Empirical Likelihood Approach to Non-Response

Moshe Feder & Danny Pfeffermann

Southampton Statistical Sciences Research Institute (S₃RI) University of Southampton

m.feder@soton.ac.uk; moshe.feder@gmail.com

BLS, 12 Nov 2015

Out	line	of	Tal	k
Cut			i ui	

Informative Non Response

S₃RI

EL

Estimating equations

Estimation

Simulatio Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

► Informative non-response

3RI	Outline of Talk
	► Informative non-

- Informative Non Response
- EL
- Estimating equations
- Estimation
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

· Informative non-response and the respondents distribution

s₃RI Outline of Talk

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response

Informative Non Response

S₃RI

EL

Estimating equations

Estimation

Simulation Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response

Informative Non Response

- EL
- Estimating
- Estimatior
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model

Informative Non Response

- EL
- Estimating
- equations
- Estimation
- Simulatio Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- ► Estimation

Informative Non Response

- EL
- Estimating
- equations
- Estimatior
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up & results

Informative Non Response

- EL
- Estimating
- equations
- Estimatior
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up & results
- Testing the Model

Informative Non Response

- EL
- Estimating
- equations
- Estimatior
- Simulation
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up & results
- Testing the Model
- Role of the constraints

Informative Non Response

- EL
- Estimating
- equations
- Estimatior
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up & results
- Testing the Model
- Role of the constraints
- ► Imputation

Informative Non Response

S₃RI

- EL
- Estimating
- equations
- Estimatior
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up & results
- Testing the Model
- Role of the constraints
- ► Imputation

NOTE:

► Both informative sampling & informative non-response

Informative Non Response

S₃RI

- EL
- Estimating
- equations
- Estimatior
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up & results
- Testing the Model
- Role of the constraints
- ► Imputation

NOTE:

- ► Both informative sampling & informative non-response
- ▶ Variables observed only for responding units + population means

Informative Non-Response S₃RI Informative Informative Non Response Non Response

► Informative nonresponse (INR): Response propensity depends on the variable of interest

Informative Non-Response

Informative Non Response

S₃RI

EL

Estimating equations

Estimation

Simulatior Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

Informative Non Response

 ► Informative nonresponse (INR): Response propensity depends on the variable of interest Pr(R = 1|y, z) ≠ Pr(R = 1|z) (i.e., response propensity *not* conditionally independent of y given z)

S₃**RI** EL-Based Methods for Informative Non-Response

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

► Qin-Leung-Shao (2002)

- ► Fang-Hong-Shao (2009)
- Maximization of constrained conditional empirical likelihood: $f_{\mathcal{R}}(y|x) \stackrel{\text{def}}{=} f(y|x, R = 1)$ — our proposed method

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response	 Target model f(y x) (holding in the population) for example

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating equations	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0,
Estimation	
Simulation Results	
Testing	
Role of Constraints	
Imputation	
Internet Surveys	
27 May 2015	

_

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating equations	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0, logistic regression Pr(y = 1) = (1 + exp((−β'x)))⁻¹,
Estimation	
Simulation Results	
Testing	
Role of Constraints	
Imputation	
Internet Surveys	
27 May 2015	

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating equations Estimation Simulation	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0, logistic regression Pr(y = 1) = (1 + exp((−β'x)))⁻¹, or even non-parametric model (example to come)
Results Testing	
Role of Constraints	
Imputation	
Internet Surveys	

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0, logistic regression Pr(y = 1) = (1 + exp((−β'x)))⁻¹,
	- or even non-parametric model (example to come) $T_{i} = C_{i}$
	• The Sample model $f_s(y x) \stackrel{\text{def}}{=} f(y x, S = 1)$, and

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating equations Estimation	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0, logistic regression Pr(y = 1) = (1 + exp((-β'x)))^{-1}, or even non-parametric model (example to come) The Sample model f_s(y x) ^{def} = f(y x, S = 1), and
	▶ the respondents' model $f_r(y x) \stackrel{\text{def}}{=} f(y x, S = 1, R = 1)$

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0, logistic regression Pr(y = 1) = (1 + exp((−β'x)))⁻¹, or even non-parametric model (example to come)
	► The Sample model $f_s(y x) \stackrel{\text{def}}{=} f(y x, S = 1)$, and ► the respondents' model $f_r(y x) \stackrel{\text{def}}{=} f(y x, S = 1, R = 1)$
	• are usually <i>different</i> from the population model $f(y x)$

S ₃ RI	The Sample and the Respondents Distributions
Informative Non Response EL Estimating equations Estimation Simulation Results Testing Role of Constraints Imputation Internet Surveys	 Target model f(y x) (holding in the population) for example linear regression: y = β'x + ε, E(ε) = 0, logistic regression Pr(y = 1) = (1 + exp((-β'x)))^{-1}, or even non-parametric model (example to come) The Sample model f_s(y x) ^{def}/₌ f(y x, S = 1), and the respondents' model f_r(y x) ^{def}/₌ f(y x, S = 1, R = 1) are usually <i>different</i> from the population model f(y x) as we'll see next
	\blacktriangleright are usually <i>different</i> from the population model $f(y x)$ as we'll

s₃RI By Bayes Rule

Informative Non Response

Estimating equations

Estimatio

Simulatio Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

The Sample Distribution

$$f_s(y|x) = \frac{\Pr(S = 1|y, x)}{\Pr(S = 1|x)} \cdot f(y|x)$$

s₃RI By Bayes Rule

Informative Non Response

Estimating equations

Estimatio

Simulatioı Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

The Sample Distribution

$$f_s(y|x) = \frac{\mathsf{Pr}(S=1|y,x)}{\mathsf{Pr}(S=1|x)} \cdot f(y|x)$$

The Respondents Distribution

$$f_{r}(y|x) = \frac{\Pr(R = 1|y, x, S = 1) \Pr(S = 1|y, x)}{\Pr(R = 1|x, S = 1) \Pr(S = 1|x)} \cdot f(y|x)$$

s₃RI By Bayes Rule

Informative Non Response

Estimating equations

Simulation Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

The Sample Distribution

$$f_s(y|x) = \frac{\mathsf{Pr}(S=1|y,x)}{\mathsf{Pr}(S=1|x)} \cdot f(y|x)$$

The Respondents Distribution

$$\begin{split} f_{r}(y|x) &= \frac{\mathsf{Pr}(\mathsf{R}=1|y,x,S=1)\,\mathsf{Pr}(S=1|y,x)}{\mathsf{Pr}(\mathsf{R}=1|x,S=1)\,\mathsf{Pr}(S=1|x)} \cdot f(y|x) \\ &= \frac{\mathsf{Pr}(\mathsf{R}=1|y,x,S=1)}{\mathsf{Pr}(\mathsf{R}=1|x,S=1)} \cdot f_{s}(y|x) \end{split}$$

S ₃ RI	Dealing with informative sampling
Informative Non Response	The inclusion probability $\pi = \Pr(S = 1)$ and the sampling weight $w = 1/\pi$ may depend on both available and unavailable variables.
EL	
Estimating equations	
Estimation	
Simulation Results	
Testing	
Role of Constraints	
Imputation	
Internet Surveys	

s₃RI Dealing with informative sampling

Informative Non Response

EL

Estimating equations Estimation Simulation

i (courto

lesting

Role of

Constraint

Imputation

Internet

Surveys

•
$$\tau_i \stackrel{\text{def}}{=} \Pr(S_i = 1 | y_i, x_i) = E_p(S_i | y_i, x_i)$$

s₃RI Dealing with informative sampling

Informative Non Response

EL

Estimating equations

Estimatio

Simulation Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

The inclusion probability $\pi = \Pr(S = 1)$ and the sampling weight $w = 1/\pi$ may depend on both available and unavailable variables.

•
$$\tau_i \stackrel{\text{def}}{=} \Pr(S_i = 1 | y_i, x_i) = E_p(S_i | y_i, x_i)$$

 $=\mathsf{E}_{s}(\pi_{i}^{-1}|y_{i},\mathbf{x}_{i})^{-1}$ (Pfeffermann & Sverchkov 1999)

s₃RI Dealing with informative sampling

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulation Results
- Testing
- Role of
- Constraint
- Imputation
- Internet
- Surveys

The inclusion probability $\pi = \Pr(S = 1)$ and the sampling weight $w = 1/\pi$ may depend on both available and unavailable variables.

•
$$\tau_i \stackrel{\text{def}}{=} \Pr(S_i = 1 | y_i, x_i) = E_p(S_i | y_i, x_i)$$

$$\begin{split} &= \mathsf{E}_{s}(\pi_{i}^{-1}|\mathbf{y}_{i},\mathbf{x}_{i})^{-1} \text{ (Pfeffermann & Sverchkov 1999)} \\ &= \mathsf{E}_{s}(w_{i}|\mathbf{y}_{i},\mathbf{x}_{i})^{-1} \end{split}$$

S₃RI Dealing with informative sampling

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- $\tau_i \stackrel{\text{def}}{=} \Pr(S_i = 1 | y_i, x_i) = E_p(S_i | y_i, x_i)$ = $E_s(\pi_i^{-1} | y_i, x_i)^{-1}$ (Pfeffermann & Sverchkov 1999) = $E_s(w_i | y_i, x_i)^{-1}$
- \blacktriangleright So we can estimate $\mathsf{Pr}(S_{\mathfrak{i}}=1|y_{\mathfrak{i}},x_{\mathfrak{i}})$ from the sampling weights of the sampled units

S₃RI Dealing with informative sampling

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- $\tau_i \stackrel{\text{def}}{=} \Pr(S_i = 1 | y_i, x_i) = E_p(S_i | y_i, x_i)$
 - $= \mathsf{E}_{s}(\pi_{i}^{-1}|y_{i}, \mathbf{x}_{i})^{-1} (\mathsf{Pfeffermann} \& \mathsf{Sverchkov} 1999)$ = $\mathsf{E}_{s}(w_{i}|y_{i}, \mathbf{x}_{i})^{-1}$
- \blacktriangleright So we can estimate $\mathsf{Pr}(S_{\mathfrak{i}}=1|y_{\mathfrak{i}},x_{\mathfrak{i}})$ from the sampling weights of the sampled units
- \blacktriangleright $E_s(w_i|y_i, x_i)$ can be estimated by regressing w_i on (y_i, x_i)

S₃RI Dealing with informative sampling

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- $\tau_i \stackrel{\text{def}}{=} \Pr(S_i = 1 | y_i, x_i) = E_p(S_i | y_i, x_i)$
 - $$\begin{split} &= \mathsf{E}_s(\pi_i^{-1}|\mathbf{y}_i, \mathbf{x}_i)^{-1} \text{ (Pfeffermann & Sverchkov 1999)} \\ &= \mathsf{E}_s(w_i|\mathbf{y}_i, \mathbf{x}_i)^{-1} \end{split}$$
- \blacktriangleright So we can estimate $\mathsf{Pr}(S_{\mathfrak{i}}=1|y_{\mathfrak{i}},x_{\mathfrak{i}})$ from the sampling weights of the sampled units
- \blacktriangleright $E_s(w_i|y_i, x_i)$ can be estimated by regressing w_i on (y_i, x_i)
- In the simulation study, we obtained estimates of τ_i, by applying kernel regression of w_i on (y_i, x_i) and their interaction, using the function npreg from the R package np at its default setting

S ₃ RI	Dealing with informative non-response
Informative Non Response	In contrast with sampling, non-response is unplanned, and we don' have the analogue of weights

	Dealing	with in	formative	non-respons	se
--	---------	---------	-----------	-------------	----

Informative Non Response

S₃RI

equations Estimation Simulation

Results

Testing

Role of

Constraint

Imputation

Interne

Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...

So we need to do something about $\Pr(R_i = 1 | y_i, x_i, S_i = 1)$

Informative Non Response

S₃RI

Estimating equations Estimation Simulation

Nesuits

Testing

Role of

Constraint

Imputation

Internet

Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...

So we need to do something about $\mathsf{Pr}(R_{\mathfrak{i}}=1|y_{\mathfrak{i}},x_{\mathfrak{i}},S_{\mathfrak{i}}=1)$ model it:

$$\rho_{i} = \mathsf{Pr}(R_{i} = 1 | \boldsymbol{\nu}_{i}; \boldsymbol{\gamma}) = g(\boldsymbol{\nu}_{i}; \boldsymbol{\gamma})$$

Informative Non Response

S₃RI

Estimating equations Estimation Simulation

Testing

Role of

Constraints

Imputation

Internet

Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...

So we need to do something about $\mathsf{Pr}(R_{\mathfrak{i}}=1|y_{\mathfrak{i}},x_{\mathfrak{i}},S_{\mathfrak{i}}=1)$ model it:

$$p_i = \Pr(R_i = 1 | v_i; \gamma) = g(v_i; \gamma)$$

Informative non-response: $Pr(R_i = 1|y_i, x_i)$ (could be more variables affecting the response probability)

 $\rho_{i} = \rho(y_{i}, \boldsymbol{x}_{i}; \boldsymbol{\gamma})$

Informative Non Response

S₃RI

Estimating equations Estimation Simulation

Testing

Role of

Constraints

Imputation

Internet

Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...

So we need to do something about $\mathsf{Pr}(\mathsf{R}_i=1|y_i, x_i, S_i=1)$ model it:

$$p_i = \Pr(R_i = 1 | \boldsymbol{v}_i; \boldsymbol{\gamma}) = g(\boldsymbol{v}_i; \boldsymbol{\gamma})$$

Informative non-response: $Pr(R_i = 1|y_i, x_i)$ (could be more variables affecting the response probability)

 $\rho_{\texttt{i}} = \rho(y_{\texttt{i}}, x_{\texttt{i}}; \gamma)$

For example

$$\rho_{i} = \mathsf{logit}^{-1}(\gamma_{0} + \gamma_{x}x_{i} + \gamma_{y}y_{i})$$

Informative Non Response

S₃RI

Estimating equations Estimation Simulation

Testing

Role of

Constraints

Imputation

Internet

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...

So we need to do something about $\mathsf{Pr}(\mathsf{R}_{\mathfrak{i}}=1|y_{\mathfrak{i}}, x_{\mathfrak{i}}, S_{\mathfrak{i}}=1)$ model it:

$$p_i = \Pr(R_i = 1 | \boldsymbol{v}_i; \boldsymbol{\gamma}) = g(\boldsymbol{v}_i; \boldsymbol{\gamma})$$

Informative non-response: $Pr(R_i = 1|y_i, x_i)$ (could be more variables affecting the response probability)

$$\rho_{i} = \rho(y_{i}, \boldsymbol{x}_{i}; \boldsymbol{\gamma})$$

For example

$$\rho_{i} = \mathsf{logit}^{-1}(\gamma_{0} + \gamma_{x}x_{i} + \gamma_{y}y_{i})$$

We will address the issue of *testing* such models later on.

Basic Idea

Informative Non Response

El

equations Estimation Simulation

Testing

Role of

Constraint

Imputation

Internet

Surveys

• Observed data: y_1, \ldots, y_n

Informative Non Response

- El
- Estimating equations Estimation Simulation
- Results
- Testing
- Role of
- Constraint
- Imputation
- Internet
- Surveys

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population

Informative Non Response

- El
- Estimating equations Estimation
- Results
- Testing
- Role of
- Constraint
- Imputation
- Internet
- Surveys

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population
- Population frequencies: $p_i = Pr(y = y_i)$, $(\sum_i p_i = 1, p_i \ge 0)$

Informative Non Response

- Εl
- Estimating equations
- Estimatior
- Simulatioı Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population
- Population frequencies: $p_i = Pr(y = y_i)$, $(\sum_i p_i = 1, p_i \ge 0)$
- $\blacktriangleright \ y \sim \mathsf{Multinomial}(p_1, \dots, p_n)$

Informative Non Response

- El
- Estimating equations
- Estimatior
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population
- ▶ Population frequencies: $p_i = Pr(y = y_i)$, $(\sum_i p_i = 1, p_i \ge 0)$
- $\blacktriangleright \ y \sim \mathsf{Multinomial}(p_1, \dots, p_n)$
- ► Constraints on p₁,..., p_n may be imposed (estimating equations, using additional information).

Informative Non Response

- Εl
- Estimating equations
- Estimation
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population
- Population frequencies: $p_i = Pr(y = y_i)$, $(\sum_i p_i = 1, p_i \ge 0)$
- $y \sim Multinomial(p_1, \dots, p_n)$
- ► Constraints on p₁,..., p_n may be imposed (estimating equations, using additional information).
- Empirical likelihood: $\mathscr{L} = \prod_{i=1}^{n} p_i$

Informative Non Response

- Εl
- Estimating equations
- Estimation
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population
- ▶ Population frequencies: $p_i = Pr(y = y_i)$, $(\sum_i p_i = 1, p_i \ge 0)$
- $\blacktriangleright \ y \sim \mathsf{Multinomial}(p_1, \dots, p_n)$
- ► Constraints on p₁,..., p_n may be imposed (estimating equations, using additional information).
- Empirical likelihood: $\mathscr{L} = \prod_{i=1}^{n} p_i$
- The unconstrained maximum is at $p_1 = p_2 = \cdots = p_n = \frac{1}{n}$

Informative Non Response

- Εl
- Estimating equations
- Estimatior
- Simulatior Results
- Testing
- Role of
- Constraints
- Imputation
- Internet

- Observed data: y_1, \ldots, y_n
- Only observed values present in the population
- Population frequencies: $p_i = Pr(y = y_i)$, $(\sum_i p_i = 1, p_i \ge 0)$
- $\blacktriangleright \ y \sim \mathsf{Multinomial}(p_1, \dots, p_n)$
- Constraints on p₁,..., p_n may be imposed (estimating equations, using additional information).
- Empirical likelihood: $\mathscr{L} = \prod_{i=1}^{n} p_i$
- ► The unconstrained maximum is at p₁ = p₂ = ··· = p_n = ¹/_n unless there is additional information (estimating equations) imposing constraints on the p_i's

S ₃ RI	Advantages of EL
	 No need to specify full distribution — first moments suffice
EL	

Advantages of EL

Informative Non Response

S₃RI

- Εl
- Estimating equations Estimation Simulation
- Testing
- Role of
- Constraints
- Imputation
- Internet
- Surveys

- ► No need to specify full distribution first moments suffice
- ► No need to integrate over (-∞, ∞) numerically easier than parametric likelihood

Estimating Equations

Informative Non Response

S₃RI

Estimating equations Estimation

Simulatior Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

Recall that
$$\begin{split} &f_r(y|x) = \frac{\mathsf{Pr}(\mathsf{R}=1|y,x,S=1)\,\mathsf{Pr}(S=1|y,x)}{\mathsf{Pr}(\mathsf{R}=1|x,S=1)\,\mathsf{Pr}(S=1|x)} \cdot f(y|x) \\ &\text{which implies } p_i \propto \frac{p_i^{(r)}}{\pi_i\rho_i}. \end{split}$$

If E(z) = $\sum_{\mathfrak{i}} p_{\mathfrak{i}} z_{\mathfrak{i}} = \bar{z}$ is known, $\sum_{\mathfrak{i}} p_{\mathfrak{i}} (z_{\mathfrak{i}} - \bar{z}) = 0$, leading to

$$\sum_{i} \frac{p_i^{(r)}}{\pi_i \rho_i} (z_i - \bar{z}) = 0$$

and we get our first set of estimating equations

$$\sum_{i} \frac{p_{i}^{(r)}}{\pi_{i}\rho(y_{i}, \boldsymbol{x}_{i}; \boldsymbol{\gamma})}(z_{i} - \bar{z}) = 0$$

S₃**RI** Estimating Equations (cont'd)

Informative Non Response

EL

Estimating equations Estimation

Simulation Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

The response rate provides additional information. Let

 $\xi_i = \pi_i \rho_i = \Pr(S_i = R_i = 1)$

 $E_{\xi}=$ expectation w.r.t. combined sampling & response $E_{\xi}(r)=\sum_{j\in U}\tau_{j}\rho_{j}=N\sum_{i\in\mathcal{R}}p_{i}\tau_{i}\rho_{i}=N\sum_{i\in\mathcal{R}}p_{i}\xi_{i}=N\bar{\xi}_{u}$ Thus,

$$r \approx N \bar{\xi}_{\mathfrak{u}} \implies r = N \bar{\xi}_{\mathfrak{u}}$$

With some algebra

$$\sum_{i\in\mathcal{R}}p_i^{(r)}\left(1-r/(N\xi_i)\right)=0$$

Which is equivalent to

$$\sum_{i\in\mathfrak{R}}p_i^{(r)}\tau_i^{-1}\rho_i^{-1}=N/r$$

Informative Non Response EL Estimating equations Estimation Simulation	S ₃ RI	Likelihood
Results Testing Role of Constraints Imputation Internet Surveys	Non Response EL Estimating equations Estimation Simulation Results Testing Role of Constraints Imputation Internet	The parameters:

s₃ri Likelihood

Informative Non Response

EL

Estimating equations

Estimation

Simulatio Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

The parameters:

$$p_i^{(r)}$$
, γ

and $\beta = \beta(p_1, \dots, p_r)$ (parametric f_p case)

S₃RI Likelihood

Informative Non Response

EL

Estimating equations

Estimation

Simulatio Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

The parameters:

$$p_i^{(r)}$$
, γ

 $\begin{array}{ll} \text{and} & \beta = \beta(p_1,\ldots,p_r) \text{ (parametric } f_p \text{ case)} \\ \text{For ease of notation, denote } q_i = p_i^{(r)}. \end{array}$

S₃RI

Likelihood

Informative Non Response

EL

Estimating equations

Estimation

Simulatior Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

The parameters:

$$p_i^{(r)}$$
, γ

and $\beta = \beta(p_1, ..., p_r)$ (parametric f_p case) For ease of notation, denote $q_i = p_i^{(r)}$. The likelihood:

$$\mathscr{L} = \mathscr{L}(\mathbf{q}, \mathbf{\gamma}) = \prod_{i=1}^{n} \mathbf{q}_{i}$$

S₃RI

Likelihood

Informative Non Response

EL

Estimating equations

Estimation

Simulatior Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

The parameters:

$$p_i^{(r)}$$
, γ

and $\beta = \beta(p_1, ..., p_r)$ (parametric f_p case) For ease of notation, denote $q_i = p_i^{(r)}$. The likelihood:

$$\mathscr{L} = \mathscr{L}(\mathbf{q}, \mathbf{\gamma}) = \prod_{i=1}^{n} q_i$$

subject to the constraints

$$\sum_{i} q_{i} \frac{z_{i} - \bar{z}}{\pi_{i} \rho(y_{i}, x_{i}; \gamma)} = 0$$
$$\sum_{i \in \mathcal{R}} \frac{q_{i}}{\tau_{i} \rho(y_{i}, x_{i}; \gamma)} = N/r$$

S ₃ RI	Estimation of the response model
Informative Non Response EL Estimating	Maximize the likelihood ${\mathscr L}$ subject to the constraints
equations Estimation	
Simulation Results	
Testing	
Role of Constraints	
Imputation	
Internet Surveys	

S ₃ RI	Estimation of the response model
Informative Non Response EL Estimating equations Estimation Results Testing Role of Constraints Imputation Internet Surveys	Maximize the likelihood \mathscr{L} subject to the constraints $\max_{q,\gamma} \mathscr{L}(q,\gamma), \text{s.t.} A(\gamma)q = 0$

S ₃ RI	Estimation of the response model
Informative Non Response	Maximize the likelihood ${\mathscr L}$ subject to the constraints
EL	$\max_{\mathbf{q}, \boldsymbol{\gamma}} \mathscr{L}(\mathbf{q}, \boldsymbol{\gamma}), \text{s.t.} A(\boldsymbol{\gamma})\mathbf{q} = 0$
Estimating equations	This maximization problem is equivalent to the maximization $C(x)$ is the equivalent to the maximization
Estimation	$max_{\gamma}G(\gamma)$ where $G(\gamma)$ is the <i>profile likelihood</i> of $\gamma,$ defined as
Simulation Results	$G(\boldsymbol{\gamma}) = \max\{\Pi(\boldsymbol{q}) : A(\boldsymbol{\gamma})\boldsymbol{q} = \boldsymbol{0} \& \boldsymbol{q} \in \boldsymbol{\Omega}\}$
Testing	This maximization can be done using the Owen (2013) algorithm.
Role of Constraints	
Imputation	
Internet Surveys	

S ₃ RI	Estimation of the response model
Informative Non Response	Maximize the likelihood ${\mathscr L}$ subject to the constraints
EL	$\max_{\mathbf{q},\boldsymbol{\gamma}} \mathscr{L}(\mathbf{q},\boldsymbol{\gamma}), \text{s.t.} A(\boldsymbol{\gamma})\mathbf{q} = 0$
Estimating equations	This maximization problem is equivalent to the maximization
Estimation	$max_{\gamma}G(\gamma)$ where $G(\gamma)$ is the <i>profile likelihood</i> of $\gamma,$ defined as
Simulation Results	$G(\boldsymbol{\gamma}) = \max\{\Pi(\boldsymbol{q}) : A(\boldsymbol{\gamma})\boldsymbol{q} = \boldsymbol{0} \& \boldsymbol{q} \in \Omega\}$
Testing	This maximization can be done using the Owen (2013) algorithm.
Role of Constraints	Variance estimation of $\hat{m{\gamma}}$:
Imputation	Inverse Hessian of the <i>profile</i> likelihood G
Internet Surveys	

S ₃ RI	Estimation of the response model
Informative Non Response	Maximize the likelihood ${\mathscr L}$ subject to the constraints
EL	$\max_{\mathbf{q}, \boldsymbol{\gamma}} \mathscr{L}(\mathbf{q}, \boldsymbol{\gamma}), \text{s.t.} A(\boldsymbol{\gamma})\mathbf{q} = 0$
Estimating equations	This maximization problem is equivalent to the maximization
Estimation	$max_{\gamma}G(\gamma)$ where $G(\gamma)$ is the <i>profile likelihood</i> of $\gamma,$ defined as
Simulation Results	$G(\boldsymbol{\gamma}) = \max\{\Pi(\boldsymbol{q}) : A(\boldsymbol{\gamma})\boldsymbol{q} = \boldsymbol{0} \& \boldsymbol{q} \in \boldsymbol{\Omega}\}$
Testing	This maximization can be done using the Owen (2013) algorithm.
Role of Constraints	Variance estimation of $\hat{\mathbf{\gamma}}$:
Imputation	Inverse Hessian of the <i>profile</i> likelihood G
Internet Surveys	or parametric bootstrap

Estimation of the target model S₃RI Once we have estimates $\hat{\mathbf{y}}$, we solve the maximization problem $\hat{\mathbf{q}} = \arg \max\{\Pi(\mathbf{q}) : \mathcal{A}(\hat{\mathbf{\gamma}})\mathbf{q} = 0 \quad \& \quad \mathbf{q} \in \Omega\}$ Recall that $p_i \propto \frac{p_i^{(r)}}{\pi_i \rho_i} = \frac{q_i}{\pi_i \rho_i}$, so we get $\hat{p}_1, \ldots, \hat{p}_r$.

s₃RI Estimation of the target model

Informative Non Response

EL

Estimating equations

Estimation

Simulatior Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

Once we have estimates $\hat{\gamma}$, we solve the maximization problem $\hat{\mathbf{q}} = \arg \max\{\Pi(\mathbf{q}) : A(\hat{\gamma})\mathbf{q} = 0 \quad \& \quad \mathbf{q} \in \Omega\}$ Recall that $p_i \propto \frac{p_i^{(r)}}{\pi_i \rho_i} = \frac{q_i}{\pi_i \rho_i}$, so we get $\hat{p}_1, \dots, \hat{p}_r$. The regression coefficient $\boldsymbol{\beta} = \boldsymbol{\beta}(\mathbf{p})$ is the solution of the appropriate estimating equation

S₃RI Estimation of the target model

Informative Non Response

EL

Estimating equations

Estimation

Simulation Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

Once we have estimates $\hat{\gamma}$, we solve the maximization problem $\hat{\mathbf{q}} = \arg \max\{\Pi(\mathbf{q}) : A(\hat{\gamma})\mathbf{q} = 0 \quad \& \quad \mathbf{q} \in \Omega\}$

Recall that $p_i \propto \frac{p_i^{(r)}}{\pi_i \rho_i} = \frac{q_i}{\pi_i \rho_i}$, so we get $\hat{p}_1, \dots, \hat{p}_r$. The regression coefficient $\beta = \beta(p)$ is the solution of the appropriate estimating equation

Examples:

 $\hat{\beta} = (X'D_pX)^{-1}X'D_py$ (linear regression) where $D_p = \text{diag}(p)$ or $X'D_p(Y-\mu) = 0$ (logistic regression)

s₃RI Estimation of the target model

Informative Non Response

EL

Estimating equations

Estimation

Simulatioı Results

Testing

Role of

Constraints

Imputation

Internet

Surveys

Once we have estimates $\hat{\gamma}$, we solve the maximization problem $\hat{\mathbf{q}} = \arg \max\{\Pi(\mathbf{q}) : A(\hat{\gamma})\mathbf{q} = 0 \quad \& \quad \mathbf{q} \in \Omega\}$ Recall that $p_i \propto \frac{p_i^{(r)}}{\pi_i \rho_i} = \frac{q_i}{\pi_i \rho_i}$, so we get $\hat{p}_1, \dots, \hat{p}_r$. The regression coefficient $\boldsymbol{\beta} = \boldsymbol{\beta}(\mathbf{p})$ is the solution of the appropriate estimating equation

Examples:

$$\begin{split} \hat{\beta} &= (X'D_pX)^{-1}X'D_p y \text{ (linear regression) where } D_p = \text{diag}(p) \\ \text{or } X'D_p(Y-\mu) = 0 \text{ (logistic regression)} \\ \text{So,} \\ \hat{\beta} &= \beta(\hat{p}_1, \dots, \hat{p}_r) \end{split}$$

s₃RI Estimation of the target model

Informative Non Response

EL

Estimating equations

Estimation

Simulation Results

Testing

Role of

Constraints

Imputation

Internet

Once we have estimates $\hat{\gamma}$, we solve the maximization problem $\hat{q} = \arg \max\{\Pi(q) : A(\hat{\gamma})q = 0 \& q \in \Omega\}$ Recall that $p_i \propto \frac{p_i^{(r)}}{\pi_i \rho_i} = \frac{q_i}{\pi_i \rho_i}$, so we get $\hat{p}_1, \dots, \hat{p}_r$.

The regression coefficient $\beta = \beta(\mathbf{p})$ is the solution of the appropriate estimating equation

Examples:

$$\begin{split} \hat{\beta} &= (X'D_pX)^{-1}X'D_p y \text{ (linear regression) where } D_p = \text{diag}(p) \\ \text{or } X'D_p(Y-\mu) &= 0 \text{ (logistic regression)} \\ \text{So,} \\ \hat{\beta} &= \beta(\hat{p}_1, \dots, \hat{p}_r) \end{split}$$

or we can estimate $f_p(y|x \text{ non-parametrically (example below)})$

S ₃ RI	Non-parametric estimation of the population model
	The proposed approach does not require any specification of a model for $f_p(y \pmb{x}).$
Estimation	

S ₃ RI	Non-parametric estimation of the population model
Informative Non Response EL Estimating equations	The proposed approach does not require any specification of a model for $f_p(y x)$. In fact, once estimates \hat{p}_i are obtained, and thus an estimate \hat{F} of the population distribution is available, non-parametric estimation of $f_p(y x)$ can be made, for example using smooth polynomial spline.
Estimation	
Simulation Results	
Testing	
Role of Constraints	
Imputation	
Internet Surveys	

Non-parametric estimation of the population model S₃RI The proposed approach does not require any specification of a model for $f_p(y|x)$. In fact, once estimates \hat{p}_i are obtained, and thus an estimate \hat{F} of the population distribution is available, non-parametric estimation of $f_{p}(y|x)$ can be made, for example using smooth polynomial spline. Estimation **Example:** $y = \eta + \varepsilon$ where $\eta = 0.2 + 0.03x + 0.4x^2$, restricted to [-0.1, 0.9]and $\varepsilon \sim^{\text{iid}} N(0, 0.25)$ i.e. $y = max(min(0.2 + 0.03x + 0.4x^2, 0.9), -0.1) + \varepsilon$

s_{3RI} Example: Non-parametric estimation of f_p

Figure : Results using a smooth cubic spline (average over 10 samples)

3.0

S₃RI

Simulation

Informative Non Response

EL

Estimating equations

Simulation

Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

Target model: logit[Pr(y = 1)] = $\beta_0 + \beta_1 x$, ($\beta_0 = -0.8$, $\beta_1 = 0.8$) Response model: logit[Pr(R = 1)] = $\gamma_0 + \gamma_x x + \gamma_y y$, ($\gamma_0 = 0.7$, $\gamma_x = 0.5$, $\gamma_y = -1.5$)

S₃RI

Simulation

Informative Non Response

El

Estimating equations

Estimatior

Simulatior Results

Testing

Role of

Constraint

Imputation

Internet

Surveys

Target model: logit[Pr(y = 1)] = $\beta_0 + \beta_1 x$, ($\beta_0 = -0.8$, $\beta_1 = 0.8$) Response model: logit[Pr(R = 1)] = $\gamma_0 + \gamma_x x + \gamma_y y$, ($\gamma_0 = 0.7$, $\gamma_x = 0.5$, $\gamma_y = -1.5$)

 $\begin{array}{l} 500 \text{ samples} \\ N = 10000 \\ n: \ 3395 - 3625 \ ; \ r: \ 2227 - 2455 \\ \text{Response rate:} \ \ 0.64 - 0.69 \end{array}$

Informative Non Response

EL

Estimating equations

Estimation

Simulatior Results

Testing

Role of Constrain

Imputation

Internet

Point Estimates:

	γ_0	γ_x	γ_y
True	0.700	0.500	-1.50
Mean estimate	0.736	0.499	-1.53

Variance Estimates:

	γ_0	γ_x	γ _y
Empirical STD	0.214	0.212	0.319
SQRT Mean variance estimate	0.220	0.212	0.339

Variance estimation — using the inverse Hessian of the profile likelihood.

s₃RI Estimates—Target Model

/e	Method	Mean	Est.	Empiric	al STD	SQRT	Mean
onse						Var. Es	t.
		β̂o	$\hat{\beta}_1$	$\hat{\beta}_0$	$\hat{\beta}_1$	β̂o	$\hat{\beta}_1$
g	TRUE	-0.800	0.800				
	MAR UW	-2.665	0.966	0.105	0.093	0.111	0.095
ı	MAR PW	-1.559	0.962	0.106	0.093	0.113	0.097
า	CREL	-0.797	0.799	0.178	0.104	0.188	0.108

Variance estimation — parametric Bootstrap (60 samples)

Results

s₃RI Hosmer-Lemeshow-Type Test Statistic

Informative Non Response

Estimating equations Estimation Simulation

Testing

Role of Constraints Imputation Internet Surveys Hosmer and Lemeshow (1980, 2000): test statistic for the case of logistic regression.

Sample partitioned into G groups of approximately equal size, based on the predicted probability of 'success.' Test statistic:

$$\hat{C} = \sum_{k=1}^{G} \frac{(o_k - n_k \bar{\mu}_k)^2}{n_k \bar{\mu}_k (1 - \bar{\mu}_k)},$$

 $o_k =$ number of observed 'successes' in group k, $n_k =$ size of the group, $\bar{\mu}_k =$ the mean number of the estimated probabilities of success, $\bar{\mu}_k = \sum_{i \in G_k} \hat{\mu_i}/n_k$, where G_k is the kth group, and where $\mu_i = \mathsf{Pr}(y_i = 1, I_i = 1, \mathsf{R}_i = 1 | x_i)$

S₃**RI** Distribution of the Test Statistic

Informative Non Response

Estimating equations Estimation Simulation Results Testing Role of

Figure : Distribution of $X_{HL,G=10}$

S₃RI

Power

Informative Non Response

Estimating equations Estimation Simulation Results Testing Role of

s₃RI Constraints: What matters

Informative Non Response

Estimating equations Estimation Simulation Results

Testing

Role of Constraints

Imputation

Internet

The population mean of the constraining variables c need to be known. We use proxy variables for the model variables y, x. A limited study of: (1) Best choice of variables for which the auxiliary variables are proxy, (2) how close should the auxiliary variables be to the variables they are proxy for, and (3) how many auxiliary variables to choose.

The correlation with the target model's variables is more important than the 'noise'.

Even just two auxiliary variables may be enough.

s₃RI Constraints: What matters (cont'd)

Informative Non Response

EL

Estimating equations Estimation

Simulatioı Results

Testing

Role of Constraints

Imputation

Internet

Surveys

$$c_{i}=(1,x_{i},y_{i},x_{i}y_{i},x_{i}^{2},x_{i}^{2}y_{i})'+\epsilon_{i},\quad \epsilon_{i}\sim N(0,\sigma_{c}^{2}I_{6})$$

		β ₀	β_1	γ_0	$\gamma_{\rm x}$	$\gamma_{ ext{y}}$
Simulation value		-0.800	0.800	0.700	0.500	-1.500
$\sigma_c=0.5$	c ₂ , c ₃	-0.796	0.797	0.699	0.516	-1.501
$\sigma_c = 1.0$	c_0, c_1, c_4	-1.098	0.761	1.759	0.314	-1.256
$\sigma_c = 9.0$	c ₂ , c ₃	-0.800	0.671	1.526	1.278	-2.112
$\sigma_c = 9.0$	c_2, c_3, c_5	-0.764	0.628	1.656	0.778	-2.023
Six uncorrelated		-1.051	0.753	1.143	2.280	-1.310

S₃RI

Imputation

Informative Non Response

- EL
- Estimating equations
- Estimation
- Simulation Recults
- Testing
- Role of
- Constraints
- Imputation
- Internet Surveys

- ► Two scenarios: (1) auxiliary variables x and the sampling weights w are available for the non-respondents. (2) x, w not available
- ► Goal: impute observations for each non-respondent i in such a way that the distribution of (y, x, w)' in the combined data is the same as in that in the original sample, including the unobserved data.

S ₃ RI	Internet Surveys
Informative Non Response EL	Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled.
Internet Surveys	

Internet Surveys

Informative Non Response

S₃RI

Estimating equations Estimation Simulation

Results

Testing

Role of

Constraints

Imputation

Internet Surveys Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Internet Surveys
Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables
Case 1: Subjects respond no more than once (if at all)

S ₃ RI	Internet Surveys
	Our approach can be selection probability is Need population mea
	Case 1: Subjects res
	Case 2: Subjects ma from same subject ca
ternet urveys	

ur approach can be applied to Internet survey data where the lection probability is unknown and therefore must be modelled. eed population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

Case 2: Subjects may respond multiple times and multiple responses rom same subject cannot be identified as such

Internet	Surveys

Informative Non Response

S₃RI

Estimating equations Estimation Simulation Results

Testing

Role of

Constraints

Imputation

Internet Surveys Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses from same subject *can* be identified as such

3RI	Internet Surv
native Response	Our approach ca selection probab Need population
	Case 1: Subject
	Case 2: Subject from same subject
	Case 3: Subject

Constraint

Imputation

Internet Surveys Dur approach can be applied to Internet survey data where the election probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

/evs

Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses from same subject *can* be identified as such

In Case 1, model $\xi_i \stackrel{\text{def}}{=} \Pr(i \in S) = \xi(y_i, x_i; \gamma)$. Rest is similar to the 'usual' case.

3RI	Internet Surveys
	Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables
	Case 1: Subjects respond no more than once (if at all)
	Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses from same subject *can* be identified as such

In Case 1, model $\xi_i \stackrel{\text{def}}{=} \Pr(i \in S) = \xi(y_i, x_i; \gamma)$. Rest is similar to the 'usual' case.

Cases 2 & 3 are more involved, and will not be discussed here

Internet Surveys

Acknowledgements

Informative Non Response

S₃RI

- EL
- Estimating equations
- Estimatior
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet Surveys

- Joint work with Danny Pfeffermann
- Sanjay Chaudhuri for R code
- Funded by the Economic and Social Research Council (ESRC) of the United Kingdom

Acknowledgements

Informative Non Response

S₃RI

- EL
- Estimating equations
- Estimatior
- Simulation Results
- Testing
- Role of
- Constraints
- Imputation
- Internet Surveys

- Joint work with Danny Pfeffermann
- Sanjay Chaudhuri for R code
- Funded by the Economic and Social Research Council (ESRC) of the United Kingdom