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Introduction and Notation
i %:1=1..M, ] =1..N;} - finite population measurements
assumed to follow the two level population model:
Vi | XU ~ £y 1%,u0), 1=1..M, j=1..N,
u’ ~ FU); E(uw) =0, V() =ol.
y; - target study variable

x; = (X;...X;) - covariates known for entire population.

I\Ii
Target: Estimate small area means Y, = Ni‘lz y;» based on
j=1

the two-stage sample.



Two-stage Sampling Scheme:

Select m areas with inclusion probabilities 7z, =Pr(ies),
Sample n. units from selected cluster | with probabilities
mwy =Pr(Jes;|i€s).

I

w, =1/7, w; =1/ z;; — sampling weights.

|..— sample indicators,

i ij

Unit non-response: R; — unit response Indicators,

R={(,j):1;=11; =1LR, =1};

] IJ

R*={(i,j): 1, =11; =L R; =0}. (No area non-response).

] IJ



Observed data

It Is assumed that the response occurs independently

between units.

The observed sample of respondents can be viewed
therefore as the result of a two-phase sampling process
where In the first phase the sample is selected from the
population with known inclusion probabilities, and in the
second phase the sample is ‘self selected” with unknown

response probabilities (Sarndal and Swensson, 1987).



Model for observed data

Under our sampling scheme and response, the observed
data follow the two level respondents’ model:

Vi 1% U~ T (Y 15,0 = £ (y; 1%;,u, G, ) €R),

u ~ f(ulies), E(ulies)=0, where u =u’-E(U |ies).
fo (Vi 1%;,U;) = T(y; | %;,U7 ) (population model)

Since the model refers to the observed data, it can be

estimated and tested by classical SAE methods.



Let p(y;. x;) =Prl(l, 1) e Ry, X;.1 €8, Jes].

If p(y;,X;) were known, the sample of respondents could be

considered as a two-stage sample from the finite population

with known selection probabilities 7z; and 7z;; =7 ; p(V;;, %;)-



Also, iIf known, the response probabilities could be used
for imputation within the selected areas via the relationship
between the sample and sample-complement
distributions (Sverchkov & Pfeffermann, 2004);

FQy; 160,01, j) eRY) =

[p_l(yU‘ ’ Xij) —1]f (yij | Xij’ui’(i1 ])eR)
E{[p ™ (%) — 21 %0, (. j) R}

(1) refers to the model for the observed data and therefore

(1)

can be estimated by classical SAE methods.



Estimation of response probabilities
Assume a parametric model for the response probabilities
P(Yy, %3 7) =Prl(, J) e R|y;, X, 1 €58, J €s;;7] and suppose that
p Is differentiable with respect to the (vector) parameter y.

If the missing data were observed, y could be estimated
by solving the equations:

0= Z dlog p(yij1xij;7/)+ Z dlog[1l- p(yij,xij;y)].

(2)
(i,j)eR Oy (i,j)eR° Oy

Denote the observed data by
O ={yij,72'j|i,72'i,ni,(i, ]))eR; x,,k=1..M, I =1..N. }.



Missing Information Principle: since the outcome

values are missing for (i, j)eR®, we propose to solve

Instead,

oY dlog p(y;. X;:7) .y olog[l— p(y,,%;:7)]

110} =
(i,j)eR oy (i,j)eR® Oy
z dlog p(yij’xij;V)_I_
(i,j)eR oy
olog[l- p(y.,X.: o by (1)
S g g[1- p(y;. %; 7/)]|O,(I,j)€RC}y=

(i,])eR° oy



Z dlog p(yij,xij;7/)
_|_

(i,])eR oy
Ol — LXK o
(0D (3, %) -0 PGy <Ry
Z E 1 g — O (=0 (3)
(i,j)eR® E{[p (yij’Xij;y)_]-”Xij’ui’(llJ)ER}

(we assume f(y; |O,u;,(1,J) eR) = T(y; [x;,u,(1,])eR))
The expectations in (3) refer to the model for the observed

data and therefore can be estimated by classical SAE

methods.

The parameter ¥ can be estimated by solving (3).
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Note: 1If p(y;,X;;7) Is a function of x; and y only, (missing

data are MAR), (3) reduces to the common log-likelihood

equations,

(i,J)eR oy (i,j)eR" oy

5 olog p(Xij;y/)+ 5 olog[l- p(xi,-;y)]. (4)
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Prediction of small area means (P-S, JASA 2007)
MSE(Y;) = EI(Y, -¥)? [0, 1)) =[¥, = E(%, | O, 1} +V (%, | O, 1)
\ﬁ =E(Y,|O,1,) - Optimal small area predictor for area i.

Optimal small-area predictors for selected areas:

A . N;
Yi:E(Yi|O’Ii:1):Ni_1[ Z Yi T Z E(yik|o’|i:1)]g
ji(i,j)eR k=1keR

N, E[(ﬁk_h1 ~1) Vi [ %, u;, (1K) € R]

k=1,kezR E[(ﬁ'k_“1 —]_) | X, U, (I, k) c R] |O}) =

12



Ni_l( Z Yi +

1,(1,])eR

& ELIWY i) — 1Y | %0 U (LK) € RE | vy
E ! oY (5
k=;k¢R { E{IW(Yy o Xi) =1 X, ;. (i, k) € R} oD )

i = TPV X 7)) and Wy, %) = E[Z5 | Vi %, (i,k) €RI.
(Refers to observed data and can be estimated by

regression or non-parametrically).
Expectations in (5) are over the model for the observed

data that was estimated before.
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Optimal small-area predictors for unselected areas:

YLi = E(Y_ilO’ I, =0) = Ni_l[iE(yik |0, 1; =0)]

|12

L Z[(”fl - DK, (%)]
N kZ:; Z (7T|_1_1)

les

K (X) = E(y, [ X = X%,(l,k) eU) =

E{E[W(YW’XW)YW | X = X, U;,(1,k) € R] 10}
E[fw(y,, %) [ X, =x,u;,(1Lk) eR]

(6)

(6) depends on w(y,,X,) and the model for the observed

data.
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Example: Loqgistic Mixed Model with Loqgistic Response

Let y; ~ Bernoulli.

Working model for observed data (can be identified and

tested):
exp(f, + BX; +U;)
L+exp(B, + A% +U,)’

Pr(yij =1] Xij’ui’(i’ ])eR)= py(xij’ui) =
u. ~ N(0,057).
Working response model (has to be assumed):

_Exp(yo + 7% +75Y5)
L+exp(y, + 7% +7,Y;)

p(yij’Xij’y)
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The first expectation in (3) can be written as

olog[l— X o
BT (yy x57) 11! g(yy 5Py G §) e Ry =

olog[1- p(l, Xij 7)) N

Oy
dlog[1- p(0, Xij;7/)]

dy

e Similarly for the second expectation in (3).
p,(%;) and u; easily estimated by SAS PROC NLMIX
and (3) is solved for ¥ by SAS PROC NLIN.
E[(W(yij ’ Xij) _1) yij | Xij’ui’(i’ J) € R] = py(xij’ui)(w(]" Xij) _1)-

e Similarly for other expectations in (5) and (6).

py(Xij ’ ui)[p_l(]-’ Xij;7/) -1]

[1_ py(Xij’ui)][p_l(O1 Xij;7/) _1]
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Simulation Study
Step 1: Generate finite population from Population model:
y; ~ Bernoulli,

exp(—1+x; +u;)
1+exp(—1+ X, +u;’)’

Pr(y; =11%;,u7, @i, )) eR) = p,(x;,u7) =
u’ ~N(0,1).

M =300, N, =int[1000exp{min[2.5,max(-2,5,u; )]/5}],
x; ~Uniform(0,2).

Group areas into 3 sets,
G1={i=1,..,100}, G2={i=101,..,200}, G3={i=201,..,300}.
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Step 2: Sampling scheme:
Select m=150 areas by systematic PPS proportional to area

size N. (informative sampling).

Select 20 units from each selected area in G1,
40 units from each selected area in G2,
60 units from each selected area in G3,

by PPS sampling proportional to z; =.5+X; +3y;

(informative sampling).
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Step 3: Response:
Each selected unit  responds  with probability
eXp(_-5Xij + yij)

G Xi' : = .
P(Yi%5.7) 1+exp(—5x; + V)

Step 4: Estimate P (x;,0)=Pr(y; =1|x,,0,(i, j) €R)
assuming Logistic Mixed Model for the respondents,

applying PROC NLMIX with default options (Empirical
Bayes).
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Step 5: Assume working response model,
exp(y, + 71X +72Yi)
1+exp(y, + Y1 X + 7, yij)
(3) and estimate y by use of PROC NLIN.

. Substitute p, (x;,0;) Into

p(yij1xij’7/) = i
Estimate w(y;,X;) = E[7;; | Vi, X;. (i, j) € R] as follows:

E[ﬁ-ﬂillyij’xij’(i’j)ER]: p(Yij’Xij)E[ﬂ'ﬂillYij’xij’(i’j)ER];

—nle/ZzIJ (N /Zzu]:ﬂ —ﬂlN—<z
N, n,

~Constant
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Fit the model z; i=0,(Y;,%;) (linear model in our study),
estimate the parameters of this model and then estimate,

W(yij’xij) = Ié[ﬁ'ﬂil | yij’Xij’(i1 )) eR]=
] -1
|:N_i_gd(yij’xij):| PCY;: %3 7)-

Calculate ratio of expectations in (5),

E[(W(ylk’ |k) l)ylklxlk’ul’(l k)ER]l }
E[(W(y|k’ |k) 1)|X|k’u|’(| k)ER]

py (%, G) = E{
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Estimators considered (selected areas):

- N;
1. YiIgn :Ni_l{ Z Yi T Z py(xij)}
i(i,j)eR k=1,keR
2.V, = D myyyl D my
1.(,1)eR j,(1,))eR
B.Y, MR = N W)Y L D WO, W) = p (X, AT
1,(,1)eR 1,(,])eR
4. = > WY )Yy L D WY %),
J,(i,])eR J,(i,j)eR
A Ni c A
O. YineW: Ni_l{ Z Yi T ps (Xij’ui)}'
i(i,j)eR k=1keR

Repeat Steps 1-5 independently 1000 times.
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Statistics considered:

D, (Y, - V,)
1000

D.

r=1 If

>SD, (Y, -V, )?
RMSE, =

1000
r=1 Ir

Blas, =

D. =1if area i selected on r-th simulation.
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Biases: Y9 - black, Y," M Y. " MR _blue,

Y_iH,neW_ red, Y_inew _ green

YA A v il
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RMSE’s: Y. - black, Y HVA®

Y "o red, Y,"" - green

= H MAR
Yi

- blue,
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