Missing Data: Fundamental Considerations & A Brief History of Research

Craig Mallinckrodt

Outline

- Overview of the problem
- History of research
- History of industry practice
- A brief look ahead

Randomized Clinical Trials

What is the treatment effect?

Randomized Clinical Trials

PROBLEM: Missing Data

Starting Point

- Missing data undermines randomization, the lynchpin of inferences in confirmatory trials
 - Bias & loss of power
- Definition and meaning of missing value / data is situation dependent Drug Information Journal. 2009; 43(4): 403-408.
 - Loss to follow up in depression trial = missing information
 - Death from heart attack in a trial to prevent heart attack = incomplete data but no loss of info

Research History

1970s and 1980s

- Ad hoc approaches to create balanced data with easy computations
 - OC, LOCF, BOCF
- Definition of missing data mechanisms
 - MCAR MAR MNAR
- Development of MAR-based analyses
 - Multiple Imputation, Likelihood-based repeated measures, (IPW later)

Key Publications

- Maximum Likelihood
 - Harville, D. A. (1977), JASA, 72, 320–338.
 - Hartley, H. O. and Rao, J. N. K. (1967), Biometrika, 54, 93–108.
 - Jennrich, R. I. and Schluchter, M. D. (1986). *Biometrics* 42(4): 805–820.
- Multiple Imputation and missing data mechanisms
 - Rubin DB. Biometrika 1976;63(3),581–592.
- IPW
 - Robins, J.M., Rotnizky, A., and Zhao, L.P. (1994) JASA 89, 846–866.
 - Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1995) JASA 90, 106-121.

~1990s

- Development of MNAR-based methods
 - Shared-parm model: Wu MC, Carroll RJ. Biometrics 1988; 44:175–188. 21
 - Pattern mixture model: Little RJA. JASA. 1993;88(421):125–134.
 - Selection model: Diggle PD, Kenward MG. Appl. Sta 1994;43,49–93.
- Some criticism, but continued use of simple, ad he methods as primary analysis in clinical trials

2000s

- Proliferation of simulation studies comparing MAR methods with simple, ad hoc methods
 - Multiple, independent investigations in simulated and real data, b industry, academia, and regulatory agencies
- Growing awareness that simple, ad hoc methods are not broadly "conservative"
- Growing debate about appropriate choices for the primary analysis
- Developed wide spread awareness of need for sensitivity analyses

2010s

- Development and refinement of estimand ideas
- New Analytic Methods
 - Multiple-imputation based approaches for sensitivity and for certain primary estimands
 - Likelihood-based analogs to the newer MIbased approaches
 - Other Approaches (trimmed mean)
- Some refocusing on need to reduce missing data

Evolution of Industry Practice

Pre - 2000

- Analyses tended to be simple and ad hoc, a holdover from the era when computing power limited options
- Post-randomisation events dealt with implicitly by choices made about data collection and statistical analysis
- These choices defined the scientific question
- ICH E9 guidance 1998

ICH E9 and ITT

"The principle that asserts that the effect of a treatment policy can be best assessed by evaluating on the basis of the intention to treat a subject

2000-2010

- ITT influenced handling of missing data
 - ITT intended to define analysis sets, not as a means to address missing data. ICH E10 states need for rescue is an endpoint.
 - What if key scientific questions are about the initially randomized treatments?
 - Industry moved away from simple, ad hoc approaches toward MAR-based approaches
 - Missing data an important topic at conferences and in regulatory-industry interactions

2000-2010 (continued)

- NRC Expert panel: 18 recommendations
 - Set clear objectives & define causal estimands
 - Maximize adherence
 - Sensible primary analysis supported by plausible sensitivity analyses

2010-Present

Consequences of NRC Report

- Estimands are important
 - Link between objectives and analysis. The definition and proper handling of missing data depend on the estimand
- Methods research
 - Sensitivity analyses becoming routine, straight-forward approaches to assessing consequences of departures from MAR
- Greater, but still probably not enough, emphasis on prevention
- ICH E9 R1 Addendum

Process Chart to Implement 3 Pillars

Objectives

- Decisions to be made drive objectives, which drives choice of estimands...
- Estimands (what is to be estimated)
- Design
- Analysis
- Sensitivity
- Iterative process

Different Decisions & Perspectives

Stakeholders	Types of Clinical Trials				
RegulatorsPayers	 Exploratory vs. confirmatory vs. post-approval 				
 Physicians 	 Short-term vs. long-term treatment 				
PatientsSponsors	 Symptomatic treatment vs. disease modification 				
	 Efficacy vs. safety 				
	 In-patient vs out-patient 				

Defining Estimands

- Population
- Endpoint
- Summary measure
- How to account for inter-current events
 - Post-randomization events that may be related to treatment & outcome
 - Discontinuation of intervention +/- study
 - Addition of, or switching to rescue medication
 - Death

Example Data

<u>Visit</u>	1	2	3	4	5	6	7	8
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
2	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
3	Χ	Χ	Χ	Χ	Χ	X	X	Χ
4	Χ	Χ	X	Χ	X	X	Χ	Χ
5	Χ	Χ	X	Χ	Χ	Χ		1.1
6	X	Χ	X	Χ	•		•	

X = observed on initially randomized treatment

- **X** = observed on rescue medication
- **X** = observed on no medication
 - . = not observed

Five Methods of Dealing with Inter-Current events

- 1) Treatment policy (ITT) ignore inter-current events
- 2) Composite modified definition of the variable (or the summary measure) with inter-current event(s) a component of the outcome
 - NRI, mNRI, assign band rank to patients with inter-current event
- 3) Hypothetical specific hypothetical conditions of interest, e.g.
 - Outcome if patient had not stopped / switched treatment
 - Outcome if patients could be followed without treatment (reference based controlled imputations.

Five Methods of Dealing with Inter-Current events (continued)

- 4) Principal strata restrict population of interest to the stratum of patients in which an inter-current event would not have happened.
- 5) While on treatment values of the variable in those patients up to the time of the intercurrent event in all patients

General Categories of Objectives

- Compare treatment A vs treatment B
- Compare treatment policy A vs policy B
 - Begin with treatment A vs begin with treatment B
 - Treatment A + rescue vs Treatment B + rescue

General Categories of Estimands

- Efficacy (de-jure)
 - Benefit of the drug when taken as directed
 - Hypothetical and Principal Stratification
- Effectiveness (de-facto)
 - Benefit of the drug as actually taken
 - Conceptually, a composite of efficacy and adherence
 - Composite and while on treatment

Summary

- A work in progress
- Much progress in the work