Empirical Likelihood Approach

to Non-Response

Moshe Feder
\& Danny Pfeffermann
Southampton Statistical Sciences Research Institute (S3RI) University of Southampton
m.feder@soton.ac.uk; moshe.feder@gmail.com

Informative
Non Response

EL

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

- Informative non-response

```
Informative
Non Response
Estimating equations
Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys
```

- Informative non-response and the respondents distribution

Informative

Non Response

EL

Estimating equations

Estimation

- Informative non-response and the respondents distribution
- Approaches to non-response

Informative
Non Response

- Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response

Estimating equations

Informative
Non Response

Estimating equations

Estimation

- Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model

Informative
Non Response

Estimating equations

Informative
Non Response

Informative
Non Response

Estimating equations

Estimation
Simulation Results

Testing
Role of
Constraints
Imputation
Internet
Surveys

- Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up \& results
- Testing the Model

Informative

- Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up \& results
- Testing the Model
- Role of the constraints

Informative

- Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up \& results
- Testing the Model
- Role of the constraints
- Imputation

Informative

- Both informative sampling \& informative non-response

Informative

- Informative non-response and the respondents distribution
- Approaches to non-response
- EL-based approaches to non-response
- Non-response Model
- Estimation
- Simulation set-up \& results
- Testing the Model
- Role of the constraints
- Imputation

NOTE:

- Both informative sampling \& informative non-response
- Variables observed only for responding units + population means

Informative

Estimating

 equationsEstimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

Informative Non Response

- Informative nonresponse (INR): Response propensity depends on the variable of interest

Informative

Non Response

Estimating equations

Estimation

Informative Non Response

- Informative nonresponse (INR): Response propensity depends on the variable of interest $\operatorname{Pr}(R=1 \mid y, z) \neq \operatorname{Pr}(R=1 \mid z)$
(i.e., response propensity not conditionally independent of y given z)

Informative

Non Response

- Qin-Leung-Shao (2002)
- Fang-Hong-Shao (2009)
- Maximization of constrained conditional empirical likelihood: $f_{\mathcal{R}}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, R=1)$ - our proposed method

Informative
Non Response

EL

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

- Target model $f(y \mid x)$ (holding in the population) for example

Informative

Non Response

EL

- Target model $\mathrm{f}(\mathrm{y} \mid \mathrm{x})$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

Informative
Non Response
EL
Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

- Target model $f(y \mid x)$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,
- logistic regression $\operatorname{Pr}(y=1)=\left(1+\exp \left(\left(-\beta^{\prime} x\right)\right)\right)^{-1}$,

Informative
Non Response

Estimating equations

Estimation

- Target model $\mathrm{f}(\mathrm{y} \mid \mathrm{x})$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,
- logistic regression $\operatorname{Pr}(y=1)=\left(1+\exp \left(\left(-\beta^{\prime} x\right)\right)\right)^{-1}$,
- or even non-parametric model (example to come)

Informative
Non Response
EL
Estimating equations
Estimation
Simulation
Results
Testing
Role of
Constraints

- Target model $f(y \mid x)$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,
- logistic regression $\operatorname{Pr}(y=1)=\left(1+\exp \left(\left(-\beta^{\prime} x\right)\right)\right)^{-1}$,
- or even non-parametric model (example to come)
- The Sample model $f_{s}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1)$, and

Informative

Non Response

Estimating
equations
Estimation
Simulation
Results
Testing
Role of
Constraints

- Target model $f(y \mid x)$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,
- logistic regression $\operatorname{Pr}(y=1)=\left(1+\exp \left(\left(-\beta^{\prime} x\right)\right)\right)^{-1}$,
- or even non-parametric model (example to come)
- The Sample model $f_{s}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1)$, and
- the respondents' model $f_{r}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1, R=1)$

Informative

Non Response

Estimating
equations
Estimation
Simulation
Results

- Target model $f(y \mid x)$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,
- logistic regression $\operatorname{Pr}(y=1)=\left(1+\exp \left(\left(-\beta^{\prime} x\right)\right)\right)^{-1}$,
- or even non-parametric model (example to come)
- The Sample model $f_{s}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1)$, and
- the respondents' model $f_{r}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1, R=1)$
- ... are usually different from the population model $f(y \mid x)$

Informative

Non Response

Estimating
equations
Estimation

- Target model $\mathrm{f}(\mathrm{y} \mid \mathrm{x})$ (holding in the population) for example
- linear regression: $y=\beta^{\prime} x+\varepsilon, E(\varepsilon)=0$,
- logistic regression $\operatorname{Pr}(y=1)=\left(1+\exp \left(\left(-\beta^{\prime} x\right)\right)\right)^{-1}$,
- or even non-parametric model (example to come)
- The Sample model $f_{s}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1)$, and
- the respondents' model $f_{r}(y \mid x) \stackrel{\text { def }}{=} f(y \mid x, S=1, R=1)$
- ... are usually different from the population model $f(y \mid x)$ as we'll see next

Informative
 Non Response
 The Sample Distribution

$$
f_{s}(y \mid x)=\frac{\operatorname{Pr}(S=1 \mid y, x)}{\operatorname{Pr}(S=1 \mid x)} \cdot f(y \mid x)
$$

Informative
Non Response
EL
Estimating equations
Estimation
Simulation Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

The Sample Distribution

$$
f_{s}(y \mid x)=\frac{\operatorname{Pr}(S=1 \mid y, x)}{\operatorname{Pr}(S=1 \mid x)} \cdot f(y \mid x)
$$

The Respondents Distribution

$$
f_{r}(y \mid x)=\frac{\operatorname{Pr}(R=1 \mid y, x, S=1) \operatorname{Pr}(S=1 \mid y, x)}{\operatorname{Pr}(R=1 \mid x, S=1) \operatorname{Pr}(S=1 \mid x)} \cdot f(y \mid x)
$$

Informative
Non Response
EL
Estimating equations
Estimation
Simulation Results

Testing
Role of
Constraints
Imputation
Internet Surveys

The Sample Distribution

$$
f_{s}(y \mid x)=\frac{\operatorname{Pr}(S=1 \mid y, x)}{\operatorname{Pr}(S=1 \mid x)} \cdot f(y \mid x)
$$

The Respondents Distribution

$$
\begin{aligned}
f_{r}(y \mid x) & =\frac{\operatorname{Pr}(R=1 \mid y, x, S=1) \operatorname{Pr}(S=1 \mid y, x)}{\operatorname{Pr}(R=1 \mid x, S=1) \operatorname{Pr}(S=1 \mid x)} \cdot f(y \mid x) \\
& =\frac{\operatorname{Pr}(R=1 \mid y, x, S=1)}{\operatorname{Pr}(R=1 \mid x, S=1)} \cdot f_{s}(y \mid x)
\end{aligned}
$$

Dealing with informative sampling

Informative
Non Response

EL

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

Informative
Non Response
The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

- $\tau_{i} \stackrel{\text { def }}{=} \operatorname{Pr}\left(S_{i}=1 \mid y_{i}, x_{i}\right)=E_{p}\left(S_{i} \mid y_{i}, x_{i}\right)$

Estimating equations

Estimation

Dealing with informative sampling

Informative
Non Response

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

- $\tau_{i} \stackrel{\text { def }}{=} \operatorname{Pr}\left(S_{i}=1 \mid y_{i}, x_{i}\right)=E_{p}\left(S_{i} \mid y_{i}, x_{i}\right)$
$=E_{s}\left(\pi_{i}^{-1} \mid y_{i}, x_{i}\right)^{-1}$ (Pfeffermann \& Sverchkov 1999)

Informative

Non Response
EL
Estimating equations

Estimation

The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

- $\tau_{i} \stackrel{\text { def }}{=} \operatorname{Pr}\left(S_{i}=1 \mid y_{i}, x_{i}\right)=E_{p}\left(S_{i} \mid y_{i}, x_{i}\right)$
$=E_{s}\left(\pi_{i}^{-1} \mid y_{i}, x_{i}\right)^{-1}$ (Pfeffermann \& Sverchkov 1999)
$=E_{s}\left(w_{i} \mid y_{i}, x_{i}\right)^{-1}$

Informative

Non Response

The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

- $\tau_{i} \stackrel{\text { def }}{=} \operatorname{Pr}\left(S_{i}=1 \mid y_{i}, x_{i}\right)=E_{p}\left(S_{i} \mid y_{i}, x_{i}\right)$
$=E_{s}\left(\pi_{i}^{-1} \mid y_{i}, x_{i}\right)^{-1}$ (Pfeffermann \& Sverchkov 1999)
$=E_{s}\left(w_{i} \mid y_{i}, x_{i}\right)^{-1}$
- So we can estimate $\operatorname{Pr}\left(S_{i}=1 \mid y_{i}, \boldsymbol{x}_{i}\right)$ from the sampling weights of the sampled units

Informative

Non Response

The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

- $\tau_{i} \stackrel{\text { def }}{=} \operatorname{Pr}\left(S_{i}=1 \mid y_{i}, x_{i}\right)=E_{p}\left(S_{i} \mid y_{i}, x_{i}\right)$
$=E_{s}\left(\pi_{i}^{-1} \mid y_{i}, x_{i}\right)^{-1}$ (Pfeffermann \& Sverchkov 1999)
$=E_{s}\left(w_{i} \mid y_{i}, x_{i}\right)^{-1}$
- So we can estimate $\operatorname{Pr}\left(S_{i}=1 \mid y_{i}, \boldsymbol{x}_{i}\right)$ from the sampling weights of the sampled units
- $E_{s}\left(w_{i} \mid y_{i}, \boldsymbol{x}_{i}\right)$ can be estimated by regressing w_{i} on $\left(y_{i}, \boldsymbol{x}_{i}\right)$

Informative

The inclusion probability $\pi=\operatorname{Pr}(S=1)$ and the sampling weight $w=1 / \pi$ may depend on both available and unavailable variables.

- $\tau_{i} \stackrel{\text { def }}{=} \operatorname{Pr}\left(S_{i}=1 \mid y_{i}, x_{i}\right)=E_{p}\left(S_{i} \mid y_{i}, x_{i}\right)$
$=E_{s}\left(\pi_{i}^{-1} \mid y_{i}, x_{i}\right)^{-1}$ (Pfeffermann \& Sverchkov 1999)
$=E_{s}\left(w_{i} \mid y_{i}, x_{i}\right)^{-1}$
- So we can estimate $\operatorname{Pr}\left(S_{i}=1 \mid y_{i}, \boldsymbol{x}_{i}\right)$ from the sampling weights of the sampled units
- $E_{s}\left(w_{i} \mid y_{i}, \boldsymbol{x}_{i}\right)$ can be estimated by regressing w_{i} on $\left(y_{i}, \boldsymbol{x}_{i}\right)$
- In the simulation study, we obtained estimates of τ_{i}, by applying kernel regression of w_{i} on (y_{i}, x_{i}) and their interaction, using the function npreg from the R package $n p$ at its default setting

Informative
Non Response

EL

Estimating
equations
Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...

Dealing with informative non-response

Informative
Non Response
EL
Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights..
So we need to do something about $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, x_{i}, S_{i}=1\right)$

Dealing with informative non-response

Informative
Non Response

Estimating equations

Estimation
Simulation Results

Testing
Role of
Constraints
Imputation
Internet
Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...
So we need to do something about $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, \boldsymbol{x}_{i}, S_{i}=1\right)$ model it:

$$
\rho_{i}=\operatorname{Pr}\left(R_{i}=1 \mid \boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)=g\left(\boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)
$$

Dealing with informative non-response

Informative
Non Response
EL
Estimating equations

Estimation
Simulation

Testing
Role of
Constraints
Imputation
Internet
Surveys

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...
So we need to do something about $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, \boldsymbol{x}_{i}, S_{i}=1\right)$ model it:

$$
\rho_{i}=\operatorname{Pr}\left(R_{i}=1 \mid \boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)=g\left(\boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)
$$

Informative non-response: $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, x_{i}\right)$ (could be more variables affecting the response probability)

$$
\rho_{i}=\rho\left(y_{i}, x_{i} ; \gamma\right)
$$

Dealing with informative non-response

Informative
Non Response

Estimating equations

Estimation

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...
So we need to do something about $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, x_{i}, S_{i}=1\right)$ model it:

$$
\rho_{i}=\operatorname{Pr}\left(R_{i}=1 \mid \boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)=g\left(\boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)
$$

Informative non-response: $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, x_{i}\right)$ (could be more variables affecting the response probability)

$$
\rho_{i}=\rho\left(y_{i}, x_{i} ; \gamma\right)
$$

For example

$$
\rho_{i}=\operatorname{logit}^{-1}\left(\gamma_{0}+\gamma_{x} x_{i}+\gamma_{y} y_{i}\right)
$$

Dealing with informative non-response

Informative

Non Response

Estimating equations

Estimation

In contrast with sampling, non-response is unplanned, and we don't have the analogue of weights...
So we need to do something about $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, x_{i}, S_{i}=1\right)$ model it:

$$
\rho_{i}=\operatorname{Pr}\left(R_{i}=1 \mid \boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)=g\left(\boldsymbol{v}_{i} ; \boldsymbol{\gamma}\right)
$$

Informative non-response: $\operatorname{Pr}\left(R_{i}=1 \mid y_{i}, x_{i}\right)$ (could be more variables affecting the response probability)

$$
\rho_{i}=\rho\left(y_{i}, x_{i} ; \gamma\right)
$$

For example

$$
\rho_{i}=\operatorname{logit}^{-1}\left(\gamma_{0}+\gamma_{x} x_{i}+\gamma_{y} y_{i}\right)
$$

We will address the issue of testing such models later on.

Informative
Non Response
EL
Estimating equations
Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

Informative
 Non Response
 EL
 Estimating equations
 Estimation
 Simulation
 Results
 Testing
 Role of
 Constraints
 Imputation

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, y_{n}$
- Only observed values present in the population

Informative

Non Response
EL
Estimating equations

Estimation

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$
- Only observed values present in the population
- Population frequencies: $p_{i}=\operatorname{Pr}\left(\boldsymbol{y}=y_{i}\right),\left(\sum_{i} p_{i}=1, p_{i} \geqslant 0\right)$

Informative

Non Response
EL
Estimating equations

Estimation
Simulation Results

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$
- Only observed values present in the population
- Population frequencies: $p_{i}=\operatorname{Pr}\left(\mathbf{y}=y_{i}\right),\left(\sum_{i} p_{i}=1, p_{i} \geqslant 0\right)$
- $y \sim \operatorname{Multinomial}\left(p_{1}, \ldots, p_{n}\right)$

Informative

Non Response

EL
Estimating equations

Estimation

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$
- Only observed values present in the population
- Population frequencies: $p_{i}=\operatorname{Pr}\left(\boldsymbol{y}=y_{i}\right),\left(\sum_{i} p_{i}=1, p_{i} \geqslant 0\right)$
- $y \sim \operatorname{Multinomial}\left(p_{1}, \ldots, p_{n}\right)$
- Constraints on p_{1}, \ldots, p_{n} may be imposed (estimating equations, using additional information).

Informative
Non Response
EL

Estimating equations

Estimation
Simulation
Results
Testing
Role of

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$
- Only observed values present in the population
- Population frequencies: $p_{i}=\operatorname{Pr}\left(\mathbf{y}=y_{i}\right),\left(\sum_{i} p_{i}=1, p_{i} \geqslant 0\right)$
- $\mathbf{y} \sim \operatorname{Multinomial}\left(p_{1}, \ldots, p_{n}\right)$
- Constraints on p_{1}, \ldots, p_{n} may be imposed (estimating equations, using additional information).
- Empirical likelihood: $\mathscr{L}=\prod_{i=1}^{n} p_{i}$

Informative
Non Response
EL

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$
- Only observed values present in the population
- Population frequencies: $p_{i}=\operatorname{Pr}\left(\mathbf{y}=y_{i}\right),\left(\sum_{i} p_{i}=1, p_{i} \geqslant 0\right)$
- $\mathbf{y} \sim \operatorname{Multinomial}\left(p_{1}, \ldots, p_{n}\right)$
- Constraints on p_{1}, \ldots, p_{n} may be imposed (estimating equations, using additional information).
- Empirical likelihood: $\mathscr{L}=\prod_{i=1}^{n} p_{i}$
- The unconstrained maximum is at $\mathrm{p}_{1}=\mathrm{p}_{2}=\cdots=\mathrm{p}_{\mathrm{n}}=\frac{1}{n}$

Informative
Non Response
EL

Estimating
equations
Estimation

Basic Idea

- Observed data: $\mathbf{y}_{1}, \ldots, \mathbf{y}_{\mathrm{n}}$
- Only observed values present in the population
- Population frequencies: $p_{i}=\operatorname{Pr}\left(\mathbf{y}=\boldsymbol{y}_{i}\right),\left(\sum_{i} p_{i}=1, p_{i} \geqslant 0\right)$
- $\mathbf{y} \sim \operatorname{Multinomial}\left(p_{1}, \ldots, p_{n}\right)$
- Constraints on p_{1}, \ldots, p_{n} may be imposed (estimating equations, using additional information).
- Empirical likelihood: $\mathscr{L}=\prod_{i=1}^{n} p_{i}$
- The unconstrained maximum is at $\mathrm{p}_{1}=\mathrm{p}_{2}=\cdots=\mathrm{p}_{\mathrm{n}}=\frac{1}{n}$ unless there is additional information (estimating equations) imposing constraints on the p_{i} 's

```
Informative
Non Response
EL
Estimating equations
Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys
```

- No need to specify full distribution - first moments suffice

Informative
Non Response
EL
Estimating equations

Estimation

- No need to specify full distribution - first moments suffice
- No need to integrate over $(-\infty, \infty)$ - numerically easier than parametric likelihood

Recall that $f_{r}(y \mid x)=\frac{\operatorname{Pr}(R=1 \mid y, x, S=1) \operatorname{Pr}(S=1 \mid y, x)}{\operatorname{Pr}(R=1 \mid x, S=1) \operatorname{Pr}(S=1 \mid x)} \cdot f(y \mid x)$ which implies $p_{i} \propto \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}$.

$$
\text { If } E(z)=\sum_{i} p_{i} z_{i}=\bar{z} \text { is known, } \sum_{i} p_{i}\left(z_{i}-\bar{z}\right)=0 \text {, leading to }
$$

$$
\sum_{i} \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}\left(z_{i}-\bar{z}\right)=0
$$

and we get our first set of estimating equations

$$
\sum_{i} \frac{p_{i}^{(r)}}{\pi_{i} \rho\left(y_{i}, x_{i} ; \boldsymbol{\gamma}\right)}\left(z_{i}-\bar{z}\right)=0
$$

Informative
Non Response

Estimating equations

Estimation

The response rate provides additional information.
Let
$\xi_{i}=\pi_{i} \rho_{i}=\operatorname{Pr}\left(S_{i}=R_{i}=1\right)$
$\mathrm{E}_{\xi}=$ expectation w.r.t. combined sampling \& response
$E_{\xi}(r)=\sum_{j \in u} \tau_{j} \rho_{j}=N \sum_{i \in \mathcal{R}} p_{i} \tau_{i} \rho_{i}=N \sum_{i \in \mathcal{R}} p_{i} \xi_{i}=N \bar{\xi}_{u}$
Thus,
$r \approx N \bar{k}_{u} \quad \Longrightarrow \quad r=N \bar{\xi}_{u}$
With some algebra

$$
\sum_{i \in \mathcal{R}} p_{i}^{(r)}\left(1-r /\left(N \xi_{i}\right)\right)=0
$$

Which is equivalent to

$$
\sum_{i \in \mathcal{R}} p_{i}^{(r)} \tau_{i}^{-1} \rho_{i}^{-1}=N / r
$$

Informative
Non Response

EL

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

The parameters:

$$
p_{i}^{(r)}, \quad \gamma
$$

Informative

Non Response
The parameters:

$$
\begin{gathered}
p_{i}^{(r)}, \quad \gamma \\
\text { and } \quad \beta=\beta\left(p_{1}, \ldots, p_{r}\right) \text { (parametric } f_{p} \text { case) }
\end{gathered}
$$

Estimating equations

Estimation
Simulation
Results

Testing

Role of
Constraints
Imputation
Internet
Surveys

Informative
Non Response

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

The parameters:

$$
p_{i}^{(r)}, \quad \gamma
$$

$$
\text { and } \boldsymbol{\beta}=\boldsymbol{\beta}\left(p_{1}, \ldots, p_{r}\right) \text { (parametric } f_{p} \text { case) }
$$

For ease of notation, denote $q_{i}=p_{i}^{(r)}$.

Informative
Non Response
The parameters:
and $\beta=\beta\left(p_{1}, \ldots, p_{r}\right)$ (parametric f_{p} case)
For ease of notation, denote $q_{i}=p_{i}^{(r)}$.
The likelihood:

$$
\mathscr{L}=\mathscr{L}(\mathbf{q}, \boldsymbol{\gamma})=\prod_{i=1}^{n} q_{i}
$$

Informative

The parameters:

$$
p_{i}^{(r)}, \quad \gamma
$$

and $\boldsymbol{\beta}=\boldsymbol{\beta}\left(p_{1}, \ldots, p_{r}\right)$ (parametric f_{p} case)
For ease of notation, denote $q_{i}=p_{i}^{(r)}$.
The likelihood:

$$
\mathscr{L}=\mathscr{L}(\mathbf{q}, \boldsymbol{\gamma})=\prod_{i=1}^{n} q_{i}
$$

subject to the constraints

$$
\begin{aligned}
\sum_{i} q_{i} \frac{z_{i}-\bar{z}}{\pi_{i} \rho\left(y_{i}, x_{i} ; \gamma\right)} & =0 \\
\sum_{i \in \mathcal{R}} & \frac{q_{i}}{\tau_{i} \rho\left(y_{i}, x_{i} ; \gamma\right)}
\end{aligned}=N / r .
$$

```
Informative
Non Response

Maximize the likelihood \(\mathscr{L}\) subject to the constraints

\section*{Informative}

Non Response

\section*{Estimating} equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

Maximize the likelihood \(\mathscr{L}\) subject to the constraints
\[
\max _{\mathbf{q}, \boldsymbol{\gamma}} \mathscr{L}(\mathbf{q}, \boldsymbol{\gamma}), \quad \text { s.t. } \quad A(\boldsymbol{\gamma}) \mathbf{q}=0
\]

Informative

Maximize the likelihood \(\mathscr{L}\) subject to the constraints
\[
\max _{\mathbf{q}, \boldsymbol{\gamma}} \mathscr{L}(\mathbf{q}, \boldsymbol{\gamma}), \quad \text { s.t. } \quad A(\boldsymbol{\gamma}) \mathbf{q}=0
\]

This maximization problem is equivalent to the maximization \(\max _{\gamma} \mathrm{G}(\boldsymbol{\gamma})\) where \(\mathrm{G}(\boldsymbol{\gamma})\) is the profile likelihood of \(\gamma\), defined as
\[
G(\boldsymbol{\gamma})=\max \{\Pi(\mathbf{q}): A(\boldsymbol{\gamma}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

This maximization can be done using the Owen (2013) algorithm.

Informative

Maximize the likelihood \(\mathscr{L}\) subject to the constraints
\[
\max _{\mathbf{q}, \boldsymbol{\gamma}} \mathscr{L}(\mathbf{q}, \boldsymbol{\gamma}), \quad \text { s.t. } \quad A(\boldsymbol{\gamma}) \mathbf{q}=0
\]

This maximization problem is equivalent to the maximization \(\max _{\gamma} \mathrm{G}(\boldsymbol{\gamma})\) where \(\mathrm{G}(\boldsymbol{\gamma})\) is the profile likelihood of \(\gamma\), defined as
\[
G(\boldsymbol{\gamma})=\max \{\Pi(\mathbf{q}): A(\boldsymbol{\gamma}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

This maximization can be done using the Owen (2013) algorithm.
Variance estimation of \(\hat{\gamma}\) :
Inverse Hessian of the profile likelihood G

Informative

Maximize the likelihood \(\mathscr{L}\) subject to the constraints
\[
\max _{\mathbf{q}, \boldsymbol{\gamma}} \mathscr{L}(\mathbf{q}, \boldsymbol{\gamma}), \quad \text { s.t. } \quad A(\boldsymbol{\gamma}) \mathbf{q}=0
\]

This maximization problem is equivalent to the maximization \(\max _{\gamma} \mathrm{G}(\boldsymbol{\gamma})\) where \(\mathrm{G}(\boldsymbol{\gamma})\) is the profile likelihood of \(\gamma\), defined as
\[
G(\boldsymbol{\gamma})=\max \{\Pi(\mathbf{q}): A(\boldsymbol{\gamma}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

This maximization can be done using the Owen (2013) algorithm.
Variance estimation of \(\hat{\gamma}\) :
Inverse Hessian of the profile likelihood G
or parametric bootstrap

Informative

Once we have estimates \(\hat{\gamma}\), we solve the maximization problem
\[
\hat{\mathbf{q}}=\arg \max \{\Pi(\mathbf{q}): A(\hat{\boldsymbol{\gamma}}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

Recall that \(p_{i} \propto \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}=\frac{q_{i}}{\pi_{i} \rho_{i}}\), so we get \(\hat{p}_{1}, \ldots, \hat{p}_{r}\).

Informative

Once we have estimates \(\hat{\gamma}\), we solve the maximization problem
\[
\hat{\mathbf{q}}=\arg \max \{\Pi(\mathbf{q}): A(\hat{\boldsymbol{\gamma}}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

Recall that \(p_{i} \propto \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}=\frac{q_{i}}{\pi_{i} \rho_{i}}\), so we get \(\hat{p}_{1}, \ldots, \hat{p}_{r}\).
The regression coefficient \(\beta=\boldsymbol{\beta}(\mathbf{p})\) is the solution of the appropriate estimating equation

Informative
Once we have estimates \(\hat{\gamma}\), we solve the maximization problem
\[
\hat{\mathbf{q}}=\arg \max \{\Pi(\mathbf{q}): A(\hat{\boldsymbol{\gamma}}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

Recall that \(p_{i} \propto \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}=\frac{q_{i}}{\pi_{i} \rho_{i}}\), so we get \(\hat{p}_{1}, \ldots, \hat{p}_{r}\).
The regression coefficient \(\beta=\boldsymbol{\beta}(\mathbf{p})\) is the solution of the appropriate estimating equation

\section*{Examples:}
\(\hat{\boldsymbol{\beta}}=\left(X^{\prime} \mathrm{D}_{\mathfrak{p}} X\right)^{-1} \mathrm{X}^{\prime} \mathrm{D}_{\mathfrak{p}} \mathbf{y}\) (linear regression) where \(\mathrm{D}_{\mathfrak{p}}=\operatorname{diag}(\mathbf{p})\)
or \(X^{\prime} D_{p}(Y-\mu)=0\) (logistic regression)

Informative

Once we have estimates \(\hat{\gamma}\), we solve the maximization problem
\[
\hat{\mathbf{q}}=\arg \max \{\Pi(\mathbf{q}): A(\hat{\gamma}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

Recall that \(p_{i} \propto \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}=\frac{q_{i}}{\pi_{i} \rho_{i}}\), so we get \(\hat{p}_{1}, \ldots, \hat{p}_{r}\).
The regression coefficient \(\beta=\boldsymbol{\beta}(\mathbf{p})\) is the solution of the appropriate estimating equation

\section*{Examples:}
\(\hat{\boldsymbol{\beta}}=\left(X^{\prime} \mathrm{D}_{\mathfrak{p}} X\right)^{-1} \mathrm{X}^{\prime} \mathrm{D}_{\mathfrak{p}} \boldsymbol{y}\) (linear regression) where \(\mathrm{D}_{\mathfrak{p}}=\operatorname{diag}(\mathbf{p})\)
or \(X^{\prime} D_{p}(Y-\mu)=0\) (logistic regression)
So,
\[
\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}\left(\hat{\mathrm{p}}_{1}, \ldots, \hat{\mathrm{p}}_{\mathrm{r}}\right)
\]

Informative

Once we have estimates \(\hat{\gamma}\), we solve the maximization problem
\[
\hat{\mathbf{q}}=\arg \max \{\Pi(\mathbf{q}): A(\hat{\gamma}) \mathbf{q}=0 \quad \& \quad \mathbf{q} \in \Omega\}
\]

Recall that \(p_{i} \propto \frac{p_{i}^{(r)}}{\pi_{i} \rho_{i}}=\frac{q_{i}}{\pi_{i} \rho_{i}}\), so we get \(\hat{p}_{1}, \ldots, \hat{p}_{r}\).
The regression coefficient \(\beta=\boldsymbol{\beta}(\mathbf{p})\) is the solution of the appropriate estimating equation

\section*{Examples:}
\(\hat{\boldsymbol{\beta}}=\left(X^{\prime} \mathrm{D}_{\mathfrak{p}} X\right)^{-1} \mathrm{X}^{\prime} \mathrm{D}_{\mathfrak{p}} \boldsymbol{y}\) (linear regression) where \(\mathrm{D}_{\mathfrak{p}}=\operatorname{diag}(\mathbf{p})\)
or \(X^{\prime} D_{p}(Y-\mu)=0\) (logistic regression)
So,
\[
\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}\left(\hat{p}_{1}, \ldots, \hat{\mathrm{p}}_{\mathrm{r}}\right)
\]
or we can estimate \(f_{p}(y \mid x\) non-parametrically (example below)

Informative
Non Response
EL
Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation
Internet
Surveys

The proposed approach does not require any specification of a model for \(f_{p}(y \mid x)\).

Informative
The proposed approach does not require any specification of a model for \(f_{p}(y \mid x)\).
In fact, once estimates \(\hat{p}_{i}\) are obtained, and thus an estimate \(\hat{F}\) of the population distribution is available, non-parametric estimation of \(f_{p}(y \mid x)\) can be made, for example using smooth polynomial spline.

Informative
\[
y=\max \left(\min \left(0.2+0.03 x+0.4 x^{2}, 0.9\right),-0.1\right)+\varepsilon
\]

\section*{Informative}

Non Response


Figure: Results using a smooth cubic spline (average over 10 samples)

\section*{Informative}

Non Response

\section*{Estimating} equations

\section*{Estimation}

Simulation
Results

\section*{Testing}

Role of
Constraints

Target model:
\(\operatorname{logit}[\operatorname{Pr}(y=1)]=\beta_{0}+\beta_{1} x,\left(\beta_{0}=-0.8, \beta_{1}=0.8\right)\)
Response model:
\[
\operatorname{logit}[\operatorname{Pr}(R=1)]=\gamma_{0}+\gamma_{x} x+\gamma_{y} y,\left(\gamma_{0}=0.7, \gamma_{x}=0.5, \gamma_{y}=-1.5\right)
\]

Informative
Non Response

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints

Target model:
\(\operatorname{logit}[\operatorname{Pr}(y=1)]=\beta_{0}+\beta_{1} x,\left(\beta_{0}=-0.8, \beta_{1}=0.8\right)\)
Response model:
\(\operatorname{logit}[\operatorname{Pr}(R=1)]=\gamma_{0}+\gamma_{x} x+\gamma_{y} y,\left(\gamma_{0}=0.7, \gamma_{x}=0.5, \gamma_{y}=-1.5\right)\)

500 samples
\(\mathrm{N}=10000\)
n: 3395-3625; r: 2227-2455
Response rate: \(0.64-0.69\)

Informative

Variance estimation - using the inverse Hessian of the profile likelihood.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Method & \multicolumn{3}{|c|}{ Mean Est. } & \multicolumn{2}{c|}{ Empirical STD } & \multicolumn{2}{l|}{\begin{tabular}{l} 
SQRT Mean \\
Var. Est.
\end{tabular}} \\
\hline & \(\hat{\beta}_{0}\) & \(\hat{\beta}_{1}\) & \(\hat{\beta}_{0}\) & \(\hat{\beta}_{1}\) & \(\hat{\beta}_{0}\) & \(\hat{\beta}_{1}\) \\
\hline TRUE & -0.800 & 0.800 & & & & \\
\hline MAR UW & -2.665 & 0.966 & 0.105 & 0.093 & 0.111 & 0.095 \\
\hline MAR PW & -1.559 & 0.962 & 0.106 & 0.093 & 0.113 & 0.097 \\
\hline CREL & -0.797 & 0.799 & 0.178 & 0.104 & 0.188 & 0.108 \\
\hline
\end{tabular}

MAR UW = ignoring response mechanism, unweighted MAR PW = ignoring response mechanism, probability weighted CREL = proposed method
Variance estimation - parametric Bootstrap (60 samples)

Hosmer and Lemeshow (1980, 2000): test statistic for the case of logistic regression.
Sample partitioned into \(G\) groups of approximately equal size, based on the predicted probability of 'success.' Test statistic:
\[
\hat{\mathrm{C}}=\sum_{\mathrm{k}=1}^{\mathrm{G}} \frac{\left(\mathrm{o}_{\mathrm{k}}-\mathrm{n}_{\mathrm{k}} \bar{\mu}_{\mathrm{k}}\right)^{2}}{\mathrm{n}_{\mathrm{k}} \bar{\mu}_{\mathrm{k}}\left(1-\bar{\mu}_{\mathrm{k}}\right)}
\]
\(\mathrm{o}_{\mathrm{k}}=\) number of observed 'successes' in group \(k, \mathrm{n}_{\mathrm{k}}=\) size of the group, \(\bar{\mu}_{\mathrm{k}}=\) the mean number of the estimated probabilities of success, \(\bar{\mu}_{k}=\sum_{i \in G_{k}} \hat{\mu}_{i} / n_{k}\), where \(G_{k}\) is the kth group, and where \(\mu_{i}=\operatorname{Pr}\left(y_{i}=1, I_{i}=1, R_{i}=1 \mid x_{i}\right)\)

\section*{Informative}

Non Response

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation



Figure: Distribution of \(X_{\text {HL,G }}=10\)

\section*{Informative}

Non Response

Estimating equations

Estimation
Simulation
Results
Testing
Role of
Constraints
Imputation

Percent Rejected


The population mean of the constraining variables \(\mathbf{c}\) need to be known. We use proxy variables for the model variables \(\boldsymbol{y}, \boldsymbol{x}\). A limited study of: (1) Best choice of variables for which the auxiliary variables are proxy, (2) how close should the auxiliary variables be to the variables they are proxy for, and (3) how many auxiliary variables to choose.
The correlation with the target model's variables is more important than the 'noise'.
Even just two auxiliary variables may be enough.
\[
c_{i}=\left(1, x_{i}, y_{i}, x_{i} y_{i}, x_{i}^{2}, x_{i}^{2} y_{i}\right)^{\prime}+\varepsilon_{i}, \quad \varepsilon_{i} \sim N\left(0, \sigma_{c}^{2} I_{6}\right)
\]
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \(\beta_{0}\) & \(\beta_{1}\) & \(\gamma_{0}\) & \(\gamma_{x}\) & \(\gamma_{y}\) \\
\hline \multicolumn{2}{|r|}{ Simulation value } & -0.800 & 0.800 & 0.700 & 0.500 & -1.500 \\
\hline\(\sigma_{\mathrm{c}}=0.5\) & \(\mathrm{c}_{2}, c_{3}\) & -0.796 & 0.797 & 0.699 & 0.516 & -1.501 \\
\hline\(\sigma_{\mathrm{c}}=1.0\) & \(\mathrm{c}_{0}, c_{1}, c_{4}\) & -1.098 & 0.761 & 1.759 & 0.314 & -1.256 \\
\hline\(\sigma_{\mathrm{c}}=9.0\) & \(\mathrm{c}_{2}, c_{3}\) & -0.800 & 0.671 & 1.526 & 1.278 & -2.112 \\
\hline\(\sigma_{\mathrm{c}}=9.0\) & \(\mathrm{c}_{2}, c_{3}, c_{5}\) & -0.764 & 0.628 & 1.656 & 0.778 & -2.023 \\
\hline \multicolumn{2}{|r|}{ Six uncorrelated } & -1.051 & 0.753 & 1.143 & 2.280 & -1.310 \\
\hline
\end{tabular}

Informative
- Two scenarios: (1) auxiliary variables x and the sampling weights \(w\) are available for the non-respondents. (2) \(x, w\) not available
- Goal: impute observations for each non-respondent \(i\) in such a way that the distribution of \((y, x, w)^{\prime}\) in the combined data is the same as in that in the original sample, including the unobserved data.

Informative

Informative Non Response

Informative

Informative

Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)
Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)
Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses from same subject can be identified as such

Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)
Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses from same subject can be identified as such

In Case 1, model \(\xi_{i} \stackrel{\text { def }}{=} \operatorname{Pr}(i \in S)=\xi\left(y_{i}, x_{i} ; \boldsymbol{\gamma}\right)\). Rest is similar to the 'usual' case.

Our approach can be applied to Internet survey data where the selection probability is unknown and therefore must be modelled. Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)
Case 2: Subjects may respond multiple times and multiple responses from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses from same subject can be identified as such

In Case 1, model \(\xi_{i} \stackrel{\text { def }}{=} \operatorname{Pr}(i \in S)=\xi\left(y_{i}, \boldsymbol{x}_{i} ; \boldsymbol{\gamma}\right)\). Rest is similar to the 'usual' case.
Cases \(2 \& 3\) are more involved, and will not be discussed here

Informative
Non Response
- Joint work with Danny Pfeffermann
- Sanjay Chaudhuri for R code
- Funded by the Economic and Social Research Council (ESRC) of the United Kingdom

Informative
Non Response
- Joint work with Danny Pfeffermann
- Sanjay Chaudhuri for R code
- Funded by the Economic and Social Research Council (ESRC) of the United Kingdom```

