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Informative Non-Response

Informative Non Response

» Informative nonresponse (INR): Response propensity depends on
the variable of interest Pr(R = 1|y, z) # Pr(R = 1|z)
(i.e., response propensity not conditionally independent of y
given z)
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EL-Based Methods for Informative Non-Response

» Qin-Leung-Shao (2002)

» Fang-Hong-Shao (2009)

» Maximization of constrained conditional empirical likelihood:
fr(ylx) = f(ylx, R = 1) — our proposed method
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» Target model f(y|x) (holding in the population)
for example
— linear regression: y = f'x + ¢, E(e) =0,
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— or even non-parametric model (example to come)

» The Sample model f,(y|x) & f(ylx,S =1), and
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The Sample and the Respondents Distributions

» Target model f(y|x) (holding in the population)
for example
— linear regression: y = f'x + ¢, E(e) =0,
— logistic regression Pr(y = 1) = (1 +exp((—B'x))) %,
— or even non-parametric model (example to come)

» The Sample model f,(y|x) & f(ylx,S =1), and

» the respondents’ model f..(y|x) = flyx,S=1,R=1)

» ...are usually different from the population model f(ylx) as we'll
see next
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w = 1/7 may depend on both available and unavailable variables.
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Dealing with informative sampling

The inclusion probability 7t = Pr(S = 1) and the sampling weight
w = 1/7 may depend on both available and unavailable variables.
def
» Ty = Pr(S; = 1lyi, xi) = Ep(Silyi, x1)
= Es(7; yi, xi) ! (Pfeffermann & Sverchkov 1999)
= Es(wilyi, xi)F
» So we can estimate Pr(S; = 1|y, x;) from the sampling weights
of the sampled units




S3RI

Informative
Non Response

EL

Estimating
equations

Estimation

Simulation
Results

Testing

Role of
Constraints

Imputation

Internet
Surveys

27 May 2015

Dealing with informative sampling

The inclusion probability 7t = Pr(S = 1) and the sampling weight
w = 1/7 may depend on both available and unavailable variables.
def
» Ty = Pr(S; = 1lyi, xi) = Ep(Silyi, x1)
= Es(7; yi, xi) ! (Pfeffermann & Sverchkov 1999)
= Es(wilyi, xi)F
» So we can estimate Pr(S; = 1|y, x;) from the sampling weights
of the sampled units
» E(wilyi, xi) can be estimated by regressing w; on (yi,X4)
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Dealing with informative sampling

The inclusion probability 7t = Pr(S = 1) and the sampling weight
w = 1/7 may depend on both available and unavailable variables.
def
» Ty = Pr(S; = 1lyi, xi) = Ep(Silyi, x1)
= Es(7; yi, xi) ! (Pfeffermann & Sverchkov 1999)
= Es(wilyi, xi)F
» So we can estimate Pr(S; = 1|y, x;) from the sampling weights
of the sampled units
» E(wilyi, xi) can be estimated by regressing w; on (yi,X4)
» In the simulation study, we obtained estimates of T;, by applying

kernel regression of w; on (yi, xi) and their interaction, using
the function npreg from the R package np at its default setting
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have the analogue of weights. . .
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Dealing with informative non-response

In contrast with sampling, non-response is unplanned, and we don't
have the analogue of weights. . .
So we need to do something about Pr(R; = 1lyi, %, Si = 1)
model it:
pi = Pr(Ry = 1jvi;y) = g(vi; y)
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Dealing with informative non-response

In contrast with sampling, non-response is unplanned, and we don't
have the analogue of weights. . .
So we need to do something about Pr(R; = 1|yi,xi,Si = 1)
model it:

pi = Pr(Ri = 1jvi; v) = g(vi; v)
Informative non-response: Pr(R; = 1|yi,%i) (could be more variables
affecting the response probability)

Pi = P(Yi, Xi;Y)
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Dealing with informative non-response

In contrast with sampling, non-response is unplanned, and we don't
have the analogue of weights. . .
So we need to do something about Pr(R; = 1|yi,xi,Si = 1)
model it:

pi = Pr(Ry = 1jvi; v) = g(vi; v)
Informative non-response: Pr(R; = 1|yi,%i) (could be more variables
affecting the response probability)

pi = P(Yi, Xi;Y)
For example
p; = logit ™! (vo + YxXi + YyYi)
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Dealing with informative non-response

In contrast with sampling, non-response is unplanned, and we don't
have the analogue of weights. . .
So we need to do something about Pr(R; = 1|yi,xi,Si = 1)
model it:

pi = Pr(Ry = 1jvi; v) = g(vi; v)
Informative non-response: Pr(R; = 1|yi,%i) (could be more variables
affecting the response probability)

pi = P(Yi, Xi;Y)
For example
pi = logit " (vo + VxXi + YyYi)

We will address the issue of testing such models later on.
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Advantages of EL

» No need to specify full distribution — first moments suffice

» No need to integrate over (—oo, 00) — numerically easier than
parametric likelihood

10
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Estimating Equations

Pr(R=1ly,x,S =1)Pr(S = 1|y, x)

Pr(R=1|x,S =1)Pr(S = 1|x)
()
l .
TP

- f(ylx)

Recall that f,(ylx) =

which implies p; o
If E(z) = )_; pizi = Z is known, }_; pi(zi —Z) = 0, leading to

and we get our first set of estimating equations

Pi =
Z TP (i, Xi; Y) (2.-2) =0

1

11
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Estimating Equations (cont'd)

The response rate provides additional information.

Let

& = mipi = Pr(S§; =Ry = 1)

E: = expectation w.r.t. combined sampling & response B
Ee(r) =2 5euTipi = N2 icx PiTiPi = N2 e Pi&i = N&y
Thus, B B

r=N&§ = 71=N§&,

With some algebra

Y pi”(1—r/(NEy) =
ieR
Which is equivalent to

> p{lectort =Ny

ieR

12



S3RI

Informative
Non Response

EL

Estimating
equations

Estimation

Simulation
Results

Testing

Role of
Constraints

Imputation

Internet
Surveys

27 May 2015

Likelihood

The parameters:

13



S3RI

Informative
Non Response

EL

Estimating
equations

Estimation

Simulation
Results

Testing

Role of
Constraints

Imputation

Internet
Surveys

27 May 2015

Likelihood

The parameters:

and B =B(p1...

i,y

,Pr) (parametric f, case)

13



S3RI

Informative
Non Response

EL

Estimating
equations

Estimation

Simulation
Results

Testing

Role of
Constraints

Imputation

Internet
Surveys

27 May 2015

Likelihood

The parameters:
(r)
Pi

and B =B(p1,....pr) (parametric f,, case)
For ease of notation, denote q; = pff }

v

)

13
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Likelihood

The parameters:
pi”, v
and B =B(p1,....pr) (parametric f,, case)

For ease of notation, denote q; = pgr).

The likelihood: N
Z=2qv)=]]a
i=1
subject to the constraints
=0
Z Tro yl,xl,v)

qi
———— — —N/r
Z TiP(Yi, X4 Y) /

ieR

13
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Maximize the likelihood . subject to the constraints
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Estimation of the response model

Maximize the likelihood . subject to the constraints

max.Z(q,v),
q.y

s.t.

Aly)g =0
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Informative Maximize the likelihood . subject to the constraints

Non Response

= max.Z(q,v), st. A(y)q=0

q.y

Estimating

i e This maximization problem is equivalent to the maximization

max, G(y) where G(7y) is the profile likelihood of -y, defined as

Estimation
Simulation G(y) =max{lT(q) : A(y)q=0 & qeQ}

Results

Testing This maximization can be done using the Owen (2013) algorithm.
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Estimation of the response model

Maximize the likelihood . subject to the constraints

max.Z(q,v), st. A(y)q=0
q.y

This maximization problem is equivalent to the maximization
max, G(y) where G(7y) is the profile likelihood of -y, defined as

G(y) =max{TT(q) : Aly)q =0 & qeQ}

This maximization can be done using the Owen (2013) algorithm.

Variance estimation of y:
Inverse Hessian of the profile likelihood G
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Estimation of the response model

Maximize the likelihood . subject to the constraints

max.Z(q,v), st. A(y)q=0
q.y

This maximization problem is equivalent to the maximization
max, G(y) where G(7y) is the profile likelihood of -y, defined as

G(y) =max{l(q) : A(y)g =0 & qe€Q}
This maximization can be done using the Owen (2013) algorithm.
Variance estimation of y:

Inverse Hessian of the profile likelihood G

or parametric bootstrap
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Informative Once we have estimates ¥, we solve the maximization problem
Non Response ~ y
- q =argmax{ll(q) : A(Y)g =0 & q¢€Q}
Estimating Recall that p pgr) L et p p

: s X = g W g 1r-- - "
equations ) v TP TP _ . '
Estimation The regression coefficient § = B(p) is the solution of the
Simulation appropriate estimating equation

Results

Testing
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Estimation of the target model

Once we have estimates ¥y, we solve the maximization problem

q =argmax{IT(q) : A(y)q=0 & qe€Q}

p” g
Recall that p; oc ~+— = —— so we get P1,...,Pr.
P mpy’ B LY
The regression coefficient B = B(p) is the solution of the
appropriate estimating equation

Examples:

B = (X'DpX) 'X'Dpy (linear regression) where D, = diag(p)

or X'Dp (Y — ) = 0 (logistic regression)
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Once we have estimates ¥y, we solve the maximization problem

q =argmax{IT(q) : A(y)q=0 & qe€Q}

(r) )

Recall that p; o Pi_ G
THPL THPq

The regression coefficient B = B(p) is the solution of the

appropriate estimating equation

, so we get P1,...,Pr-

Examples:
B = (X'DpX) 'X'Dpy (linear regression) where Dy, = diag(p)
or X'Dp (Y — ) = 0 (logistic regression)
So,
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Estimation of the target model

Once we have estimates ¥y, we solve the maximization problem

q =argmax{IT(q) : A(y)q=0 & qe€Q}

(r) )

Recall that p; o Pi _ G

Tmp ey |

The regression coefficient B = B(p) is the solution of the
appropriate estimating equation

, so we get P1,...,Pr-

Examples:
B = (X'DpX) 'X'Dpy (linear regression) where Dy, = diag(p)
or X'Dp (Y — ) = 0 (logistic regression)
So,

or we can estimate f}, (y|x non-parametrically (example below)
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Non-parametric estimation of the population model

The proposed approach does not require any specification of a model

for 5 (ylx).
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Non-parametric estimation of the population model

The proposed approach does not require any specification of a model
for 5 (ylx).

In fact, once estimates p; are obtained, and thus an estimate Fof
the population distribution is available, non-parametric estimation of
fp(ylx) can be made, for example using smooth polynomial spline.
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Non-parametric estimation of the population model

The proposed approach does not require any specification of a model
for 5 (ylx).

In fact, once estimates p; are obtained, and thus an estimate Fof
the population distribution is available, non-parametric estimation of
fp(ylx) can be made, for example using smooth polynomial spline.

Example: y=m+¢

where
1N = 0.2 + 0.03x + 0.4x, restricted to [—0.1, 0.9]

and ¢ = N(0,0.25)
ie.

y = max(min(0.2 + 0.03x + 0.4x%,0.9), —0.1) + ¢

16



S3RI Example: Non-parametric estimation of f,,

Informative —— Simulation Model
- ELCL-Based, Non—-parametric
Non Response ° Assuming MAR, Non-parametric
—
EL
Estimating 3
equations
. . o |
Estimation - ©
Simulation s |
o
Results
Testing & dJ
Role of
. o
Constraints S
. T T T T T T T
Imputation 0.0 05 1.0 15 2.0 25 3.0
Internet x

Surveys

Figure : Results using a smooth cubic spline (average over 10 samples)

27 May 2015
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Simulation

Target model:
logit[Pr(y = 1)] = Bo + B1x, (f)o =—-0.38,p31 = 08)

Response model:
logit[Pr(R = 1)] =vo + vxX +vYyY, (Yo =0.7,vx = 0.5,y = —1.5)

18



S3RI Simulation

Informative Target model:
Non Response logit[Pr(y = 1)] = Bo + B1x, (BO =—038,p1 = 0.8)
EL Response model:

Estimating logit[Pr(R = 1)] = vo +vxX+YyY, (Yo =0.7,vx = 0.5, vy, = —1.5)
equations
Estimation
S 500 samples
e N = 10000

Results

n: 3395 — 3625 ; 1: 2227 — 2455
Response rate: 0.64 — 0.69

Testing

Role of
Constraints

Imputation

Internet
Surveys

27 May 2015 18
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Estimates—Response Model

Point Estimates:

Yo Yx Yy
True 0.700 | 0.500 | —1.50
Mean estimate | 0.736 | 0.499 | —1.53
Variance Estimates:
Yo Yx Yy
Empirical STD 0.214 | 0.212 | 0.319
SQRT Mean variance estimate | 0.220 | 0.212 | 0.339

Variance estimation — using the inverse Hessian of the profile

likelihood.

19



S3RI Estimates—Target Model

| . Method Mean Est. Empirical STD | SQRT Mean
nformative

Non Response Var. Est.

EL Bo 1 Bo 1 Ro 1
Estimating TRUE —0.800| 0.800

equations MAR UW | —2.665| 0.966 | 0.105 | 0.093 | 0.111 | 0.095
Estimation MAR PW | —1.559| 0.962 | 0.106 | 0.093 | 0.113 | 0.097
Sl CREL —0.797, 0.799 | 0.178 | 0.104 | 0.188 | 0.108

Result
= MAR UW = ignoring response mechanism, unweighted

MAR PW = ignoring response mechanism, probability weighted
Role of CREL = proposed method
Constraints . . . .

Variance estimation — parametric Bootstrap (60 samples)

Testing

Imputation

Internet
Surveys

27 May 2015 20
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Hosmer-Lemeshow-Type Test Statistic

Hosmer and Lemeshow (1980, 2000): test statistic for the case of
logistic regression.

Sample partitioned into G groups of approximately equal size, based
on the predicted probability of ‘success.’ Test statistic:

ox = number of observed ‘successes’ in group k, ny = size of the
group, fix = the mean number of the estimated probabilities of
success, [l = ZieGk i /N, where Gy is the kth group, and where
Wi = Pr(gi = 1, Ii = 1, Ri = 1|Xi)

21
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Distribution of the Test Statistic

Density
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Test statistic observed HL (G = 10)

Figure : Distribution of X1 =10
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Power

Coefficient of xy

0.0

-0.5

-1.0

=i

Percent Rejected

39 26 20 14
S 82 73 7
1: 88 ik 74
4 90 86 80 11
96 94 90 86 20
T T T T T
-0.8 -0.6 -0.4 -0.2 0.0

Coefficient of x*

23



S3RI

Informative
Non Response

EL

Estimating
equations

Estimation

Simulation
Results

Testing

Role of
Constraints

Imputation

Internet
Surveys

27 May 2015

Constraints: What matters

The population mean of the constraining variables ¢ need to be
known. We use proxy variables for the model variables y, x.

A limited study of: (1) Best choice of variables for which the auxiliary
variables are proxy, (2) how close should the auxiliary variables be to
the variables they are proxy for, and (3) how many auxiliary variables
to choose.

The correlation with the target model’s variables is more important
than the ‘noise’.

Even just two auxiliary variables may be enough.
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Constraints: What matters (cont'd)

ci = (1, %4, Yi, xiyi, X3, X3y1)’ + &4,

gi ~ N(0, 0215)

Bo B1 Yo Yx Yy

Simulation value | —0.800 | 0.800 | 0.700 | 0.500 | —1.500

0. =05 |coc3 —0.796 | 0.797 | 0.699 | 0.516 | —1.501
0. =1.01cg,c1,cq | —1.098 | 0.761 | 1.759 | 0.314 | —1.256
0. =9.0 | co,cC3 —0.800 | 0.671 | 1.526 | 1.278 | —2.112
0. =9.0|coc3,¢5 | —0.764 | 0.628 | 1.656 | 0.778 | —2.023
Six uncorrelated | —1.051 | 0.753 | 1.143 | 2.280 | —1.310
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Imputation

» Two scenarios: (1) auxiliary variables x and the sampling weights

w are available for the non-respondents. (2) x, w not available

» Goal: impute observations for each non-respondent i in such a
way that the distribution of (y,x, w)’ in the combined data is
the same as in that in the original sample, including the
unobserved data.

26
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Internet Surveys

Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.
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Internet Surveys

Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.
Need population means for some auxiliary variables
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Internet Surveys
Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.

Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)
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Internet Surveys

Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.
Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

Case 2: Subjects may respond multiple times and multiple responses
from same subject cannot be identified as such
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Internet Surveys

Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.
Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

Case 2: Subjects may respond multiple times and multiple responses
from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses
from same subject can be identified as such
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Internet Surveys

Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.
Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

Case 2: Subjects may respond multiple times and multiple responses
from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses
from same subject can be identified as such

In Case 1, model &; def Pr(i € S) = &(yi,%i;Y). Rest is similar to
the ‘usual’ case.
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Internet Surveys

Our approach can be applied to Internet survey data where the
selection probability is unknown and therefore must be modelled.
Need population means for some auxiliary variables

Case 1: Subjects respond no more than once (if at all)

Case 2: Subjects may respond multiple times and multiple responses
from same subject cannot be identified as such

Case 3: Subjects may respond multiple times and multiple responses
from same subject can be identified as such

In Case 1, model &; & Pr(i € S) = &(yi,%i;Y). Rest is similar to
the ‘usual’ case.
Cases 2 & 3 are more involved, and will not be discussed here
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