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Motivation for Utilizing Non-Probability Samples

Non-probability samples are an increasing part of life for
the survey analyst.

Non-response.
Sampling frame coverage.
Increasing cost.
Detailed outcomes of interest not present in probability
samples.
Larger sample size than equivalent probability sample,
especially in small domains.

Offers possibility of improved inference if increase in
precision is not overwhelmed by bias from the
non-probability sample.
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Framework for Nonprobability Sample Inference

Consider the joint density of a population vector of analysis
variable Y = (Y1,Y2, . . . ,YN) and of 0-1 indicator variables
δs = (δ1,δ2, . . . ,δN) for a sample s:

f (Y,δs|X;Θ,Φ) = f (Y|X;Θ)f (δs|Y,X;Φ)

where X is an N×p matrix of covariates that govern Y through
unknown parameter Θ, and unknown parameter Φ governs f (δs
through both Y and X (Smith 1983; Rubin 1976; Little 1982).

Probability sampling: f (δs|Y,X;Φ) = f (δs|X).
Non-probability sampling: δs can depend on Y and/or Φ in
addition to X.
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Framework for Nonprobability Sample Inference

1. Quasi-randomization: model f (δs|Y,X;Φ).
Ideally, the probability of being in the sample is not NMAR
and a model can be found for f (δs|X;Φ).

2. Superpopulation: model f (Y|X;Θ).
Calibration a broad special case where model-based
estimates are adjusted to known or estimated quantities
outside of the non-probability sample.
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Quasi-randomization

Estimation of the most general NMAR model f (δs|Y,X,Φ)
typically requires information on non-sampled units that is
available only in specialized applications.

Typically assume MAR f (δs|X,Φ).

Even here, estimation typically requires some heroic
assumptions – unless there is a “reference” probability
survey available.
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Quasi-randomization: Generating Pseudo-Weights

Elliott and Davis (2005) developed method to account for
non-response bias and frame coverage.

Extend to estimate over- and under-representation of
sample elements in the non-probability sample based on
covariates available in both samples.

By repeated application of Bayes’ Rule and discriminant
analysis we can approximate when sampling fractions are
small the probability that a nonprobability case would have
been sampled by

P(S∗i = 1 | xi = xo) ∝ P(Si = 1 | xi = xo)
P(Zi = 1 | xi = xo)

P(Zi = 0 | xi = xo)
.

S∗ = sampling indicator for being in the nonprobability sample.
S = indicator for being in the probability sample.
xi = covariates that determine probability of selection.
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Generating Pseudo-Weights

Resulting pseudo-weight is given by

wi = 1/P̂(S∗i = 1 | xi = xo) ∝

1/P̂(Si = 1 | xi = xo)
P̂(Zi = 0 | xi = xo)

P̂(Zi = 1 | xi = xo)
.

If the probability sample weight as a function of xo is
known, 1/P̂(Si = 1 | xi = xo) can be replaced with
1/P(Si = 1 | xi = xo) and computed directly.

Otherwise P̂(Si = 1 | xi = xo) can be estimated using, e.g.,
beta regression (Ferrari and Cribari 2004).

Obtain P̂(Zi = z | xi = xo) via logistic regression.
LASSO (Tibshirani 1996).
Bayesian additive regression trees (Chipman et al. 2010).
Super learner algorithms (Van der Laan et al. 2007).
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Inference Using Pseudo-Weights

For point estimation, use normalized pseudo-weights and
probability sample weights as case weights in combined
dataset to obtain the estimator of interest θ̂ .
For variance estimation, use a jackknife estimators that
treats the non-probability sample as a single stratum with
IID observations and the probability sample following the
appropriate sample design.
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Quasi-randomization Example: CIREN and
NASS-CDS (Elliott et al. 2010)

Crash Injury Research Engineering Network (CIREN)
database contains detailed medical and crash information
on motor vehicle crash patients admitted to Level 1 trauma
centers around the US.
Non-probability sample: Centers compete to get grants
(only Level 1 eligible).
Inclusion criteria: model year, injury severity, crash type,
and occupant restraint condition.
Extensive medical and biomechanical information about
each occupant and crash.

Careful case-by-case assessment of injury-causation
scenarios.

Use CIREN data from 2000-2006, and restricted to 1,393
occupants 16 and older that actually met specific criteria
for CIREN inclusion.
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Quasi-randomization Example: CIREN and
NASS-CDS

National Automotive Sampling Survey – Crashworthiness
Data System (NASS-CDS) (NHTSA, 2008) is a
representative three-stage probability sample selected
annually from all police-reported crashes that resulted in at
least one vehicle having to be towed from the scene for
damage.
Oversamples crashes:

fatal/serious injuries.
transported to ER/hospital.

A subset of 4,099 NASS-CDS 2000-2006 subjects eligible
for inclusion in CIREN based on their injury outcomes was
used to create the CIREN pseudo-weights.
Limitations of NASS-CDS

Detail of injury type (e.g., know had pelvic fracture, but type
is unknown).
Sample size of severe (AIS 3+) injuries somewhat limited.
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Constructing Pseudo-Weights

Predict NASS weights using injury severity, medical
treatment, model year of vehicle, deformation location, light
condition, year of interview, and vehicle make.
Balance based on age, gender, restraint use, type of crash,
damage distribution and extent, days hospitalized, driver
(vs. passenger), injury severity, model year.

CIREN CIREN NASS
unweighted pseudo-weighted (CIREN-elig)

Age (yr) 41.4 42.5 41.8
Days Hosp. 10.3 6.3 6.0
Mean AIS 3.45 3.35 3.31
% 35+ kph 61.6 48.1 50.3
% Driver 50.8 81.3 78.5
> 4 years 30.2 47.4 45.5
% American 57.6 60.8 66.6
% Daylight 55.1 58.4 50.6
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NASS-CIREN Analysis: Predictors of Lower Extremity
Injury

Outcome available in both NASS and CIREN: AIS 3+
lower-extremity injury.

Increase the size of an injured sample to better estimate
the effects of predictors.

Three analyses: use data from NASS-CDS alone, use data
from CIREN alone, and and use data from NASS and
CIREN combined using CIREN-pseudo weights.
A total of 884 lower extremity injuries were available in the
NASS-CDS dataset; an additional 387 lower extremity
injuries were available in the CIREN dataset.
Restrict to frontal crashes.
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NASS-CIREN Analysis: Predictors of Lower Extremity
Injury

Odds ratio AIS 3+ of lower-extremity injury.
NASS CIREN NASS-
only (unweighted) CIREN

Age (vs. 65)
16-19 .10.05,.22 1.23.64,2.37 .12.06,.24
20-39 .22.11,.46 1.16.72,1.87 .22.11,.76
40-64 .30.15,.59 1.17.72,1.90 .25.13,.45
Seat Position (vs. Driver)
Front Row 1.14.70,1.85 .76.55,1.04 .95.63,1.44
Rear Row .11.01,1.13 .22.06,.83 .08.02,.34
Restraint Use (vs. Belted)
Belted, not 3pt 1.74.31,9.55 5.001.04,24.07 8.621.43,51.85
Unrestrained 3.501.89,6.47 1.24.89,1.72 3.792.48,5.78
Delta-V (vs. <15 kph)
15-35 kph 6.81.53,87.69 1.62.26,10.33 7.641.05,55.61
35+ kph 51.73.71,720.8 2.32.37,14.55 66.67.93,559.0
Model Year
(vs. <1998)
1998-2002 1.841.36,2.49 1.31.90,1.90 1.631.12,2.35
2003+ 1.741.20,2.55 1.06.61,1.82 1.84.64,5.28
Vehicle (vs. cars)
Pickups 1.10.52,2.32 1.51.96,2.39 1.05.65,1.70
Vans .76.45,1.27 3.131.55,6.36 1.00.59,1.70
SUVs .93.40,2.15 1.30.79,2.13 .88.52,1.50
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Superpopulation

Focus on modeling of of f (Y|X;Θ).
Project results from model to the full population if X known.

Sample selection ignorable if design is ignorable:
f (δs|Y,X;Φ) = f (δs|X;Φ).
But that is again typically not the case in non-probability
samples.
Partition Y into sample and non-sample units:
f (Y|X;Θ) = f (Ys|Ys,X;Θ)f (Ys|X;Θ).
If f (Ys|Ys,X;Θ) = f (Ys|X;Θ) then model estimates from
sample can be use to predict non-sampled elements.
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Poststratification and Generalized Regression
Estimation

Suppose Yi is linear in Xi :

EM(yi) = xT
i β

for unknown parameter β .
Solving estimating equation for β using sample data yields
least squares estimator

β̂ = (XT
s Xs)−1XT

s ys.

Predict nonsampled units by ŷi = xT
i β̂ . A predictor of the

population total t is then given by

t̂ = ∑
i∈s

yi + ∑
i∈s̄

ŷi = ∑
i∈s

yi + (tUx − tsx )T
β̂

where tUx corresponds to population totals for X.
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PS and GREG: Variance estimation

Can rewrite t̂ as ∑i∈s wiyi where

wi = 1 + (tUx − tsx )T (XT
s Xs)−1xi .

Corresponds to the generalized regression estimator
(GREG) (Deville and Sarndal 1992).
If X is categorical, t̂ corresponds to the poststratified
estimator: t̂PS = ∑

H
h=1 Nhysh.

In many cases, however, the availability of control totals
may be somewhat or very limited, especially to allow the
critical assumption f (Ys|Ys,X;Θ) = f (Ys|,X;Θ) to be made.
In this case, replace tUx with tBx , where tBx is obtained
from a “benchmark” probability survey (Dever and Valliant
2016).
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Model Assisted Calibration

The weights wi in GREG can be viewed as the weights that
minimize ∑i∈s(wi −1)2 subject to the constraint that
∑i∈s wixi = tUx or ∑i∈s wixi = tBx .
Model assisted calibration (Wu and Sitter 2001) replaces
the latter constraint with ∑i∈s wi ŷi = ∑i∈U ŷi .
This yields

t̂MA = ∑
i∈s

yi + (∑
i∈U

ŷi −N/ns ∑
i∈s

ŷi)β̂
MC

where β̂ MC = (ŷi−ŷ)(yi−y)

(ŷi−ŷ)2 .
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Estimated control LASSO calibration

In many cases we may want to use a large vector of
potential control totals, particulary if we are obtaining them
from a benchmark probability survey.
In this case, rather that obtaining β̂ by least squares, use
adaptive LASSO a more robust estimation procedure
(Chen et al. 2018).

β̂ = argmin
β

(
∑

i∈sA

(
yi −xT

i β

)2
+ λ

p

∑
j=1

∣∣βj
∣∣ ∣∣∣β̂ MLE

j

∣∣∣−γ

)
.

Drives parameters associated with weak predictors to 0 by
penalizing covariates with large effect sizes in favor of
lowering prediction error when the sample size is small
(Zou 2006).
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Predicting 2014 Senate and Governors Races

Users who completed a SurveyMonkey poll in October
2014 were sometimes asked voting preferences in Senate
and governor races.
Restricted to likely voters with a Democratic or Republican
candidate: 33,199 gubernatorial voters and 28,686
Senatorial voters.
Benchmark sample: Pew Research probability sample of
likely voters 1,094 gubernatorial voters and 656 Senatorial
voters.

Common covariates: age, gender, race, education, religion,
religious attendance, approval of Obama, party preference.

Consider
Unadjusted.
Calibrated to state-level measures from probability survey.
Model assisted-calibration using GREG.
Model assisted-calibration using LASSO.
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Results for Governors Races
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Results for Senate Races
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Results: Bias, RMSE, and Coverage

Governor
Method Mean Bias Mean RMSE 80% Coverage

Unweighted +4.1 5.2 36% (4/11)
GREG +1.9 5.2 64% (7/11)

EC-GREG -7.0 15.0 36% (4/11)
EC-LASSO -0.5 4.7 64% (7/11)

Senate
Unweighted +4.0 6.0 12% (1/8)

GREG +2.4 6.4 38% (3/8)
EC-GREG -9.0 12.2 50% (4/8)

EC-LASSO +1.0 5.1 50% (4/8)
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Hierarchical Models

Returning back to our poststratified estimator

t̂PS =
H

∑
h=1

Nhysh or Ŷ
PS

=
H

∑
h=1

Physh

Holt and Smith (1979) suggested dealing with instabilities
in the estimation of ysh by use of a hierachical model

ysh | µh ∼ N(µh,σ
2/nh), µh ∼ N(µ,τ2).

The mean estimator is given by ∑
H
h=1 Ph µ̂h, where

µ̂h = E(µh | y) =
τ2

σ2/nh + τ2 yh +
σ2/nh

σ2/nh + τ2 y .

Elliott and Little (2000): exchangeable priors oversmooth
when σ2 and τ2 were approximately equal.

More structured priors (autoregressive or spline on ordered
weights) had much better performance with respect to
coverage and mean square error.
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“Mr. P” and the 2012 Presidential Election

Wang et al. (2015) used this hierarchical model approach,
termed multilevel regression and prediction (MRP) to
obtain estimates of voting behavior in the 2012 US
Presidential election.

Sample of 350,000 Xbox users, empaneled 45 days prior to
the election.

Used detailed highly predictive covariates about voting
behavior:

Sex, race, age, education, state, party ID, political ideology,
and reported 2008 vote.
176,256 cells.
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“Mr. P” and the 2012 Presidential Election

Use factorized model to predict proportion of two-party
vote:

logit(P(Yi ∈ [Obama, Romney]))=α0+α1(state last vote share)+
K

∑
k=1

ak
jk [i]

ak
jk [i] ∼ N(0,σ2

a )

logit(P(Yi ∈ [Obama] | Yi ∈ [Obama, Romney])) =

β0 +β1(state last vote share)+
K

∑
k=1

bk
jk [i]

bk
jk [i] ∼ N(0,σ2

b )

where jk [i] indicates that the ith observation belongs to the j th category
for the k th variable.
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Raw Xbox Proportions vs. Tracking Polls
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Multilevel Regression and Prediction vs. Tracking Polls
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Xbox vs. 2012 Exit Polls in Poststrata
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Advantages of Quasi-Randomization vs.
Superpopulation

Quasi-randomization has the advantage of creating a
single weight for use with all analyses.

Convenient; parallels design-based framework, even if not
strictly design-based.
Can go badly wrong if model is poor, and model diagnostics
are not well-developed.

Superpopulation model is more principled, but may work
best with targeting a narrow set of parameters in a single
analysis.

Fits within model-based framework.
Time consuming and may require higher degree of
expertise to implement.
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Next Steps

Certainly an open area for research!
Propensity Scores
Mean/Quantile Matching
Mode effects, measurement error
Data harmonization and alignment
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