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➢Taxonomy of biomarker identification methods
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 The task of personalized medicine can be 
“translated” into statistical language as 
constructing predictive biomarker 
signature that would allow identifying 
patients with differential treatment 
response

 The schematic plots show four types of 
relationships between the outcome and 
a single biomarker

X is prognostic but not predictive X is prognostic and predictive

X is predictive but not prognostic X is neither prognostic nor predictive

PREDICTIVE VERSUS PROGNOSTIC BIOMARKERS
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 Subgroup analyses are often (rightfully) viewed as data dredging

 Many authors came up with various “checklists” of principles for Subgroup Analyses

– NHS R&D HTA Programme (Brookes et al. 2001) provides a list of 25 recommendations

– Rothwell (2005) proposed a guideline with 21 rules 

– Sun et al (2009) listed the existing 7 plus 4 additional criteria for assessing credibility of subgroup 
analysis

 EMA Guideline on the Investigation of Subgroups in Confirmatory Clinical Trials (Draft, Jan 2014)

– Recognizes issues with current SA practices that “create disincentive to properly plan the investigation 
of subgroups”

 The Guidelines encourage to “exercise caution” when conducting subgroup analyses, which is hard to 
operationalize … 

SUBGROUP ANALYSIS GUIDELINES
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 “Guideline-driven” approach fails to encompass modern scientific approaches to statistical learning 
and the need for evidence-based personalized/stratified/precision medicine

 A different view: subgroup identification/analysis is framed as a special case of model selection

 This helps link subgroup identification efforts with the wealth of statistical methodology on model 
selection

 Pre-specified is the entire biomarker/subgroup selection strategy, not specific subgroup(s)

DATA-DRIVEN VS. “GUIDELINE-DRIVEN” APPROACH
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 “Complexity control” to prevent data overfitting

– Tuning parameters controlling the search process need to be determined often in a data-driven 
fashion, e.g., via cross-validation

– E.g., penalized regression, a.k.a. shrinking, regularization

 Evaluating the type I error rate for the entire subgroup search strategy

– E.g., using resampling under null

 Obtaining “honest” estimates of treatment effect in subgroups (i.e. treatment effect expected in 
identified subgroups if applied to future studies)

– E.g., by using resampling methods or Bayesian model averaging/empirical Bayes

– Uncertainty associated with the entire strategy should be accounted for

WHAT MAKES DATA-DRIVEN SA STRATEGIES “PRINCIPLED”?
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 Global outcome modeling

 Global treatment effect modeling

 Individual treatment regimes

 Local treatment effect modeling

TAXONOMY OF DATA-DRIVEN SA STRATEGIES
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 Modeling underlying outcome function 𝑓 𝒙, 𝑡 = 𝐸(𝑌|𝑿 = 𝒙, 𝑇 = 𝑡), 
where 𝑌 is an outcome, 𝑋 is a collection of biomarkers and 𝑇 =0,1 is a 
treatment indicator

– computing individual treatment differences δ𝑖 = መ𝑓 𝒙𝑖 , 1 −
መ𝑓 𝒙𝑖 , 0 , 𝑖 = 1,… , 𝑁, that can be further modeled as an 

outcome

– allows constructing predictive score as a function of 
biomarkers, a biomarker signature: δ 𝒙

 Some recent methods

– Virtual Twins by Foster, Taylor and Ruberg (2011) [combining 
Random Forest for 𝑓 𝒙, 𝑡 and CART for further modeling 
δ 𝒙 ]

– Penalized regression (FindIT) by Imai and Ratkovic (2013)

– Bayesian hierarchical modeling (Jones et al, 2011 extending 
Dixon and Simon, 1991)

– Bayesian trees (Henderson et al, 2017; Zhao et al, 2018)

X

𝑓 𝒙, 1 (experimental 
treatment)

𝑓 𝒙, 0 (control)

𝑓 𝒙, 𝑡

δ 𝒙

GLOBAL OUTCOME MODELING
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 Directly modeling underlying treatment effect,δ 𝒙

– Classification and regression tree methods can be adopted 
by incorporating treatment variable in the splitting criterion, 
resulting in piecewise constant fit for δ 𝒙

– Parametric models were proposed that obviate the need for 
fitting in prognostic effects

 Some recent methods

– Interaction trees, IT (Su et al., 2008, 2009)

– Gi method (Loh et al., 2015), implemented within GUIDE 
suite

– Model-based recursive partitioning (Seibold et al., 2014).

– Modified covariate method by Tian et al. (2014)

– quint method by Dusseldorp and Mechelen (2014)

δ 𝒙 = 𝑓 𝒙, 1 − 𝑓 𝒙, 0

δ =0

X

GLOBAL TREATMENT EFFECT MODELING
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 Estimating optimal treatment regime 𝑠𝑖𝑔𝑛[δ 𝒙 ]

– Obviates the need to fit-in prognostic (main) effects

– Estimates optimal treatment regime by fitting a weighted classifier 
for treatment as a “response” with outcome-based weights 
𝑤 𝑦, 𝒙 =

y

𝑃𝑟(𝑇=𝑡|𝑿=𝒙)

– Patients who did well on their actual treatment would high costs of 
misclassification and likely to have their optimal treatment 
estimated to be the same treatment they received

– Weights incorporate the probabilities of treatment which are known 
in RCT and can be obtained by modeling propensity of treatment 
assignment in observational (non-randomized) studies

 Some recent methods

– Outcome weighted learning (OWL) introduced by Zhao et al. (2012) 

– Robust kernel method by Huang and Fong (2014)

– ROWSi method by Xu et al (2015)

– Tree- and list-based ITR (Zhang et al, 2012; Laber et al, 2015; Zhang 
et al, 2016; Fu et al, 2016)

δ =0

X

Prescribe experimental treatmentPrescribe control

𝑓 𝒙, 1 − 𝑓 𝒙, 0 )

MODELING INDIVIDUAL TREATMENT REGIMES
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 Identifying subgroups S with enhanced treatment effect 
𝛿 𝒙 > 𝛿∗ for 𝒙 ∈ 𝑆

– Instead of estimating the response function 𝛿 𝒙 in the entire 
covariate space first, and then carving out the interesting part 
where 𝛿 𝒙 > 𝛿∗, these methods would directly search for 
such interesting regions

 Some recent methods:

– Subgroup search methods of Kehl and Ulm (2006), Chen et al. 
(2015) (inspired by Bump Hunting a.k.a. PRIM by Fisher and 
Friedman, 1999)

– SIDES (by Lipkovich et al, 2011) and SIDEScreen (Lipkovich and 
Dmitrienko, 2014)

– TSDT by Battioui et al (2018)

– Sequential-BATTing, Huang et al (2017)

– Bayesian model averaging (Berger et al, 2014)

X

Enhanced effect for 
experimental treatment

𝛿 =0

𝛿 𝒙 > 𝛿∗ > 0

𝑓 𝒙, 1 − 𝑓 𝒙, 0 )

LOCAL TREATMENT EFFECT MODELING (SUBGROUP SEARCH)
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SOFTWARE FOR SUBGROUP IDENTIFICATION
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http://biopharmnet.com/subgroup-analysis-software/

http://biopharmnet.com/subgroup-analysis-software/


 What is the number of candidate predictors that can be processed in efficient manner (p=1, 
20, 100, 1000)?

 What is the “model space” induced by the procedure and how model complexity is controlled 
to prevent overfitting?

 What outputs does the method produce?

– Signatures of promising subgroups

– Personalized treatment contrast

– Optimal treatment assignment

– Predictive biomarkers ordered by predictive strength.

 How the false discovery is controlled, if at all (type I error control,  FDR)

 Does the method provide “honest” estimates (point estimates, SE, CI) of treatment effect in 
identified subgroups corrected for over-optimism?

– E.g. using cross-validation, bootstrap, Bayesian model averaging

WHAT FEATURES OF A SA METHOD WE SHOULD LOOK FOR?
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Updated from Lipkovich, Dmitrienko, D’Agostino. Tutorial in biostatistics… , SIM 2017

SUMMARY OF SUBGROUP IDENTIFICATION METHODS
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 We emphasize principled or disciplined use of subgroup identification as opposed to haphazard 
data-dredging and treat subgroup identification as a special case of model selection, contrasting 
data-driven with guideline-driven approach  

 Unlike standard predictive modeling methods that aim at identifying subgroups with 
heterogeneous outcome, using methods for tailoring/personalized medicine requires modeling 
individual treatment differences targeting subgroups with heterogeneous treatment effect 

 Methods for subgroup identification and analysis  borrow from diverse literature in machine 
learning, multiple testing and causal inference

 A feature of subgroup identification (and data mining in general) in drug development is the 
need to control the Type I error (or false discovery) rates which is a relatively new trend in the 
area of machine learning 

 Once subgroups have been identified, analyst is facing the challenge of obtaining “honest” 
estimates for associated effects that should be expected in the future data

SUMMARY
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