Outline	Background	Model	Priors	Analysis of QUATRO	Conclusions
	Pattern M	livtura N	Indels for	the Analysis of	2
	Pattern M	lixture M	lodels fo	r the Analysis of	:

Repeated Attempt Designs

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

NISS, November 2015

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

Outline	Model	Priors	Analysis of QUATRO	Conclusions

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

Outline	Background	Model	Priors	Analysis of QUATRO	Conclusions
~ ·					
Setting	r and Prohl	em			

- follow-up studies where multiple attempts are made to collect a measurement after baseline (called *repeated attempt designs*)
- often reasonable to view information about repeated attempts as representing a 'continuum of resistance' to providing data; repeated attempt models (RAMs) exploit this feature
- current literature focuses on selection model factorizations (Alho, 1990; Wood et al., 2006; Jackson et al., 2012; Qin and Follman, 2014); refer to as RAM-SM
 - problem: not allow sensitivity parameters (and sensitivity analysis) which is an essential component of inference for missing data

- QUATRO trial was a single-blind, multi-center randomized controlled trial of the effectiveness of adherence therapy for participants with schizophrenia.
- trial included 409 participants in four centers
- randomized to receive either adherence therapy (intervention) or health education (control).
- assessments were undertaken at baseline and at a follow-up of 52 weeks.

Outline	Background	Model	Priors	Analysis of QUATRO	Conclusions
Motiva	ting trial II				

- Objective: Assess the impact of adherence therapy on self-reported quality-of-life of people with severe mental illness
- investigators made multiple attempts to collect the quality-of-life outcome at '52 weeks' (as many as nine attempts) but there were still individuals whose response could not be collected.
 - concern that those with less favorable outcomes may be less likely to provide data

Outline	Background	Model	Priors	Analysis of QUATRO	Conclusions
Notatior	ı				

- Y: the outcome of interest (here, self reported QoL at 52 weeks)
- X: the set of baseline covariates (here, baseline QoL and center)
- R: the number of attempts until the outcome is successfully collected
 - assume up to *K* attempts to collect (*R* = *K* + 1 corresponds to the outcome not being collected after the maximum number of attempts)
- Z: randomized intervention (here, Z = 1 is adherence therapy)
- [Y|X, Z, R = K + 1]: (unidentified) extrapolation distribution

A (10) > A (10) > A (10)

The quantity of interest is the treatment effect on the mean outcome, unconditional on X and R,

$$\theta = E(Y|Z=1) - E(Y|Z=0).$$

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

Outline		Model	Priors	Analysis of QUATRO	Conclusions
Model	$- RAM_PM$	1 N / I			

- use a pattern mixture formulation of the RAM (RAM-PMM); patterns are defined by the values of R.
- For pattern R = k (k = 1,..., K + 1) and arm, Z = z
 (z = 0, 1), we consider the following model for the conditional distribution of Y

$$Y|Z = z, X = x, R = k \sim N\{\mu(z, x, k), \sigma^2(z, x, k)\}$$

 allows the mean and variance of the outcome data to depend on covariates and patterns

Pattern Mixture Models for the Analysis of Repeated Attempt Designs

Outline		Model	Priors	Analysis of QUATRO	Conclusions
Model	- RAM-PN				

In our modeling, we assume

$$\mu(z, x, k) = \alpha_z^{(k)} + \beta_1 x, k \le K$$

and a constant variance, $\sigma^2(z, x, k) = \sigma^2$.

• estimating the treatment effect, θ also requires identifying $\mu(z, x, K + 1)$, i.e., the mean of the *extrapolation distribution* (do via priors in what follows)

Madal				
Outline	Model	Priors	Analysis of QUATRO	Conclusions
	N 4 - 1 - 1			

Model - RAM-PMM III

 also need a model for the conditional distribution of the pattern indicator,

$$\operatorname{logit}\{\pi_{kz}(x)\} = \lambda_{0k} + \lambda_z z + \lambda_x x,$$

where $\pi_{kz}(x) = P(R = k | R \ge k, Z = z, X = x)$.

- and a model for [X|Z] = [X] (by randomization)
- factorization respects the fact, which is sometimes overlooked in pattern mixture models, that the distribution of the baseline outcome (which is included in X here) does not depend on Z.

Outline		Model	Priors	Analysis of QUATRO	Conclusions
N 1 1 1					
IVIODEL	- KAM-PN				

■ for the RAM-PMM,

$$\theta = E[Y|Z = 1] - E[Y|Z = 0] = \int \int \mu(1, x, k) dF(k|x, Z = 1) dF(x) dF(k|x, Z = 0) dF(x)$$

-
$$\int \int \mu(0, x, k) dF(k|x, Z = 0) dF(x) dF(k|x, Z = 0) dF(x)$$

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

3

æ

・ロッ ・回 ・ ・ ヨッ ・

Outline	Model	Priors	Analysis of QUATRO	Conclusions
Priors I				

- identified parameters, ({α^(k)_z : k = 1,..., K}, β₁, σ, λ), are given diffuse priors
- Unidentified parameters: $\alpha_z^{(K+1)}$ (sensitivity parameters)
 - exploit the repeated attempt design and assume a functional relationship between the intercept parameters for the observed outcomes, $\{\alpha_z^{(k)} : k = 1, \dots, K\}$ and the number of attempts (k) to identify these parameters
 - in particular, specify a prior for $\alpha_z^{(K+1)}$ conditional on $\bar{\alpha}_z^{(K)} = (\alpha_z^{(1)}, \dots, \alpha_z^{(K)})^T$, i.e. $p(\alpha_z^{(K+1)} | \bar{\alpha}_z^{(K)})$.

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

Outline	Model	Priors	Analysis of QUATRO	Conclusions
Priors II				

 center this prior at its prediction based on implicitly fitting the regression

$$\alpha_z^{(k)} = h_z(k; \boldsymbol{\zeta}) + \epsilon_{zk}, \quad k = 1, \dots, K.$$

• here, set $h_z(k; \zeta) = \zeta_{0z} + \zeta_{1z}k$, k = 1, ..., K and compute the least squares estimate of (ζ_{0z}, ζ_{1z}) to obtain

$$\alpha_z^{(K+1)} | \bar{\alpha}_z^{(K)} \sim N\{\hat{\zeta}_{0z} + \hat{\zeta}_{1z}(K+C), \tau^2\}.$$

where $\hat{\zeta}_{jz}$ are functions of $\{\alpha_z^{(1)}, \ldots, \alpha_z^{(K)}\}$.

 We assume that the intercepts α^(k)_z follow a linear trend over patterns that provide outcome data (recall continuum of resistance)

UT-Austin, UF, MRC Biostat-Cambridge (UK)

Pattern Mixture Models for the Analysis of Repeated Attempt Designs

Outline		Model	Priors	Analysis of QUATRO	Conclusions
Priors I	II				

$$\alpha_z^{(K+1)}|\bar{\alpha}_z^{(K)} \sim N\{\hat{\zeta}_{0z} + \hat{\zeta}_{1z}(K+C), \tau^2\}.$$

 \blacksquare sensitivity parameters are C and τ

- C represents how far we should extrapolate the linear trend to describe the missing outcome data (i.e., how resistant are those that have not provided outcome data by the Kth attempt)
- τ represents our uncertainty about the precision of the extrapolation.
- This approach does not put any modelling restrictions on the observed data, but still attempts to use information in an intuitive manner from the repeated attempt design.

Outline		Model	Priors	Analysis of QUATRO	Conclusions
Analys	is of QUAT	RO I			

Y observed after k attempts						Y	´ not obs			
k	1	2	3	4	5	6	7	8	9	
Control	77(42.4)	94(41.3)	7(38.7)	7(34.7)	3(34.2)	2(32.9)	1(40.7)	1(62.98)	0(NA)	13
Treatme	nt73(40.7)	90(40.2)	7(38.6)	1(45.7)	3(35.0)	0(NA)	0(NA)	1(30.3)	0(NA)	29

- Up to 9 attempts were made to collect the 52 week outcome for participants.
- sparsity of subjects with 3 to 9 attempts on each arm; merged those subjects into one pattern

Outline	Model	Priors	Analysis of QUATRO	Conclusions
A				

Analysis of QUATRO II

		Y mi	ssing		
R	1	2	3	<4	4
Control ($n = 205$)	77(42.4)	94(41.3)	21(37.4)	8	5
Treatment $(n = 204)$	73(40.7)	90(40.2)	12(37.6)	20	9

 \blacksquare an overall decreasing outcome mean with # of attempts

• the number of attempts, R takes values in $\{1, 2, 3, 4\}$ (i.e., K = 3).

- R = 4 corresponds to the pattern that Y is not observed even after all attempts.
- Individuals with Y missing, but fewer than three attempts, have R censored; 8 and 20 subjects censored respectively on the two arms
- Covariates X are indicators of the four centers and the baseline response.

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

Outline		Model	Priors	Analysis of QUATRO	Conclusions
Analys	sis of QUAT	RO III			

- vary C between
 - 0 (missing subjects are comparable to the last responders) and
 - 3 (missing subjects differ from the last responders as much as the last responders differ from the first responders)
- For all values of C considered, we observed a negative effect of adherence therapy on self-reported 52 week QoL

Outline	Model	Priors	Analysis of QUATRO	Conclusions

Analysis of QUATRO IV

С	parameter	mean	95% CI
0	θ	-0.6	(-2.9, 1.7)
	E(Y Z=0)	40.9	(39.2, 42.5)
	E(Y Z=1)	40.2	(38.4, 42.1)
1	θ	-0.7	(-3.1, 1.8)
	E(Y Z=0)	40.7	(39.1, 42.4)
	E(Y Z=1)	40.0	(38.0, 42.1)
2	θ	-0.7	(-3.5, 2.0)
	E(Y Z=0)	40.5	(38.8, 42.3)
	E(Y Z=1)	39.8	(37.4, 42.1)
3	θ	-0.8	(-3.8, 2.2)
	E(Y Z=0)	40.4	(38.5, 42.2)
	E(Y Z=1)	39.6	(36.9, 42.2)

M. J. Daniels, Wei Feng, Dan Jackson, Ian White

UT-Austin, UF, MRC Biostat-Cambridge (UK)

э

日本 くまとう

$$\alpha_z^{(K+1)}|\bar{\alpha}_z^{(K)} \sim N\{\hat{\zeta}_{0z} + \hat{\zeta}_{1z}(K+C), \tau^2\}.$$

- the slope of the priors, ζ_{10} and ζ_{11} are both negative, with posterior means (95% credible intervals) of -1.9 (-4.8, 0.97) and -1.7 (-5.2, 1.7), respectively
- the slope for those on adherence therapy was slightly more extreme (i.e., doing worse as the number of attempts increases)

Outline	Background	Model	Priors	Analysis of QUATRO	Conclusions
Conclu	isions I				

- We have proposed a pattern mixture model for a repeated attempt design that allows sensitivity parameters
- recommend consideration of the RAM-PMM in general as it
 - allows for sensitivity analysis, unlike the RAM-SM
 - handles the missing data similar to the RAM-SM in terms of a continuum of resistance (not shown here)
 - does not have the issue of a potential large impact on inferences of modeling choices in the missing data mechanism

Outline		Model	Priors	Analysis of QUATRO	Conclusions
Conclu	isions II				

- In the QUATRO study, we found minimal evidence of a significant effect of the intervention (adherence therapy) on 52 week self-reported QoL with the models considered.
- RAM-SM for QUATRO corresponded to an unreasonably extreme value of C suggesting that very extreme values of the QoL were needed to make the full data response look normal; this particular flaw can be avoided to some extent using semiparametric approaches (e.g., Qin and Follman, 2014).

Outline	Background	Model	Priors	Analysis of QUATRO	Conclusions
Extensic	ons				

- more complex forms for the mean and variance functions, $\mu(z, x, k)$ and $\sigma^2(z, x, k)$ and less parametric specification in general (e.g., BNP)
- For repeated attempt studies with sparse patterns, adapt the ideas from Roy (2003) and Roy and Daniels (2008) to combine/collapse patterns in a data-dependent way.
- longitudinal extension

→ < = →