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Background

Missing data is a common phenomenon in many applications
in areas such as clinical trials, economics, sample surveys, and
social sciences.

Missing Completely at Random (MCAR): The propensity
of missing data is unrelated to any value, whether missing or
observed.

Missing at Random (MAR): The propensity of missing data
is unrelated to the missing values, but may be related to the
observed values.

Both MCAR and MAR are ignorable missing
Solutions: Well-developed.
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Nonignorable Missing Data

Non-Ignorable Missing (NI): The propensity of missing data
is related to the missing values, even after conditioning on all
observed data.

Example: It commonly occurs when people do not want to
reveal something very personal (such as income, age, weight,
sexual preference, etc.).

Solutions: Difficult to handle and the solution is limited.
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The problem we consider

Consider a GLM with nonignorable missing covariate values.

Y : the response variable, X = (U,Z): the covariate vector

p(Y |X,β) = exp{Y η− b(η) + c(Y )}, η = η(βc + βτuU + βτzZ)

Y and Z are fully observed, U may have missing components

R: the indicator of whether U is fully observed.

P (R = 1|Y,U, Z) = P (R = 1|Y,U) (1)

We call Z an instrument variable.
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Existing methods

For nonignorable missing, Robins and Ritov (1997) shows that
either P (R = 1|Y,U) or P (U |Z) has to be parametric.

Full Parametric Methods: assume both P (R = 1|Y,U) and
P (U |Z) are parametric

Lipsitz et al. (1999, SIM)
Ibrahim et al. (1999, JRSSB)
Herring and Ibrahim (2002, Biostatistics)
Stubbendick and Ibrahim (2003, Biometrics; 2006, Sinica)
Huang et al. (2005, Biometrics)
Ibrahim and Molenberghs (2009, Test)

Semiparametric Pseudo Likelihood: assume P (U |Z) is
parametric but P (R = 1|Y, U) is unspecified

Zhao and Shao (2015, JASA)
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The pseudo likelihood method

By (1) and Bayes formula,

p(Z|Y,U,R = 1) = p(Z|Y,U)

=
p(Y |U,Z, β)p(U |Z, γ)p(Z)∫
p(Y |U, z, β)p(U |z, γ)p(z)dz

(2)

Pseudo likelihood estimator (β̃, γ̃) is the maximizer of

L(β′, γ′) =
∏
i:ri=1

p(yi|ui, zi, β′)p(ui|zi, γ′)∑N
j=1 p(yi|ui, zj , β′)p(ui|zj , γ′)

(3)

Problems
− When βz is close to 0, (β̃c, β̃u) is very inefficient since its
asymptotic variance diverges to infinity. However, β̃z is fine.

− The pseudo likelihood (3) does not use any data from
(yi, ui, ri = 0).
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The Proposed Method

We propose a two-stage method:

Stage 1: Estimate γ and βz based on the pseudo likelihood.

Stage 2: Estimate β by maximizing a likelihood adjusted for
missing covariate values using the estimated γ and βz from
stage 1. To solve the likelihood equation, we propose an
iterative algorithm.
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Adjusted likelihood for β

If there is no missing data, the likelihood equation is

S(β′)=

N∑
i=1

g(ui, zi, β
′)
{
yi − h(β′c + β′

τ

u ui + β′
τ

z zi)
}

=0,

where h(β′c + β′
τ

u ui + β′
τ

z zi)=∇ηb(ηi)=E(yi|ui, zi) and
g(ui, zi, β

′)=∇β′h/∇2
ηηb(ηi).

Some components of U may be always observed but not used
as instruments. Let U = (U1, U2), where U1 may have missing
values and U2 is always observed.

We consider an adjusted likelihood equation:

N∑
i=1

g(u∗i1, ui2, zi, β
′){yi−h(β′c+β′

τ

u1u
∗
i1+β′

τ

u2ui2+β′
τ

z zi)} = 0,

where u∗i1 is a function of observed data.
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What u∗i1 should we use?

u∗i1 = E(ui1|ui2, zi) does not work since usually

h(βc+β
τ
u1u
∗
i1+βτu2ui2+βτz zi) 6= E{h(βc+β

τ
u1ui1+βτu2ui2+βτz zi)|ui2, zi}

The above equation holds if

u∗i1(β) = u
(0)
i1 +

βu1
‖βu1‖2

{
h−1(µi(β))− βc − βτu1u

(0)
i1 − β

τ
u2ui2 − βτz zi

}
(4)

where µi(β) denotes the quantity on the right hand side of

above equation, and u
(0)
i1 = E(ui1|ui2, zi).

This leads to the following valid likelihood equation:

N∑
i=1

g(u∗i1(β′), ui2, zi, β
′)
{
yi − h(β′c + β′

τ

u1u
∗
i1(β′) + β′

τ

u2ui2 + β′
τ

z zi)
}

= 0.
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An iterated algorithm

Denote

S(β′|β′′) =
N∑
i=1

g(u∗i1(β
′′), ui2, zi, β

′)
{
yi − h(β′c + β′

τ

u1u
∗
i1(β

′′) + β′
τ

u2ui2 + β′
τ

z zi)
}
= 0.

(5)

Algorithm:

0. For each i, generate {umi1,m = 1, · · · ,M} from p(ui1|ui2, zi, γ̂).

1. At the tth iteration, compute u∗i1(β̂(t)) according to (4) with

β = β̂(t), u
(0)
i1 replaced by E(ui1|ui2, zi, γ̂), and µi(β̂

(t))
approximated by

µ
(t)
i (β̂(t)) =

1

M

M∑
m=1

h
(
β̂(t)
c + β̂

(t)τ

u1 umi1 + β̂
(t)τ

u2 ui2 + β̂(t)τ

z zi

)
.

2. Replace u∗i1(β′′) in (5) by u∗i1(β̂(t)) and compute β̂(t+1) by solving

S(β′|β̂(t)) = 0.

3. Execute 1-2 until {β̂(t), t = 1, 2, · · · } converges to β̂.
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Theoretical Results

Theorem 1: Under some regularity conditions, we have

(a) For any fixed t, if β̂(t) converges to β in probability, then its
one-step update β̂(t+1) also converges to β in probability, as
N →∞.

(b) If β̂(1) converges to β in probability as N →∞, then

P
(
‖β̂(t) − β̂‖ ≥ ‖β̂(t+1) − β̂‖ for all t and S(β̂|β̂) = 0

)
→ 1,

where β̂ = limt→∞ β̂
(t).
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Theoretical Results

Theorem 2: γ̂ is consistent and asymptotically normal with an
explicit influence function.

Theorem 3: β̂ is consistent and asymptotically normal with an
explicit asymptotical variance.

Theorem 4: The asymptotical variance estimator by substitution
technique is consistent.
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Simulation studies

We first considered the following case (A):

(A) Y is binary with P (Y = 1|U,Z) = expit{−1− U + βzZ}, U
and Z are univariate, U |Z ∼ N(−1 + 2Z2, 1), Z ∼ N(1, 1),
U has missing values, and P (R = 1|Y,U) = Φ(1 + U − Y ),
where Φ is the standard normal distribution function.

The percentages of complete data were around 76%. We
considered the combination of N = 300, 500, 1000 and βz = 0, 2, 4.
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Simulation results for case (A) with N = 300

parameter

method βc=-1 βu=-1 βz=0 βc=-1 βu=-1 βz=2 βc=-1 βu=-1 βz=4

BIAS FULL -0.055 -0.051 0.045 -0.049 -0.025 0.082 -0.034 -0.029 0.116

CC -0.741 0.242 0.095 -0.744 0.072 0.348 -0.697 -0.058 0.580

PL not computed -0.163 -0.326 0.193 -0.136 -0.122 0.249

AL -0.138 -0.163 0.115 -0.080 -0.067 0.176 -0.029 -0.044 0.164

SD FULL 0.258 0.187 0.374 0.283 0.152 0.455 0.334 0.134 0.577

CC 0.415 0.245 0.551 0.489 0.184 0.664 0.510 0.162 0.756

PL not computed 0.869 1.036 0.664 0.693 0.474 0.838

AL 0.452 0.493 0.523 0.434 0.300 0.784 0.434 0.210 0.867

SE FULL 0.247 0.179 0.359 0.279 0.145 0.430 0.317 0.128 0.549

CC 0.377 0.259 0.518 0.447 0.182 0.612 0.492 0.155 0.725

PL not computed 0.838 0.772 0.620 0.657 0.417 0.856

AL 0.412 0.436 0.502 0.405 0.270 0.711 0.413 0.193 0.805

CP FULL 0.953 0.946 0.946 0.952 0.945 0.941 0.951 0.955 0.951

CC 0.506 0.780 0.957 0.693 0.898 0.941 0.774 0.944 0.922

PL not computed 0.956 0.913 0.944 0.937 0.928 0.943

AL 0.971 0.959 0.963 0.955 0.944 0.943 0.945 0.943 0.948

BIAS: bias of the estimator; SD: standard deviation; SE: estimated standard deviation;

CP: coverage probability of 95% confidence interval

FULL: full data; CC: complete case; PL: pseudo likelihood; AL: proposed adjusted

likelihood
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Comparison to MLE

We then considered the following case (B):

(B) Y |U,Z ∼ N(1 + U + βz1Z1 + βz2Z2, 1) with univariate U
and two-dimensional Z = (Z1, Z2),
U |Z ∼ N(2 + Z1 − 2Z2

2 , 1), Z1 and Z2 are independently
∼ N(1, 1), and P (R = 1|Y,U) = Φ(−2− U + |Y |).

We considered N = 500 and βz = (βz1, βz2) = (0, 0) or (1,−2).
The percentages of complete data were 50% and 60%, respectively.

We further consider some methods based on maximum likelihood
estimation: MLE-C: MLE with a correct propensity model;
MLE-W: MLE with a wrong propensity model; MLE-MAR: MLE
assuming missing at random.
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Simulation results for case (B)

parameter
method βc=1 βu=1 βz1=0 βz2=0 βc=1 βu=1 βz1=1 βz2=-2

BIAS FUILL 0.002 0.001 0.000 0.000 0.006 0.000 -0.002 -0.003
CC 0.543 0.018 0.059 -0.186 0.207 0.014 0.027 -0.056
PL not computed 0.004 -0.002 0.003 -0.005
AL 0.008 0.001 0.000 0.000 0.008 0.000 -0.002 -0.005
MLE-C -0.001 0.001 0.000 0.000 0.006 0.000 -0.002 -0.004
MLE-W -0.066 -0.006 0.026 -0.012 -0.123 -0.023 0.038 -0.061
MLE-MAR 0.311 0.018 0.014 -0.054 0.165 0.017 -0.012 0.006

SD FULL 0.086 0.015 0.050 0.079 0.085 0.015 0.048 0.078
CC 0.151 0.024 0.069 0.132 0.113 0.019 0.059 0.090
PL not computed 0.125 0.025 0.071 0.112
AL 0.131 0.022 0.069 0.115 0.119 0.023 0.065 0.110
MLE-C 0.104 0.018 0.058 0.089 0.097 0.017 0.053 0.082
MLE-W 0.111 0.018 0.059 0.091 0.099 0.018 0.053 0.086
MLE-MAR 0.106 0.018 0.059 0.092 0.096 0.017 0.054 0.082

SE FULL 0.084 0.015 0.047 0.076 0.084 0.015 0.048 0.075
CC 0.138 0.020 0.068 0.112 0.109 0.018 0.059 0.086
PL not computed 0.118 0.023 0.070 0.101
AL 0.129 0.022 0.066 0.109 0.119 0.023 0.063 0.109
MLE-C 0.104 0.017 0.055 0.085 0.094 0.017 0.052 0.079
MLE-W 0.111 0.018 0.056 0.087 0.098 0.018 0.053 0.083
MLE-MAR 0.105 0.018 0.057 0.088 0.094 0.017 0.053 0.079

CP FULL 0.946 0.950 0.942 0.934 0.946 0.955 0.948 0.935
CC 0.014 0.786 0.862 0.614 0.523 0.883 0.930 0.890
PL not computed 0.929 0.916 0.938 0.922
AL 0.942 0.944 0.936 0.942 0.948 0.941 0.930 0.944
MLE-C 0.954 0.942 0.938 0.912 0.943 0.939 0.935 0.929
MLE-W 0.884 0.934 0.910 0.918 0.744 0.735 0.887 0.863
MLE-MAR 0.150 0.794 0.932 0.892 0.574 0.826 0.931 0.934
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NHANES data analysis

We analyzed a data set from the National Health and
Nutrition Examination Survey (NHANES 2005), which is
designed to assess the health and nutritional status of adults
and children in the United States.

Y : indicator of hypertension

X: age, gender, dxa: body fat measured by Dual-energy
x-ray absorptiometry, bmi: body mass index

P (Y = 1|dxa, age, gender, bmi) = logit{β1+β2dxa+β3age+β4gender}.

U1: dxa

Consider five options of Z = age, Z = bmi,
Z = (age, gender), Z = (age, bmi), and Z = (gender, bmi).

U2: components of (age, gender, bmi) that are not in Z.
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NHANES data analysis results

effect method instrument Z estimate standard error p-value
intercept AL age -5.5091 0.6834 0.000

age,gender -5.5269 0.6644 0.000
age,bmi -5.4321 0.6844 0.000
bmi -5.4511 0.6251 0.000
gender,bmi -5.5045 0.6127 0.000

PL age -5.9139 5.2883 0.263
age,gender -2.8827 7.8250 0.713
age,bmi -0.8004 8.2188 0.922
gender,bmi -12.236 272.92 0.964

CC -5.3175 0.7156 0.000
MLE-MAR -5.0807 0.6044 0.000

dxa AL age 0.0394 0.0150 0.009
age,gender 0.0347 0.0125 0.006
age,bmi 0.0314 0.0102 0.002
bmi 0.0313 0.0117 0.007
gender,bmi 0.0333 0.0117 0.004

PL age 0.0003 0.0261 0.992
age,gender -0.0571 0.1802 0.751
age,bmi -0.0999 0.2147 0.642
gender,bmi 0.0030 5.9060 0.999

CC 0.0076 0.0126 0.549
MLE-MAR 0.0223 0.0102 0.028
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NHANES data analysis results

effect method instrument Z estimate standard error p-value
age AL age 0.0478 0.0094 0.000

age,gender 0.0521 0.0099 0.000
age,bmi 0.0530 0.0088 0.000
bmi 0.0534 0.0076 0.000
gender,bmi 0.0528 0.0081 0.000

PL age 0.0702 0.0098 *
age,gender 0.0707 0.0125 0.000
age,bmi 0.0676 0.0139 *
gender,bmi 0.0146 6.6283 0.998

CC 0.0674 0.0100 0.000
MLE-MAR 0.0538 0.0080 0.000

gender AL age 0.4064 0.2359 0.085
age,gender 0.3785 0.1890 0.045
age,bmi 0.2963 0.1755 0.091
bmi 0.2957 0.1872 0.114
gender,bmi 0.3352 0.1922 0.081

PL age 0.3122 0.7247 0.667
age,gender -0.0370 0.3754 0.992
age,bmi -1.4205 3.6459 0.697
gender,bmi -0.1819 0.2298 *

CC 0.0593 0.2094 0.777
MLE-MAR 0.1821 0.1780 0.306

*not available
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Concluding Remarks

We propose a novel approach to handle generalized linear
models with nonignorable missing covariate data without any
parametric model on the propensity.

The pseudo likelihood method only works when an appropriate
instrument is available. Our proposed method also needs to
specify an instrument but is more flexible in choosing it.

The proposed method is more stable and usually more
efficient than the pseudo likelihood method.

The proposed method needs a correct parametric model on
p(U |Z, γ). It is almost unavoidable since we put no
parametric assumption on the propensity.
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The End

Thank you.

Questions or Comments?
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