Likelihood Adjusted for Nonignorable Missing Covariate Values with Unspecified Propensity in Generalized Linear Models

Jun Shao

University of Wisconsin-Madison

Joint work with Fang Fang (East China Normal University) and Jiwei Zhao (SUNY-Buffalo)

November 13, 2015

Outline

(1) Introduction
(2) Proposed Method
(3) Theoretical Results
(4) Empirical Results
(5) Concluding Remarks

BACKGROUND

- Missing data is a common phenomenon in many applications in areas such as clinical trials, economics, sample surveys, and social sciences.
- Missing Completely at Random (MCAR): The propensity of missing data is unrelated to any value, whether missing or observed.
- Missing at Random (MAR): The propensity of missing data is unrelated to the missing values, but may be related to the observed values.
- Both MCAR and MAR are ignorable missing Solutions: Well-developed.

Nonignorable Missing Data

- Non-Ignorable Missing (NI): The propensity of missing data is related to the missing values, even after conditioning on all observed data.
- Example: It commonly occurs when people do not want to reveal something very personal (such as income, age, weight, sexual preference, etc.).
- Solutions: Difficult to handle and the solution is limited.

The Problem we consider

- Consider a GLM with nonignorable missing covariate values.
- Y : the response variable, $X=(U, Z)$: the covariate vector

$$
p(Y \mid X, \beta)=\exp \{Y \eta-b(\eta)+c(Y)\}, \eta=\eta\left(\beta_{c}+\beta_{u}^{\tau} U+\beta_{z}^{\tau} Z\right)
$$

- Y and Z are fully observed, U may have missing components
- R : the indicator of whether U is fully observed.

$$
\begin{equation*}
P(R=1 \mid Y, U, Z)=P(R=1 \mid Y, U) \tag{1}
\end{equation*}
$$

We call Z an instrument variable.

Existing methods

- For nonignorable missing, Robins and Ritov (1997) shows that either $P(R=1 \mid Y, U)$ or $P(U \mid Z)$ has to be parametric.
- Full Parametric Methods: assume both $P(R=1 \mid Y, U)$ and $P(U \mid Z)$ are parametric
- Lipsitz et al. (1999, SIM)
- Ibrahim et al. (1999, JRSSB)
- Herring and Ibrahim (2002, Biostatistics)
- Stubbendick and Ibrahim (2003, Biometrics; 2006, Sinica)
- Huang et al. (2005, Biometrics)
- Ibrahim and Molenberghs (2009, Test)
- Semiparametric Pseudo Likelihood: assume $P(U \mid Z)$ is parametric but $P(R=1 \mid Y, U)$ is unspecified
- Zhao and Shao (2015, JASA)

The PSEUDO LIKELIHOOD METHOD

- By (1) and Bayes formula,

$$
\begin{align*}
p(Z \mid Y, U, R=1) & =p(Z \mid Y, U) \\
& =\frac{p(Y \mid U, Z, \beta) p(U \mid Z, \gamma) p(Z)}{\int p(Y \mid U, z, \beta) p(U \mid z, \gamma) p(z) d z} \tag{2}
\end{align*}
$$

- Pseudo likelihood estimator $(\tilde{\beta}, \tilde{\gamma})$ is the maximizer of

$$
\begin{equation*}
L\left(\beta^{\prime}, \gamma^{\prime}\right)=\prod_{i: r_{i}=1} \frac{p\left(y_{i} \mid u_{i}, z_{i}, \beta^{\prime}\right) p\left(u_{i} \mid z_{i}, \gamma^{\prime}\right)}{\sum_{j=1}^{N} p\left(y_{i} \mid u_{i}, z_{j}, \beta^{\prime}\right) p\left(u_{i} \mid z_{j}, \gamma^{\prime}\right)} \tag{3}
\end{equation*}
$$

- Problems
- When β_{z} is close to $0,\left(\tilde{\beta}_{c}, \tilde{\beta}_{u}\right)$ is very inefficient since its asymptotic variance diverges to infinity. However, $\tilde{\beta}_{z}$ is fine.
- The pseudo likelihood (3) does not use any data from $\left(y_{i}, u_{i}, r_{i}=0\right)$.

The Proposed Method

We propose a two-stage method:

- Stage 1: Estimate γ and β_{z} based on the pseudo likelihood.
- Stage 2: Estimate β by maximizing a likelihood adjusted for missing covariate values using the estimated γ and β_{z} from stage 1. To solve the likelihood equation, we propose an iterative algorithm.

AdJusted likelihood for β

- If there is no missing data, the likelihood equation is

$$
S\left(\beta^{\prime}\right)=\sum_{i=1}^{N} g\left(u_{i}, z_{i}, \beta^{\prime}\right)\left\{y_{i}-h\left(\beta_{c}^{\prime}+\beta_{u}^{\prime \tau} u_{i}+\beta_{z}^{\prime \tau} z_{i}\right)\right\}=0
$$

where $h\left(\beta_{c}^{\prime}+\beta_{u}^{\tau^{\tau}} u_{i}+\beta_{z}^{\prime \tau} z_{i}\right)=\nabla_{\eta} b\left(\eta_{i}\right)=E\left(y_{i} \mid u_{i}, z_{i}\right)$ and $g\left(u_{i}, z_{i}, \beta^{\prime}\right)=\nabla_{\beta^{\prime}} h / \nabla_{\eta \eta}^{2} b\left(\eta_{i}\right)$.

- Some components of U may be always observed but not used as instruments. Let $U=\left(U_{1}, U_{2}\right)$, where U_{1} may have missing values and U_{2} is always observed.
- We consider an adjusted likelihood equation:

$$
\sum_{i=1}^{N} g\left(u_{i 1}^{*}, u_{i 2}, z_{i}, \beta^{\prime}\right)\left\{y_{i}-h\left(\beta_{c}^{\prime}+\beta_{u 1}^{\prime^{\tau}} u_{i 1}^{*}+\beta_{u 2}^{\prime^{\tau}} u_{i 2}+\beta_{z}^{\prime \tau} z_{i}\right)\right\}=0
$$

where $u_{i 1}^{*}$ is a function of observed data.

What $u_{i 1}^{*}$ SHOULD WE USE?

- $u_{i 1}^{*}=E\left(u_{i 1} \mid u_{i 2}, z_{i}\right)$ does not work since usually

$$
h\left(\beta_{c}+\beta_{u 1}^{\tau} u_{i 1}^{*}+\beta_{u 2}^{\tau} u_{i 2}+\beta_{z}^{\tau} z_{i}\right) \neq E\left\{h\left(\beta_{c}+\beta_{u 1}^{\tau} u_{i 1}+\beta_{u 2}^{\tau} u_{i 2}+\beta_{z}^{\tau} z_{i}\right) \mid u_{i 2}, z_{i}\right\}
$$

- The above equation holds if

$$
\begin{equation*}
u_{i 1}^{*}(\beta)=u_{i 1}^{(0)}+\frac{\beta_{u 1}}{\left\|\beta_{u 1}\right\|^{2}}\left\{h^{-1}\left(\mu_{i}(\beta)\right)-\beta_{c}-\beta_{u 1}^{\tau} u_{i 1}^{(0)}-\beta_{u 2}^{\tau} u_{i 2}-\beta_{z}^{\tau} z_{i}\right\} \tag{4}
\end{equation*}
$$

where $\mu_{i}(\beta)$ denotes the quantity on the right hand side of above equation, and $u_{i 1}^{(0)}=E\left(u_{i 1} \mid u_{i 2}, z_{i}\right)$.

- This leads to the following valid likelihood equation:

AN ITERATED ALGORITHM

Denote

$$
\begin{equation*}
S\left(\beta^{\prime} \mid \beta^{\prime \prime}\right)=\sum_{i=1}^{N} g\left(u_{i 1}^{*}\left(\beta^{\prime \prime}\right), u_{i 2}, z_{i}, \beta^{\prime}\right)\left\{y_{i}-h\left(\beta_{c}^{\prime}+\beta_{u 1}^{\prime \tau} u_{i 1}^{*}\left(\beta^{\prime \prime}\right)+\beta_{u 2}^{\prime \tau} u_{i 2}+\beta_{z}^{\prime \tau} z_{i}\right)\right\}= \tag{5}
\end{equation*}
$$

Algorithm:

0 . For each i, generate $\left\{u_{i 1}^{m}, m=1, \cdots, M\right\}$ from $p\left(u_{i 1} \mid u_{i 2}, z_{i}, \hat{\gamma}\right)$.

1. At the t th iteration, compute $u_{i 1}^{*}\left(\hat{\beta}^{(t)}\right)$ according to (4) with $\beta=\hat{\beta}^{(t)}, u_{i 1}^{(0)}$ replaced by $E\left(u_{i 1} \mid u_{i 2}, z_{i}, \hat{\gamma}\right)$, and $\mu_{i}\left(\hat{\beta}^{(t)}\right)$ approximated by

$$
\mu_{i}^{(t)}\left(\hat{\beta}^{(t)}\right)=\frac{1}{M} \sum_{m=1}^{M} h\left(\hat{\beta}_{c}^{(t)}+\hat{\beta}_{u 1}^{(t)^{\tau}} u_{i 1}^{m}+\hat{\beta}_{u 2}^{(t)^{\tau}} u_{i 2}+\hat{\beta}_{z}^{(t)^{\tau}} z_{i}\right) .
$$

2. Replace $u_{i 1}^{*}\left(\beta^{\prime \prime}\right)$ in (5) by $u_{i 1}^{*}\left(\hat{\beta}^{(t)}\right)$ and compute $\hat{\beta}^{(t+1)}$ by solving $S\left(\beta^{\prime} \mid \hat{\beta}^{(t)}\right)=0$.
3. Execute 1-2 until $\left\{\hat{\beta}^{(t)}, t=1,2, \cdots\right\}$ converges to $\hat{\beta}$.

Theoretical Results

Theorem 1: Under some regularity conditions, we have
(A) For any fixed t, if $\hat{\beta}^{(t)}$ converges to β in probability, then its one-step update $\hat{\beta}^{(t+1)}$ also converges to β in probability, as $N \rightarrow \infty$.
(B) If $\hat{\beta}^{(1)}$ converges to β in probability as $N \rightarrow \infty$, then $P\left(\left\|\hat{\beta}^{(t)}-\hat{\beta}\right\| \geq\left\|\hat{\beta}^{(t+1)}-\hat{\beta}\right\|\right.$ for all t and $\left.S(\hat{\beta} \mid \hat{\beta})=0\right) \rightarrow 1$, where $\hat{\beta}=\lim _{t \rightarrow \infty} \hat{\beta}^{(t)}$.

Theoretical Results

Theorem 2: $\hat{\gamma}$ is consistent and asymptotically normal with an explicit influence function.

Theorem 3: $\hat{\beta}$ is consistent and asymptotically normal with an explicit asymptotical variance.

Theorem 4: The asymptotical variance estimator by substitution technique is consistent.

Simulation studies

We first considered the following case (A):
(A) Y is binary with $P(Y=1 \mid U, Z)=\operatorname{expit}\left\{-1-U+\beta_{z} Z\right\}, U$ and Z are univariate, $U \mid Z \sim N\left(-1+2 Z^{2}, 1\right), Z \sim N(1,1)$, U has missing values, and $P(R=1 \mid Y, U)=\Phi(1+U-Y)$, where Φ is the standard normal distribution function.

The percentages of complete data were around 76%. We considered the combination of $N=300,500,1000$ and $\beta_{z}=0,2,4$.

Simulation results for case (A) with $N=300$

	method	parameter								
		$\beta_{c}=-1$	$\beta_{u}=-1$	$\beta_{z}=0$	$\beta_{c}=-1$	$\beta_{u}=-1$	$\beta_{z}=2$	$\beta_{c}=-1$	$\beta_{u}=-1$	$\beta_{z}=4$
BIAS	FULL	-0.055	-0.051	0.045	-0.049	-0.025	0.082	-0.034	-0.029	0.116
	CC	-0.741	0.242	0.095	-0.744	0.072	0.348	-0.697	-0.058	0.580
	PL	not computed			-0.163	-0.326	0.193	-0.136	-0.122	0.249
	AL	-0.138	-0.163	0.115	-0.080	-0.067	0.176	-0.029	-0.044	0.164
SD	FULL	0.258	0.187	0.374	0.283	0.152	0.455	0.334	0.134	0.577
	CC	0.415	0.245	0.551	0.489	0.184	0.664	0.510	0.162	0.756
	PL	not computed			0.869	1.036	0.664	0.693	0.474	0.838
	AL	0.452	0.493	0.523	0.434	0.300	0.784	0.434	0.210	0.867
SE	FULL	0.247	0.179	0.359	0.279	0.145	0.430	0.317	0.128	0.549
	CC	0.377	0.259	0.518	0.447	0.182	0.612	0.492	0.155	0.725
	PL	not computed			0.838	0.772	0.620	0.657	0.417	0.856
	AL	0.412	0.436	0.502	0.405	0.270	0.711	0.413	0.193	0.805
CP	FULL	0.953	0.946	0.946	0.952	0.945	0.941	0.951	0.955	0.951
	CC	0.506	0.780	0.957	0.693	0.898	0.941	0.774	0.944	0.922
	PL	not computed			0.956	0.913	0.944	0.937	0.928	0.943
	AL	0.971	0.959	0.963	0.955	0.944	0.943	0.945	0.943	0.948

BIAS: bias of the estimator; SD: standard deviation; SE: estimated standard deviation;
CP: coverage probability of 95% confidence interval
FULL: full data; CC: complete case; PL: pseudo likelihood; AL: proposed adjusted likelihood

Comparison to MLE

We then considered the following case (B):
(B) $Y \mid U, Z \sim N\left(1+U+\beta_{z 1} Z_{1}+\beta_{z 2} Z_{2}, 1\right)$ with univariate U and two-dimensional $Z=\left(Z_{1}, Z_{2}\right)$,
$U \mid Z \sim N\left(2+Z_{1}-2 Z_{2}^{2}, 1\right), Z_{1}$ and Z_{2} are independently $\sim N(1,1)$, and $P(R=1 \mid Y, U)=\Phi(-2-U+|Y|)$.

We considered $N=500$ and $\beta_{z}=\left(\beta_{z 1}, \beta_{z 2}\right)=(0,0)$ or $(1,-2)$. The percentages of complete data were 50% and 60%, respectively.

We further consider some methods based on maximum likelihood estimation: MLE-C: MLE with a correct propensity model; MLE-W: MLE with a wrong propensity model; MLE-MAR: MLE assuming missing at random.

Simulation results for case (B)

	method	parameter							
		$\beta_{c}=1$	$\beta_{u}=1$	$\beta_{z 1}=0$	$\beta_{z 2}=0$	$\beta_{c}=1$	$\beta_{u}=1$	$\beta_{z 1}=1$	$\beta_{z 2}=-2$
BIAS	FUILL	0.002	0.001	0.000	0.000	0.006	0.000	-0.002	-0.003
	CC	0.543	0.018	0.059	-0.186	0.207	0.014	0.027	-0.056
	PL	not computed				0.004	-0.002	0.003	-0.005
	AL	0.008	0.001	0.000	0.000	0.008	0.000	-0.002	-0.005
	MLE-C	-0.001	0.001	0.000	0.000	0.006	0.000	-0.002	-0.004
	MLE-W	-0.066	-0.006	0.026	-0.012	-0.123	-0.023	0.038	-0.061
	MLE-MAR	0.311	0.018	0.014	-0.054	0.165	0.017	-0.012	0.006
SD	FULL	0.086	0.015	0.050	0.079	0.085	0.015	0.048	0.078
	CC	0.151	0.024	0.069	0.132	0.113	0.019	0.059	0.090
	PL	not computed				0.125	0.025	0.071	0.112
	AL	0.131	0.022	0.069	0.115	0.119	0.023	0.065	0.110
	MLE-C	0.104	0.018	0.058	0.089	0.097	0.017	0.053	0.082
	MLE-W	0.111	0.018	0.059	0.091	0.099	0.018	0.053	0.086
	MLE-MAR	0.106	0.018	0.059	0.092	0.096	0.017	0.054	0.082
SE	FULL	0.084	0.015	0.047	0.076	0.084	0.015	0.048	0.075
	CC	0.138	0.020	0.068	0.112	0.109	0.018	0.059	0.086
	PL	not computed				0.118	0.023	0.070	0.101
	AL	0.129	0.022	0.066	0.109	0.119	0.023	0.063	0.109
	MLE-C	0.104	0.017	0.055	0.085	0.094	0.017	0.052	0.079
	MLE-W	0.111	0.018	0.056	0.087	0.098	0.018	0.053	0.083
	MLE-MAR	0.105	0.018	0.057	0.088	0.094	0.017	0.053	0.079
CP	FULL	0.946	0.950	0.942	0.934	0.946	0.955	0.948	0.935
	CC	0.014	0.786	0.862	0.614	0.523	0.883	0.930	0.890
	PL	not computed				0.929	0.916	0.938	0.922
	AL	0.942	0.944	0.936	0.942	0.948	0.941	0.930	0.944
	MLE-C	0.954	0.942	0.938	0.912	0.943	0.939	0.935	0.929
	MLE-W	0.884	0.934	0.910	0.918	0.744	0.735	0.887	0.863
	MLE-MAR	0.150	0.794	0.932	0.892	0.574	0.826	0.931	0.934

NHANES DATA ANALYSIS

- We analyzed a data set from the National Health and Nutrition Examination Survey (NHANES 2005), which is designed to assess the health and nutritional status of adults and children in the United States.
- Y : indicator of hypertension
- X: age, gender, dxa: body fat measured by Dual-energy x-ray absorptiometry, bmi: body mass index
$P(Y=1 \mid d x a$, age, gender,$b m i)=\operatorname{logit}\left\{\beta_{1}+\beta_{2} d x a+\beta_{3}\right.$ age $\left.+\beta_{4} g e n d e r\right\}$.
- $U_{1}: d x a$
- Consider five options of $Z=a g e, Z=b m i$, $Z=($ age, gender $), Z=($ age, $b m i)$, and $Z=($ gender,$b m i)$.
- U_{2} : components of (age, gender,$\left.b m i\right)$ that are not in Z.

NHANES DATA ANALYSIS RESULTS

effect	method	instrument Z	estimate	standard error	p-value
intercept	AL	age	-5.5091	0.6834	0.000
		age,gender	-5.5269	0.6644	0.000
		age,bmi	-5.4321	0.6844	0.000
		bmi	-5.4511	0.6251	0.000
		gender, bmi	-5.5045	0.6127	0.000
	PL	age	-5.9139	5.2883	0.263
		age, gender	-2.8827	7.8250	0.713
		age,bmi	-0.8004	8.2188	0.922
		gender,bmi	-12.236	272.92	0.964
			-5.3175	0.7156	0.000
	MLE-MAR		-5.0807	0.6044	0.000
dxa	AL	age	0.0394	0.0150	0.009
		age, gender	0.0347	0.0125	0.006
		age,bmi	0.0314	0.0102	0.002
		bmi	0.0313	0.0117	0.007
		gender,bmi	0.0333	0.0117	0.004
	PL	age	0.0003	0.0261	0.992
		age, gender	-0.0571	0.1802	0.751
		age,bmi	-0.0999	0.2147	0.642
		gender, bmi	0.0030	5.9060	0.999
	CC MLE-MAR		0.0076	0.0126	0.549
			0.0223	0.0102	0.028

NHANES DATA ANALYSIS RESULTS

effect	method	instrument Z	estimate	standard error	p -value
age	AL	age	0.0478	0.0094	0.000
		age,gender	0.0521	0.0099	0.000
		age,bmi	0.0530	0.0088	0.000
		bmi	0.0534	0.0076	0.000
		gender, bmi	0.0528	0.0081	0.000
	PL	age	0.0702	0.0098	*
		age,gender	0.0707	0.0125	0.000
		age,bmi	0.0676	0.0139	*
		gender, bmi	0.0146	6.6283	0.998
	CC		0.0674	0.0100	0.000
	MLE-MAR		0.0538	0.0080	0.000
gender	AL	age	0.4064	0.2359	0.085
		age,gender	0.3785	0.1890	0.045
		age,bmi	0.2963	0.1755	0.091
		bmi	0.2957	0.1872	0.114
		gender, bmi	0.3352	0.1922	0.081
	PL	age	0.3122	0.7247	0.667
		age,gender	-0.0370	0.3754	0.992
		age,bmi	-1.4205	3.6459	0.697
		gender, bmi	-0.1819	0.2298	
	CC		0.0593	0.2094	0.777
	MLE-MAR		0.1821	0.1780	0.306

[^0]
Concluding Remarks

- We propose a novel approach to handle generalized linear models with nonignorable missing covariate data without any parametric model on the propensity.
- The pseudo likelihood method only works when an appropriate instrument is available. Our proposed method also needs to specify an instrument but is more flexible in choosing it.
- The proposed method is more stable and usually more efficient than the pseudo likelihood method.
- The proposed method needs a correct parametric model on $p(U \mid Z, \gamma)$. It is almost unavoidable since we put no parametric assumption on the propensity.

The End

Thank you.

Questions or Comments?

[^0]: *not available

