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Outline

» Background: Drug Development and QSAR**
» Deep Neural Net (DNN) for QSAR:

— Does “Deep” help?
— Why Multi-task DNN works?

» Summary and Discussion

** QSAR(Quantitative Structure and Activity Relationship): A research area to study the
relationship between a molecule’s structure and its chemical and biological activities.
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Drug Development (Small Molecules)

Drug R&D Clinical Trials

1-2 years

Pre Clinical
Animal

Target ID & ~ Hit
Validation - Generation

Medicinal Chemistry Capability

e | ead molecule identification

e Lead molecule optimization

v Target potency

v ADME (Absorption, Distribution, Metabolism, Excretion)
v’ Toxicity

Vo

l.e. Molecules’ chemical/biological activities
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QSAR: Quantitative Structure & Activity

Relationship
Molecule =
Activities Foazaal
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Prediction 4{

Correlation(Lab, Computer) : 0.30 ~0.91
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Merck QSAR Kaggle Challenge (2012)

15 Diverse .

verck 0sar  EheNew Hork Times |

Datasets Scientists See Promise in Deep-Learning
datasec  moecdes Pro grams

. By JOHN MARKOFF

cm 11sto Published: November 23, 2012

oo o Deep Learning (DL) used by the 1st

ox: s prize winner (George Dahl, University of

s e Toronto) beat Random Forest (RF),

Toven o Merck’s internal approach.

Average Correlation : 0.65 (RF) vs. 0.70 (DL)

DL is good for QSAR. But is it revolutionarily good?
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Deep Learning Won Kaggle Competition =
Fully-Connected Deep Neural Network (DNN)

* Deeper Net
» Multi-tasks
« other techniques ...
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Does “Deep” help?

Impacts of Network Architecture
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Observations:

Neural Net used in 1 “Deep” helps, but with a limit, i.e. not > 3-4 layers.

the 1980s

2. “Deeper” requires “wider” €% MERCK
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Why “Deep” Helps, But with A Limit?

Powerful predictor
» Deep network easily approximates arbitrarily complex
prediction functions *
» Large and deep network almost guarantees good
optimization results **

Large & Smaller-
deep \NJ\M\M/\N\/J\/ VS. scale

network network

Ineffective feature engineering

» QSAR data are molecule descriptors (e.g. AP or DP
descriptors, SMILES strings), which are non-
redundant, and can defeat DNNs’ feature engineering.

*Kurt Hornik (1991); ** Anna Choromanska, et al. (2014) .:’ MERCK



Multi-task DNNs

Test set R-Squared Comparison - from 20 repeated runs
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Box plot reflects the range of a DNN performance due to random initial values.
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Pairing OX2 with Each of The Other 14

Datasets

OX2+ -
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= Prediction results for OX2 (test set)?

Joint

===p Prediction results for OX2 (test set)?
DNN

Joint
DNN == Prediction results for OX2 (test set)?
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OX2 Pairing Results

OX2 Testset R-squared for each pair DNN

) (With all 15 Kaggle datasets)
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What happened between OX2 and OX1?

3704 molecules

)
|
(Compound-
I > Testing Time)
OX2 Training Set OX2 Test Set
(Compound-
I > Testing
OX1 Training Set OX1 Test Set  Time)
2327
overlapped
L | correlation = 0.65
The OX1 activities of 5 S

the 2327 overlapped - -
molecules positively
correlated with their o

OX2 activities.
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More Questions

e Same molecular structure
+ positive- correlated activity v
+ activity ?
+ activity ?

Compare Act. of the overlapped molecules Compare Act. of the overlapped molecules Compare Act. of the overlapped molecules
e 1 True-OX1 Activities 2 Faked OX1 Activities
) ' Faked OX1 Activities N I Paed

| (positively correlated),” \egatively correlated)

1 . (uncorrelated).

OX1 train
7
1

OX2 test OX2 test OX2 test
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More Question Answered
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Findings regarding Multi-task DNNs

Primary Training Set Assistant Training set

Primary Test Set

Molecular structure —<— Molecule Activity <« == =» | Results

Primary dataset and assistant
dataset have correlated activities
(positive or negative)

Improved prediction R? for
primary test set f

Primary test set molecules are
Finding 1 more similar to assistant training
set molecules

Decrease prediction R* for

Uncorrelated biological activities .
primary test set

Primary test set molecules are very
Finding 2 different from assistant training set | Correlated or not
molecules
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No significant change of pre-

diction for primary |tesi set




Assistant Training Set = Domain Knowledge ,

o Multi-task DNNs allow us to learn from both the primary
and an Assistant Training Set to boost prediction of the
primary task, if the Assistant Training Set is set as:

1) Structure: identical or very similar to those Iin the test
set of the primary task;

2) Activity: available for experiments related to the
primary task.

« Domain knowledge is needed for constructing assistant
training sets.

o Multi-task DNNs provide a unique approach for DNNSs to
Incorporate domain expert knowledge.
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Summary and Discussion

« Evolutionary vs. Revolutionary: lab-quality reproducibility?

« DNN in its current form is still an evolutionary solution for
QSAR.

 Evolutionary = Revolutionary:
» Incorporating domain knowledge : Multi-task DNNs can
help.
» Crafting more effective QSAR features:. ??
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