estimate by discreting F (y) for each of
observed yi ’s, i.e, D1i + {1− D1i}D2i = 1. It is complicated.
To illustrate the basic concept, we consider no call back problem
next first.
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No call back problem

Denote Y as salary in a survey. Di = 1 is the i-th individual responses,
and 0 otherwise.

P(Di = 1|Yi ) = π(Yi ) = exp(−θy)

where π(Y ) is a monotone decreasing function. Denote the observed
data as

(Y1,D1 = 1), ...., (Yn1 ,Dn1 = 1), (?,Dn1+1 = 0), ..., (?,Dn = 0)
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Likelihood

Assume Yi , i = 1, 2, ..., n ∼ f (y). The likelihood is

L =

n1∏
i=1

{π(yi )f (yi )}
n∏

i=n1+1

∫
{1− π(y)}f (y)dx

It can be decomposed as L = L1L2, where

L1 =

n1∏
i=1

π(yi )f (yi )∫
π(y)f (y)dy

L2 = {
∫
π(y)f (y)dy}n1{1−

∫
π(y)f (y)dx}n−n1

The first term is the contribution from y |D = 1, which is called
biased sampling likelihood.
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Details

Let π = E (D) =
∫
π(y)dF (y). Denote dF (yi ) = pi , i = 1, 2, ..., n1.

We need to maximize

` =

n1∑
i=1

[log π(yi ) + log pi ] + (n − n1) log(1− π)

subject to the constraints

n1∑
i=1

pi = 1, pi ≥ 0,

n1∑
i=1

piπ(yi ) = π
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Details

The profile empirical likelihood is

` =

n1∑
i=1

[log π(yi , θ)− log{1 + λ(π(yi )− π)}] + (n − n1) log(1− π)

where λ is the Lagrange multiplier determined by

n1∑
i=1

π(yi )− π
1 + λ(π(yi )− π)

= 0

Next maximize ` with respect to θ!
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Call back likelihood

L = [π1(y , β)f (y)]D1 [{1− π1(y)}π2(y)f (y)](1−D1)D2

[

∫
{1− π1(y)}{1− π2(y)}f (y)dy ](1−D1)(1−D2)

Let ∆(y) = E [D1 + (1−D1)D2|y ] = π1(y) + {1− π1(y)}π2(y). It
can be decomposed as[

π1(y)

∆(y)

]D1
[
{1− π1(y)}π2(y)

∆(y)

](1−D1)D2

[∆(y)dF (y)]D1+(1−D1)D2

[∫
{1−∆(y)}dF (y)

](1−D1)(1−D2)
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Profile likelihood

Denote pi = dF (yi ) if D1i + (1− D1i )D2i = 1, i = 1, 2...n1.

` =
n∑

i=1

[D1i log π1(yi ) + (1− D1i )D2i log{(1− π1(yi ))π2(yi )}

+

n1∑
i=1

log pi + (n − n1) log[

n1∑
i=1

pi{1−∆(yi )}]

We can profile out pi subject to the constraint

n1∑
i=1

pi = 1, pi ≥ 0

After profiling out pi ’s we can maximize it with respect to α1, α2

and β!
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Challenge

In the Alho’s model we have to assume a common slope

P(Di = 1|y) =
exp(αi + yβ)

1 + exp(αi + yβ)
:= πi (y), i = 1, 2

How can we relax this assumption?
1). Use auxiliary information?
2). Use instrument variables?
3). Sensitivity analysis?
4). Other methods? Suggestions?
Take home message ”Non-ignorable nonresponse=Missing not at
random problem=hard problem!!!”
The best solution is to collect data without missing values!
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