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Introduction

Volunteer-Based Cohorts versus Probability-Based Sample

Volunteer cohort Probability sample

Advantages

Less expensive

Quick Representativeness

Convenient Inference for population

More detailed, specific info

Large sample sizes

Disadvantages
? Representativeness ?Cost

? Biased estimates
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Introduction

Volunteer Cohort

3 Health Volunteer Effects (Pinsky et al. 2007)

3 For example (Fry et al. 2017):

All-cause mortality rate in UK Biobank = Half of UK population

Using a cohort study to estimate population prevalence
requires addressing the representativeness of the cohort!
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Introduction

Propensity-Score-Based Methods

In randomized trial study
3 Match and balance the distributions of confounders (Rosenbaum &

Rubin, 1983) to estimate treatment effect

In probability samples
3 Estimate propensity of responding (Czajka et al., 1992) to adjust

nonresponse bias

Can use the propensity score to improve the
representativeness of cohort sample?
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Introduction

Existing Propensity-Score-Based Weighting Methods

Inverse of Propensity Score Weighting (IPSW)

Elliott (2013); Elliott et al. 2016; Chen et al., 2018; Kim & Wang
2018; etc

Estimate the propensity for popualtion unit r included in the cohort

For example, Valliant & Dever (2011)

log
p(xrxrxr)

1− p(xrxrxr)
= α+ γTxxxr for r ∈ ss ∪ sc

where ss is a survey sample and sc is a cohort.

The corresponding pseudo-weight is:

wIPSWj =
1− p̂(xxxj , γ̂γγw)

p̂(xxxj , γ̂γγw)
for j ∈ sc
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Introduction

Existing Propensity-Score-Based Weighting Methods

Inverse of Propensity Score Weighting (IPSW)

Properties:

I Correct bias under the true propensity score model 3

I Sensitive to Model misspecification ?
I Extreme pseudo-weights ?
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Introduction

Existing Propensity-Score-Based Weighting Methods

Propensity Score Adjustment by Subclassification (PSAS)

Lee & Valliant 2009

The estimated PS is used to measure the similarity of the X
distributions

I Sort the combined sample by the estimated PS
I Partition the sorted sample into K subclasses
I Divide the sum(survey weights) by # of cohort units in each subclass

wPSASj for j ∈ sc
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Introduction

Existing Propensity-Score-Based Weighting Methods

Propensity Score Adjustment by Subclassification (PSAS)

Assume: All cohort units with subclasses represent the same # of
population units
Properties:
I Variance 3
I Bias ?
I Number of classes ?
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Introduction

Research Goal

Propose a new propensity-score-based weighting approach

3 Variance reduction

3 Bias reduction

3 No ad-hoc subclassification

3 Appropriate variance estimation for weighted estimates
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Subject and Methods

Notation

Study Population: U with size N

Survey Sample (ss) Cohort (sc)

H strata → ah PSUs in stratum h a study centers → individuals
→ individuals︸ ︷︷ ︸

Combined sample: ss ∪ sc (H + 1 strata)
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Subject and Methods

Notation Cont’d

y: variable of interest.

x : q × 1 vector of covariates available in both ss and sc.

z: indicator for cohort membership (=1 for r ∈ sc)
p(x) = Pr {z = 1 | x}: propensity score.

wi: sample weight for i ∈ ss.
N̂ =

∑
i∈ss wi: survey estimate of population total.
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Subject and Methods

4-Step Kernel Weighting Method to Create Pseudo-weights
for a Cohort

1 Fit logistic regression model for predicting p(x)

log
p(xr)

1− p(xr)
= α+ γTxr for r ∈ ss ∪ sc (1)

Get estimated propensity score p̂
(
x
(s)
i

)
, p̂
(
x
(c)
j

)
for i ∈ ss, and

j ∈ sc respectively.

2 For each individual i ∈ ss, compute

d
(
x
(s)
i , x

(c)
j

)
= p̂

(
x
(s)
i

)
− p̂

(
x
(c)
j

)
for each j ∈ sc
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Subject and Methods

Kernel Weighting Method to Create Pseudo-weights for a
Cohort Cont’d

3 Obtain kernel weight (KW) for each j ∈ sc from the unit i

kij =
K
(
d
(
x
(s)
i , x

(c)
j

)
/h
)

∑
j∈sc K

(
d
(
x
(s)
i , x

(c)
j

)
/h
) for j ∈ sc

h: bandwidth; K(·): kernel function.
Note:

∑
j∈sc kij = 1; kij ∈ [0, 1).

- The closer the distance;
- The higher similarity in xxx distribution;
- Larger portion of wi assigned to cohort unit j

Therefore, relax the assumption of PSAS
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Subject and Methods

3 Compute the KW pseudo-weight for j ∈ sc

wkwj =
∑
i∈ss

kij · wi

The sum of pseudo-weights across cohort units:∑
j∈sc

wkwj =
∑
i∈ss

wi

The cohort KW estimate of prevalence is

Ŷ
kw

=

∑
j∈sc

wkwj

−1∑
j∈sc

wkwj · yj
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Subject and Methods

Property of Kernel Pseudo-Weights

Theorem Under the following conditions:

I
∫
K(u)du = 1

I sup
u
|K(u)| <∞,

∫
|K(u)|du <∞, lim

|u|→∞
|u| · |K(u)| = 0,

I nc →∞, hnc → 0, nc · hnc →∞
I EEE(Y |p(x), cohort) = EEE(Y |p(x), survey)

I EEE(Y ) = µ, EEE(Y 2) <∞
KW estimator of population means is consistent with the target
population mean (

Ŷ
kw
− Y

)
PPP→ 0
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Subject and Methods

Jackknife Variance Estimation

Total number of strata = H + 1.

Number of replicates K =
∑H+1

h ah.

For replicate (hα),

1 Leave out α-th cluster in stratum h.

2 Calculate the weight adjustment factor fr(hα)

fr(hα) =


0, stratum h cluster α;
ah
ah−1 , stratum h cluster α′ 6= α;

1, otherwise.

3 Refit model 1 with fr(hα) in 2 , and re-estimate propensity scores.
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Subject and Methods

Jackknife Variance Estimation Cont’d

4 Calculate kernel weight forj ∈ s(hα)c associated with i ∈ s(hα)s

kij(hα) =
K
(
d
(
x
(s)
i , x

(c)
j

)
/h
)

∑
j∈s(hα)c

K
(
d
(
x
(s)
i , x

(c)
j

)
/h
) , for j ∈ s(hα)c .

5 The KW pseudo-weight for j ∈ s(hα)c is.

wkwj(hα) =
∑

i∈s(hα)s

kij(hα) · wi · fi(hα), for j ∈ s(hα)c .

Yan Li (Joint Program in Survey Methodology, University of Maryland, College Park, MD, U.S.A[20pt] NISS workshop [2pt] on Using Surveys to Improve the Representativeness of Nonprobability Samples in Epidemiologic Studies)KW for External Validity March 11, 2019 18 / 41



Subject and Methods

Jackknife Variance Estimation Cont’d

4 Calculate kernel weight forj ∈ s(hα)c associated with i ∈ s(hα)s

kij(hα) =
K
(
d
(
x
(s)
i , x

(c)
j

)
/h
)

∑
j∈s(hα)c

K
(
d
(
x
(s)
i , x

(c)
j

)
/h
) , for j ∈ s(hα)c .

5 The KW pseudo-weight for j ∈ s(hα)c is.

wkwj(hα) =
∑

i∈s(hα)s

kij(hα) · wi · fi(hα), for j ∈ s(hα)c .

Yan Li (Joint Program in Survey Methodology, University of Maryland, College Park, MD, U.S.A[20pt] NISS workshop [2pt] on Using Surveys to Improve the Representativeness of Nonprobability Samples in Epidemiologic Studies)KW for External Validity March 11, 2019 18 / 41



Subject and Methods

JK Variance for Mean/ Prevalence

For each replicate, re-estimate the population mean/ prevalence with
replicate KW pseudo-weights

Ŷ
kw

(hα) =
(∑

j∈s(hα)c

wkwj(hα)

)−1
·
∑

j∈s(hα)c

wkwj(hα) · yj

The JK variance estimate for Ŷ
kw

is

varJK

(
Ŷ
kw
)

=

H+1∑
h=1

ah − 1

ah

ah∑
α=1

(
Ŷ
kw

(hα) − Ŷ
kw
)2

.
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Simulation Studies

Finite Population Generation

1 M = 3, 000 clusters with size=3,000 (population size N = 9× 106)

2 Population Generation

I age, sex, Hisp, income, and urban/rural (2015 ACS)

I Continuous exposure Env

I Disease status y (=1 for having disease; 0 otherwise)

logit{Pr(y = 1)} = β0 + β1age+ β2sex+ β3Hisp+ β4Env
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Simulation Studies

Sample to Assemble the Survey Sample and Cohort

Two-stage Probability Proportional to Size (PPS) Design

Sample Design Measure of Size Inclusion Probability

Cohort Clusters
∑

i∈Ca

sbi nc · sbi∑N
i=1 s

b
i(nc = 75× 150) Individuals sbi

Survey Clusters
∑

i∈Ca

sb
′

i ns · sb
′

i∑N
i=1 s

b′
i(ns = 150× 10) Individuals sb

′

i

Ca: ath cluster (a = 1, · · · ,M); b and b′: real numbers

si : generated by s = exp{γγγxxx}, where xxx=(1, age, income, Env, v)

where v = Pr(y = 1) + u, u ∼ N(0, 0.01)

As the result:
logit{Pr(z = 1|sc ∪ ss)} = const.+ (b− b′) · γxγxγx

logit{Pr(z = 1|sc ∪ U)} = const.∗ + b · γxγxγx
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Simulation Studies

Results under 1+3 Propensity Score Models

Weighting methods

IPSW, PSAS, KW

Propensity score models
Model Covariates
True model age, income, Env, z

Underfit model age, income, Env

Mixed model age, income, Env, race/ethnicity, sex

Overfit model age, income, Env, z, urban/rural(age, income, Env, z)

Analytical Statistic
Estimate of disease prevalence ȳ

Criteria
Relative bias, empirical variance, variance ratio = analytical variance (TSL, JK)

empirical variance ,
coverage probability
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Simulation Studies

Relative Bias, Empirical Variance, and MSE of Prevalence Estimates

−8

−4

0

2

U T O M
Model

Relative Bias (%)

6

7

8

9

U T O M
Model

Empirical Var ( 10−5 )

6

8

10

U T O M
Model

Method

IPSW

PSAS

KW

Mean Squared Error ( 10−5 )

Yan Li (Joint Program in Survey Methodology, University of Maryland, College Park, MD, U.S.A[20pt] NISS workshop [2pt] on Using Surveys to Improve the Representativeness of Nonprobability Samples in Epidemiologic Studies)KW for External Validity March 11, 2019 23 / 41



Simulation Studies

Variance Ratios and Coverage Probabilities of Prevalence Estimates
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Data Analysis: The NIH-AARP Cohort Study

Data Materials

Aim
Estimate prevalence of multiple diseases, and prospective nine-year all-cause

mortality for people aged 50 to 71 in the US from 1996.

Data

1 National Institutes of Health and the American Association of Retired
Persons (NIH-AARP) Diet and Health Study

AARP members from 1995-1996, aged 50 to 71 years, in six states or in two

metropolitan areas. (nc = 529, 708)

2 1997 US National Health Interview Survey (NHIS)

A cross-sectional household interview survey of the civilian
noninstitutionalized US population. (ns = 9, 306)

N̂ = 49, 761, 895. 339 strata. 2 PSU’s per stratum.

Note: Both datasets were linked to National Death Index (NDI) for
mortality information.
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Data Analysis: The NIH-AARP Cohort Study

Selected Demographic Characteristics in 1997 NHIS v.s. NIH-AARP
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Data Analysis: The NIH-AARP Cohort Study

Histograms of Predicted Logit Propensity Scores

AARP v.s. NHIS KW weighted AARP v.s. NHIS

Note: The propensity score model did not include NHIS sample weights.
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Analysis: The NIH-AARP Cohort Study

Evaluation Criteria

pNHIS : Estimate of Disease Prevalence from NHIS

pAARP : Estimate of Disease Prevalence from naive AARP

p∗: Estimate of Disease Prevalence from

(IPSW, PSAS or KW)-weighted AARP

BiasReduction(%) =
pAARP − p∗

pAARP − pNHIS
× 100
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Data Analysis: The NIH-AARP Cohort Study

Bias Reduction(%) for NIH-ARRP Estimates
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Discussion, Conclusion, and Limitations

Summary

Kernel-weighting approach for cohort:

1 Predict propensity scores

2 Compute kernel weights by kernel-smoothing the distances of predicted
propensity scores between survey and cohort units.

3 Create pseudo-weights by the sum of the survey weights, weighted by the
kernel weight.

Properties
1 Unbiased estimate of population size

2 Consistent estimate of population mean/prevalence under conditions

Variance Estimation

JK variance considers all sources of variability.
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Conclusion

Performance of KW prevalence (v.s. IPSW, PSAS)

1 IPSW: Extreme weights and sensitive to model mis-specification

2 PSAS: Special case of KW, but oversmoothed.

3 Less bias, reduced Variance and best MSE.

Note: reduce, but cannot eliminate bias in practice.
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Discussion

Kernel function

Bias reduction: N(0, σ); Variance control: Tri(−b, b, 0).

Bandwidth selection

Silverman’s (Silverman, 1986) or Scott’s (Scott, 1992) method.
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Limitations and Future Research

1 Requires overlapping distributions

2 Depends on the predictivity of propensity score model

3 Model selection and diagnostics

4 Doubly robust estimators
(Kim & Wang 2018; Chen et al., 2018)

I Design unbiased if propensity model is correct

I Model unbiased if outcome model is correct
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