Introduction Pr	Roposed Method	Theoretical Results	Empirical Results	Concluding Remarks
0000 00	0000	00		

Likelihood Adjusted for Nonignorable Missing Covariate Values with Unspecified Propensity in Generalized Linear Models

Jun Shao

University of Wisconsin-Madison

Joint work with Fang Fang (East China Normal University) and Jiwei Zhao (SUNY-Buffalo)

November 13, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Proposed Method	Theoretical Results	Empirical Results	Concluding Remarks
0000	00000	00	0000000	
OUTLIN	E			

- **2** Proposed Method
- **3** Theoretical Results
- **4** Empirical Results

INTRODUCTION	Proposed Method	Theoretical Results	Empirical Results	Concluding Remarks
•000	00000	00	0000000	
BACKGE	ROUND			

- Missing data is a common phenomenon in many applications in areas such as clinical trials, economics, sample surveys, and social sciences.
- Missing Completely at Random (MCAR): The propensity of missing data is unrelated to any value, whether missing or observed.
- Missing at Random (MAR): The propensity of missing data is unrelated to the missing values, but may be related to the observed values.

• Both MCAR and MAR are **ignorable** missing Solutions: Well-developed.

INTRODUCTION PROPOSED METHOD THEORETICAL RESULTS EMPIRICAL RESULTS CONCLUDING REMARKS 00000 00 000000 00 NONIGNORABLE MISSING DATA

- Non-Ignorable Missing (NI): The propensity of missing data is related to the missing values, even after conditioning on all observed data.
- Example: It commonly occurs when people do not want to reveal something very personal (such as income, age, weight, sexual preference, etc.).

• Solutions: Difficult to handle and the solution is limited.

INTRODUCTION PROPOSED METHOD THEORETICAL RESULTS EMPIRICAL RESULTS CONCLUDING REMARKS 0000 000000 00 000000 00

THE PROBLEM WE CONSIDER

- Consider a GLM with nonignorable missing covariate values.
- Y: the response variable, X = (U, Z): the covariate vector

$$p(Y|X,\beta) = \exp\{Y\eta - b(\eta) + c(Y)\}, \eta = \eta(\beta_c + \beta_u^{\tau}U + \beta_z^{\tau}Z)$$

- $\bullet~Y$ and Z are fully observed, U may have missing components
- R: the indicator of whether U is fully observed.

$$P(R = 1|Y, U, Z) = P(R = 1|Y, U)$$
(1)

We call Z an instrument variable.

- For nonignorable missing, Robins and Ritov (1997) shows that either P(R = 1|Y, U) or P(U|Z) has to be parametric.
- Full Parametric Methods: assume both P(R=1|Y,U) and P(U|Z) are parametric
 - Lipsitz et al. (1999, SIM)
 - Ibrahim et al. (1999, JRSSB)
 - Herring and Ibrahim (2002, Biostatistics)
 - Stubbendick and Ibrahim (2003, Biometrics; 2006, Sinica)
 - Huang et al. (2005, Biometrics)
 - Ibrahim and Molenberghs (2009, Test)
- Semiparametric Pseudo Likelihood: assume P(U|Z) is parametric but P(R=1|Y,U) is unspecified

• Zhao and Shao (2015, JASA)

• By (1) and Bayes formula,

$$p(Z|Y, U, R = 1) = p(Z|Y, U)$$

=
$$\frac{p(Y|U, Z, \beta)p(U|Z, \gamma)p(Z)}{\int p(Y|U, z, \beta)p(U|z, \gamma)p(z)dz}$$
(2)

• Pseudo likelihood estimator $(\tilde{\beta}, \tilde{\gamma})$ is the maximizer of

$$L(\beta',\gamma') = \prod_{i:r_i=1} \frac{p(y_i|u_i, z_i, \beta')p(u_i|z_i, \gamma')}{\sum_{j=1}^N p(y_i|u_i, z_j, \beta')p(u_i|z_j, \gamma')}$$
(3)

Problems

– When β_z is close to 0, $(\tilde{\beta}_c, \tilde{\beta}_u)$ is very inefficient since its asymptotic variance diverges to infinity. However, $\tilde{\beta}_z$ is fine.

- The pseudo likelihood (3) does not use any data from $(y_i, u_i, r_i = 0)$.

We propose a two-stage method:

- Stage 1: Estimate γ and β_z based on the pseudo likelihood.
- Stage 2: Estimate β by maximizing a likelihood adjusted for missing covariate values using the estimated γ and β_z from stage 1. To solve the likelihood equation, we propose an iterative algorithm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If there is no missing data, the likelihood equation is

$$S(\beta') = \sum_{i=1}^{N} g(u_i, z_i, \beta') \left\{ y_i - h(\beta'_c + {\beta'_u}^{\tau} u_i + {\beta'_z}^{\tau} z_i) \right\} = 0,$$

where $h(\beta'_c + \beta''_u u_i + \beta''_z z_i) = \nabla_\eta b(\eta_i) = E(y_i|u_i, z_i)$ and $g(u_i, z_i, \beta') = \nabla_{\beta'} h / \nabla^2_{\eta\eta} b(\eta_i)$.

- Some components of U may be always observed but not used as instruments. Let $U = (U_1, U_2)$, where U_1 may have missing values and U_2 is always observed.
- We consider an adjusted likelihood equation:

$$\sum_{i=1}^{N} g(u_{i1}^{*}, u_{i2}, z_{i}, \beta') \{ y_{i} - h(\beta_{c}' + \beta_{u1}'^{\tau} u_{i1}^{*} + \beta_{u2}'^{\tau} u_{i2} + \beta_{z}'^{\tau} z_{i}) \} = 0,$$

where u_{i1}^{*} is a function of observed data.

• $u_{i1}^* = E(u_{i1}|u_{i2}, z_i)$ does not work since usually

 $h(\beta_c + \beta_{u1}^{\tau} u_{i1}^* + \beta_{u2}^{\tau} u_{i2} + \beta_z^{\tau} z_i) \neq E\{h(\beta_c + \beta_{u1}^{\tau} u_{i1} + \beta_{u2}^{\tau} u_{i2} + \beta_z^{\tau} z_i) | u_{i2}, z_i\}$

• The above equation holds if

$$\begin{split} u_{i1}^{*}(\beta) &= u_{i1}^{(0)} + \frac{\beta_{u1}}{\|\beta_{u1}\|^{2}} \left\{ h^{-1}(\mu_{i}(\beta)) - \beta_{c} - \beta_{u1}^{\tau} u_{i1}^{(0)} - \beta_{u2}^{\tau} u_{i2} - \beta_{z}^{\tau} z_{i} \right\} \\ (4) \\ \text{where } \mu_{i}(\beta) \text{ denotes the quantity on the right hand side of} \end{split}$$

above equation, and $u_{i1}^{(0)} = E(u_{i1}|u_{i2}, z_i)$.

• This leads to the following valid likelihood equation:

$$\sum_{i=1}^{N} g(u_{i1}^{*}(\beta'), u_{i2}, z_{i}, \beta') \left\{ y_{i} - h(\beta_{c}' + \beta_{u1}'^{\tau} u_{i1}^{*}(\beta') + \beta_{u2}'^{\tau} u_{i2} + \beta_{z}'^{\tau} z_{i}) \right\} = 0.$$

	Proposed Method	Theoretical Results	Empirical Results	Concluding Remarks
0000	00000			

AN ITERATED ALGORITHM

Denote

$$S(\beta'|\beta'') = \sum_{i=1}^{N} g(u_{i1}^{*}(\beta''), u_{i2}, z_i, \beta') \left\{ y_i - h(\beta_c' + \beta_{u1}'^{\tau} u_{i1}^{*}(\beta'') + \beta_{u2}'^{\tau} u_{i2} + \beta_z'^{\tau} z_i) \right\} =$$
(5)

Algorithm:

- 0. For each i, generate $\{u_{i1}^m, m = 1, \cdots, M\}$ from $p(u_{i1}|u_{i2}, z_i, \hat{\gamma})$.
- 1. At the tth iteration, compute $u_{i1}^*(\hat{\beta}^{(t)})$ according to (4) with $\beta = \hat{\beta}^{(t)}$, $u_{i1}^{(0)}$ replaced by $E(u_{i1}|u_{i2}, z_i, \hat{\gamma})$, and $\mu_i(\hat{\beta}^{(t)})$ approximated by

$$\mu_i^{(t)}(\hat{\beta}^{(t)}) = \frac{1}{M} \sum_{m=1}^M h\left(\hat{\beta}_c^{(t)} + \hat{\beta}_{u1}^{(t)^{\intercal}} u_{i1}^m + \hat{\beta}_{u2}^{(t)^{\intercal}} u_{i2} + \hat{\beta}_z^{(t)^{\intercal}} z_i\right).$$

- 2. Replace $u_{i1}^*(\beta'')$ in (5) by $u_{i1}^*(\hat{\beta}^{(t)})$ and compute $\hat{\beta}^{(t+1)}$ by solving $S(\beta'|\hat{\beta}^{(t)}) = 0.$
- 3. Execute 1-2 until $\{\hat{\beta}^{(t)}, t = 1, 2, \cdots\}$ converges to $\hat{\beta}$.

Theorem 1: Under some regularity conditions, we have

- (A) For any fixed t, if $\hat{\beta}^{(t)}$ converges to β in probability, then its one-step update $\hat{\beta}^{(t+1)}$ also converges to β in probability, as $N \to \infty$.
- (B) If $\hat{\beta}^{(1)}$ converges to β in probability as $N \to \infty$, then

$$\begin{split} &P\left(\|\hat{\beta}^{(t)} - \hat{\beta}\| \geq \|\hat{\beta}^{(t+1)} - \hat{\beta}\| \ \text{ for all } t \text{ and } S(\hat{\beta}|\hat{\beta}) = 0\right) \to 1,\\ &\text{where } \hat{\beta} = \lim_{t \to \infty} \hat{\beta}^{(t)}. \end{split}$$

(日) (同) (三) (三) (三) (○) (○)

Theorem 2: $\hat{\gamma}$ is consistent and asymptotically normal with an explicit influence function.

Theorem 3: $\hat{\beta}$ is consistent and asymptotically normal with an explicit asymptotical variance.

Theorem 4: The asymptotical variance estimator by substitution technique is consistent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Proposed Method	Theoretical Results	Empirical Results	Concluding Remarks
0000	00000	00	•000000	
SIMULA	FION STUDI	ES		

We first considered the following case (A):

(A) Y is binary with $P(Y = 1|U, Z) = \expi\{-1 - U + \beta_z Z\}$, U and Z are univariate, $U|Z \sim N(-1 + 2Z^2, 1)$, $Z \sim N(1, 1)$, U has missing values, and $P(R = 1|Y, U) = \Phi(1 + U - Y)$, where Φ is the standard normal distribution function.

The percentages of complete data were around 76%. We considered the combination of N = 300, 500, 1000 and $\beta_z = 0, 2, 4$.

INTRODUCTION 0000 Proposed Method 00000 THEORETICAL RESULTS

Empirical Results

Concluding Remarks

Simulation results for case (A) with N = 300

						parameter				
	method	$\beta_c = -1$	$\rho = 1$	$\beta_z = 0$	$\beta_c = -1$	•	8 - 2	$\beta_c = -1$	$\rho = 1$	0 -1
		1.5	$\beta_u = -1$	1	1.0	$\beta_u = -1$	$\beta_z = 2$	7.6	$\beta_u = -1$	$\beta_z = 4$
BIAS	FULL	-0.055	-0.051	0.045	-0.049	-0.025	0.082	-0.034	-0.029	0.116
	CC	-0.741	0.242	0.095	-0.744	0.072	0.348	-0.697	-0.058	0.580
	PL	n	ot compute	d	-0.163	-0.326	0.193	-0.136	-0.122	0.249
	AL	-0.138	-0.163	0.115	-0.080	-0.067	0.176	-0.029	-0.044	0.164
SD	FULL	0.258	0.187	0.374	0.283	0.152	0.455	0.334	0.134	0.577
	СС	0.415	0.245	0.551	0.489	0.184	0.664	0.510	0.162	0.756
	PL	n	ot compute	d	0.869	1.036	0.664	0.693	0.474	0.838
	AL	0.452	0.493	0.523	0.434	0.300	0.784	0.434	0.210	0.867
SE	FULL	0.247	0.179	0.359	0.279	0.145	0.430	0.317	0.128	0.549
	СС	0.377	0.259	0.518	0.447	0.182	0.612	0.492	0.155	0.725
	PL	n	ot compute	d	0.838	0.772	0.620	0.657	0.417	0.856
	AL	0.412	0.436	0.502	0.405	0.270	0.711	0.413	0.193	0.805
CP	FULL	0.953	0.946	0.946	0.952	0.945	0.941	0.951	0.955	0.951
	СС	0.506	0.780	0.957	0.693	0.898	0.941	0.774	0.944	0.922
	PL	n	ot compute	d	0.956	0.913	0.944	0.937	0.928	0.943
	AL	0.971	0.959	0.963	0.955	0.944	0.943	0.945	0.943	0.948

BIAS: bias of the estimator; SD: standard deviation; SE: estimated standard deviation; CP: coverage probability of 95% confidence interval

FULL: full data; CC: complete case; PL: pseudo likelihood; AL: proposed adjusted likelihood

INTRODUCTION PROPOSED METHOD THEORETICAL RESULTS CONCLUDING REMARKS OC COMPARISON TO MLE

We then considered the following case (B):

(B) $Y|U, Z \sim N(1 + U + \beta_{z1}Z_1 + \beta_{z2}Z_2, 1)$ with univariate Uand two-dimensional $Z = (Z_1, Z_2)$, $U|Z \sim N(2 + Z_1 - 2Z_2^2, 1)$, Z_1 and Z_2 are independently $\sim N(1, 1)$, and $P(R = 1|Y, U) = \Phi(-2 - U + |Y|)$.

We considered N = 500 and $\beta_z = (\beta_{z1}, \beta_{z2}) = (0, 0)$ or (1, -2). The percentages of complete data were 50% and 60%, respectively.

We further consider some methods based on maximum likelihood estimation: MLE-C: MLE with a correct propensity model; MLE-W: MLE with a wrong propensity model; MLE-MAR: MLE assuming missing at random.

INTRODUCTION 0000 Proposed Method 00000 THEORETICAL RESULTS

Empirical Results

Concluding Remarks

SIMULATION RESULTS FOR CASE (B)

					para	meter			
	method	$\beta_c = 1$	$\beta_u = 1$	$\beta_{z1}=0$	$\beta_{z2}=0$	$\beta_c = 1$	$\beta_u = 1$	$\beta_{z1}=1$	$\beta_{z2}=-2$
BIAS	FUILL	0.002	0.001	0.000	0.000	0.006	0.000	-0.002	-0.003
	CC	0.543	0.018	0.059	-0.186	0.207	0.014	0.027	-0.056
	PL		not co	omputed		0.004	-0.002	0.003	-0.005
	AL	0.008	0.001	0.000	0.000	0.008	0.000	-0.002	-0.005
	MLE-C	-0.001	0.001	0.000	0.000	0.006	0.000	-0.002	-0.004
	MLE-W	-0.066	-0.006	0.026	-0.012	-0.123	-0.023	0.038	-0.061
	MLE-MAR	0.311	0.018	0.014	-0.054	0.165	0.017	-0.012	0.006
SD	FULL	0.086	0.015	0.050	0.079	0.085	0.015	0.048	0.078
	CC	0.151	0.024	0.069	0.132	0.113	0.019	0.059	0.090
	PL		not co	omputed		0.125	0.025	0.071	0.112
	AL	0.131	0.022	0.069	0.115	0.119	0.023	0.065	0.110
	MLE-C	0.104	0.018	0.058	0.089	0.097	0.017	0.053	0.082
	MLE-W	0.111	0.018	0.059	0.091	0.099	0.018	0.053	0.086
	MLE-MAR	0.106	0.018	0.059	0.092	0.096	0.017	0.054	0.082
SE	FULL	0.084	0.015	0.047	0.076	0.084	0.015	0.048	0.075
	CC	0.138	0.020	0.068	0.112	0.109	0.018	0.059	0.086
	PL			omputed		0.118	0.023	0.070	0.101
	AL	0.129	0.022	0.066	0.109	0.119	0.023	0.063	0.109
	MLE-C	0.104	0.017	0.055	0.085	0.094	0.017	0.052	0.079
	MLE-W	0.111	0.018	0.056	0.087	0.098	0.018	0.053	0.083
	MLE-MAR	0.105	0.018	0.057	0.088	0.094	0.017	0.053	0.079
CP	FULL	0.946	0.950	0.942	0.934	0.946	0.955	0.948	0.935
	CC	0.014	0.786	0.862	0.614	0.523	0.883	0.930	0.890
	PL			omputed		0.929	0.916	0.938	0.922
	AL	0.942	0.944	0.936	0.942	0.948	0.941	0.930	0.944
	MLE-C	0.954	0.942	0.938	0.912	0.943	0.939	0.935	0.929
	MLE-W	0.884	0.934	0.910	0.918	0.744	0.735	0.887	0.863
	MLE-MAR	0.150	0.794	0.932	0.892	0.574	0.826	0.931	0.934

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Introduction	Proposed Method	Theoretical Results	Empirical Results	Concluding Remarks
0000	00000	00	0000000	
NHANI	ES DATA AI	NALYSIS		

- We analyzed a data set from the National Health and Nutrition Examination Survey (NHANES 2005), which is designed to assess the health and nutritional status of adults and children in the United States.
- Y: indicator of hypertension
- X: age, gender, dxa: body fat measured by Dual-energy x-ray absorptiometry, bmi: body mass index

 $P(Y = 1 | dxa, age, gender, bmi) = \mathsf{logit}\{\beta_1 + \beta_2 dxa + \beta_3 age + \beta_4 gender\}.$

- U_1 : dxa
- Consider five options of Z = age, Z = bmi, Z = (age, gender), Z = (age, bmi), and Z = (gender, bmi).
- U_2 : components of (age, gender, bmi) that are not in Z.

INTRODUCTION 0000 Proposed Method 00000 THEORETICAL RESULT: 00 Empirical Results

Concluding Remarks

NHANES DATA ANALYSIS RESULTS

			-		
effect	method	instrument Z	estimate	standard error	p-value
intercept	AL	age	-5.5091	0.6834	0.000
		age,gender	-5.5269	0.6644	0.000
		age,bmi	-5.4321	0.6844	0.000
		bmi	-5.4511	0.6251	0.000
		gender,bmi	-5.5045	0.6127	0.000
	PL	age	-5.9139	5.2883	0.263
		age,gender	-2.8827	7.8250	0.713
		age,bmi	-0.8004	8.2188	0.922
		gender, bmi	-12.236	272.92	0.964
	СС		-5.3175	0.7156	0.000
	MLE-MAR		-5.0807	0.6044	0.000
dxa	AL	age	0.0394	0.0150	0.009
		age,gender	0.0347	0.0125	0.006
		age,bmi	0.0314	0.0102	0.002
		bmi	0.0313	0.0117	0.007
		gender,bmi	0.0333	0.0117	0.004
	PL	age	0.0003	0.0261	0.992
		age,gender	-0.0571	0.1802	0.751
		age,bmi	-0.0999	0.2147	0.642
		gender,bmi	0.0030	5.9060	0.999
	CC	-	0.0076	0.0126	0.549
	MLE-MAR		0.0223	0.0102	0.028

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

INTRODUCTION 0000 Proposed Method 00000 Theoretical Results

Empirical Results

Concluding Remarks

NHANES DATA ANALYSIS RESULTS

effect	method	instrument Z	estimate	standard error	p-value
age	AL	age	0.0478	0.0094	0.000
		age,gender	0.0521	0.0099	0.000
		age,bmi	0.0530	0.0088	0.000
		bmi	0.0534	0.0076	0.000
		gender,bmi	0.0528	0.0081	0.000
	PL	age	0.0702	0.0098	*
		age,gender	0.0707	0.0125	0.000
		age,bmi	0.0676	0.0139	*
		gender,bmi	0.0146	6.6283	0.998
	СС		0.0674	0.0100	0.000
	MLE-MAR		0.0538	0.0080	0.000
gender	AL	age	0.4064	0.2359	0.085
		age,gender	0.3785	0.1890	0.045
		age,bmi	0.2963	0.1755	0.091
		bmi	0.2957	0.1872	0.114
		gender,bmi	0.3352	0.1922	0.081
	PL	age	0.3122	0.7247	0.667
		age,gender	-0.0370	0.3754	0.992
		age,bmi	-1.4205	3.6459	0.697
		gender,bmi	-0.1819	0.2298	*
	CC		0.0593	0.2094	0.777
	MLE-MAR		0.1821	0.1780	0.306

*not available

- We propose a novel approach to handle generalized linear models with nonignorable missing covariate data without any parametric model on the propensity.
- The pseudo likelihood method only works when an appropriate instrument is available. Our proposed method also needs to specify an instrument but is more flexible in choosing it.
- The proposed method is more stable and usually more efficient than the pseudo likelihood method.
- The proposed method needs a correct parametric model on $p(U|Z,\gamma)$. It is almost unavoidable since we put no parametric assumption on the propensity.

Introduction	Proposed Method	Theoretical Results	Empirical Results	Concluding Remarks
0000	00000	00	0000000	o●
THE EN	D			

Thank you.

Questions or Comments?