
One-Pass Streaming 
Algorithms

Theory and PracticeComplaints and Grievances
about theory in practice



Disclaimer

Experiences with Gigascope.
A practitioner’s perspective.
Will be using my own implementations, rather 
than Gigascope.



Outline

What is a data stream?
Is sampling good enough?
Distinct Value Estimation
Frequency Estimation
Heavy Hitters



Setting

Continuously generated data.
Volume of data so large that:

We cannot store it.
We barely get a chance to look at all of it.

Good example: Network Traffic Analysis
Millions of packets per second.
Hundreds of concurrent queries.
How much main memory per query?



Formally

Data: Domain of items D = {1, …, N},
… where N is very large!

IPv4 address space is 232.
Stream: A multi-set S = { i1, i2, …, iM }, ik ∈ D:

Keeps expanding.
i’s arrive in any order.
i’s are inserted and deleted.
i’s can even arrive as incremental updates.

Essential quantities: N and M.



Example

Number of distinct items
Distinct destination IP addresses

147.102.1.1 www.google.com

Source IP Destination IPPacket #

1:
162.102.1.20 147.102.10.52:

147.102.1.2 www.google.comk:

154.12.2.34 www.niss.org3:
…

Simple solution: Maintain a hash table
How big will it get?



One-Pass Algorithm

Design an algorithm that will:
Examine arriving items once, and discard.
Update internal state fast (O(1) to poly log N).
Provide answers fast.
Provide guarantees on the answers (ε, δ).
Use small space (poly log N).
…

We call the associated structure:
A sketch, synopsis, summary



Example (cont.)

Distinct number of items:
Use a memory resident hash table:

Examines each item only once.
Fairly fast updates
Very fast querying
Provides exact answer
Can get arbitrarily large

Can we get good, approximate solutions 
instead?



Outline

What is a data stream?
Is sampling good enough?
Distinct Value Estimation
Frequency Estimation
Heavy Hitters



Randomness is key

Maybe we can use sampling:
Very bad idea (sorry sampling fans!)
Large errors are unavoidable for estimates 
derived only from random samples.
Even worse, negative results have been 
proved for “any (possibly randomized) strategy 
that selects a sequence of x values to 
examine from the input” [CCMN00]



Outline

Is sampling good enough?
Distinct Value Estimation
Frequency Estimation
Heavy Hitters



We need to be more clever

Design algorithms that examine all inputs
The FM sketch [FM85]:

Assign items deterministically to a random 
variable from a geometric distribution:

Pr[ h(i) = k ] = 1/2k.
Maintain array A of log N bits, initialized to 0.
Insert i: set A[ h(i) ] = 1.
Let R = {min j | A[j] = 0}.

…0010001001101111111
Then, distinct items D’ ≈ 1.29 · 2R.

This is an unbiased estimate! Long proof…



How clever do we need to be?

A simpler algorithm.
The KMV sketch [BHRSG06]:

Assign items deterministically to uniform 
random numbers in [0, 1].
d distinct items will cut the unit interval in d
equi-length intervals, of size ~1/d.
Suppose we maintain the k-th minimum item:

h(k) ≈ k · 1/d, hence D’ ≈ k / h(k).
This estimate is biased upwards, but …
D’ ≈ (k – 1) / h(k) isn’t! Easy proof…



Lets compare

Guarantees: Pr[|D – D’| < εD] > 1- δ.
Space (ε, δ guarantees):

FM: 1/ε2 log(1/δ) log N bits
KMV: the same

Update time:
FM: 1/ε2 log(1/δ)
KMV: log(1/ε2) log(1/δ)

KMV is much faster! But how well does it 
work?



But first … a practical issue

How do we define this “perfect” mapping h?
Should be pair-wise independent.
Collision free.
Should be stored in log space.

This doesn’t exist! Instead:
We can use Pseudo Random Generators.
We can use a Universal Hash Function.
“Look” random, can be stored in log space.

We are deviating from theory!



Let’s run some experiments

Data:
AT&T backbone traffic

Query:
Distinct destination IPs observed every 10000 
packets.

Measures:
Sketch size (number of bytes)
Insertion cost (updates per second)



Sketch size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000

A
v
e
r
a
g
e
 
r
e
l
a
t
i
v
e
 
e
r
r
o
r

Sketch size (bytes)

Averate Relative Error vs Sketch Size

FM
KMV



Insertion cost

 1000

 10000

 100000

 1e+06

 1e+07

 0  1000  2000  3000  4000  5000  6000  7000

U
p
d
a
t
e
s
 
p
e
r
 
s
e
c
o
n
d

Sketch size (bytes)

Updates Per Second vs Sketch Size

FM
KMV



Speeding up FM

Instead of updating all 1/ ε2 bit vectors:
Partition input into m bins.
Average over all bins at the end.

Authors call this approach Stochastic 
Averaging.



Sketch size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000

A
v
e
r
a
g
e
 
r
e
l
a
t
i
v
e
 
e
r
r
o
r

Sketch size (bytes)

Averate Relative Error vs Sketch Size

FM
FM-SA
KMV
RS



Insertion cost

 1000

 10000

 100000

 1e+06

 1e+07

 0  1000  2000  3000  4000  5000  6000  7000

U
p
d
a
t
e
s
 
p
e
r
 
s
e
c
o
n
d

Sketch size (bytes)

Updates Per Second vs Sketch Size

FM
FM-SA
KMV
RS



Uniformly distributed data

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  1000  2000  3000  4000  5000  6000  7000

A
v
e
r
a
g
e
 
r
e
l
a
t
i
v
e
 
e
r
r
o
r

Sketch size (bytes)

Averate Relative Error vs Sketch Size

FM
FM-SA
KMV



Zipf data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.2  0.4  0.6  0.8  1  1.2

A
v
e
r
a
g
e
 
r
e
l
a
t
i
v
e
 
e
r
r
o
r

Skew

Averate Relative Error vs Skew (800 bytes)

FM
FM-SA
KMV



Any conclusion?

The size of the window matters:
The smaller the quantity the harder to 
estimate.
FM-SA: Increasing the number of bit vectors, 
assigns fewer and fewer items to each bin.
Better off using exact solution in some cases.

The quality of the hash function matters.
FM-SA best overall … if we can tune the size.
What about deletions?



Outline

Distinct Value Estimation
Frequency Estimation
Heavy Hitters



The problem

Problem:
For each i ∈ D, maintain the frequency f(i),
of i ∈ S.

Application:
How much traffic does a user generate?

Estimate the number of packets transmitted by 
each source IP.



A Counter-Example!

Puzzle:
1. Assume a skewed distribution. What is the 

frequency of … 80% of the items?
2. Assume a uniform distribution. What is the 

frequency of … 99% of the items?

Conclusion:
Frequency counting is not very useful!



Not convinced yet?

The Fast-AMS sketch [AMS96,CG05]:
Maintain an m x n matrix M of counters, 
initialized to zero.
Choose m 2-wise independent hash functions 
(image [1, n]).
Choose m 4-wise independent hash functions 
(image {-1, +1}).
Insert i:

For each k ∈ [1, m]: M[ k, h2
k(i) ]  += h4

k(i).
Query i:

The median of the m counters corresponding to i.



Theoretical bounds

This algorithm gives ε, δ guarantees:
Space: 1/ ε log(1/δ) log N

What’s the catch?
Guarantees: Pr[|fi – fi’| < ε M] > 1 - δ

Not very useful in practice!



Experiments with AT&T data

 0

 5e+13

 1e+14

 1.5e+14

 2e+14

 2.5e+14

 3e+14

 3.5e+14

 4e+14

 4.5e+14

 5e+14

 10  20  30  40  50  60  70  80  90  100

A
v
e
r
a
g
e
 
r
e
l
a
t
i
v
e
 
e
r
r
o
r

Top-k

Averate Relative Error vs Top-k

Fast-AMS



Outline

Frequency Estimation
Heavy Hitters



The problem

Problem:
Given θ ∈ (0, 0.5], maintain all i s.t. f(i) >= θM.

Application:
Who is generating most of the traffic?

Identify the source IPs with the largest payload.

Heavy hitters make sense… in some cases! 
What if the distribution is uniform?

Detect if the distribution is skewed first!



The solutions

Heavy hitters is an easier problem.
Deterministic algorithms:

Misra-Gries [MG82].
Lossy counting [MM02].
Quantile Digest [SBAS04].

Randomized algorithms:
Fast AMS + heap.
Hierarchical Fast AMS (dyadic ranges).



Misra-Gries

Maintain k pairs (i, fi) as a hash table H:
Insert i:

If i ∈ H: fi += 1,
else insert (i, 1).

If |H| > k, for all i: fi -= 1.
If fi = 0, remove i from H.

Problem:
The algorithm is supposed to be deterministic.
Hash table implies randomization!



Misra-Gries Cost

Space:
1/θ.

Update:
Expected O(1):

Play tricks to get rid of the hash table.
Increase space  to use pointers and doubly linked 
lists.



Lossy Counting

Maintain list L of (i, fi, δ) items:
Set B = 1.
Insert i:

If i in L, fi += 1,
else add (i, 1, B).

On every 1/θ arrivals:
B += 1,
Evict all i s.t. fi + δ <= B.



Lossy Counting Cost

Space:
1/θ log θN

Update:
Expected O(1)



Quantile Digest

A hierarchical algorithm for estimating 
quantiles.
Based on binary tree.
Can be used to detect heavy hitters.

Leaf level of tree are all the items with large 
frequencies!

Estimating quantiles is a generalization of 
heavy hitters.



Quantile Digest Cost

Space:
1/θ log N

Update:
log log N



Experiments

Uniform distribution: No Heavy Hitters!
Experiments with AT&T data:

Recall: Percent of true heavy hitters in the 
result.
Precision: Percent of true heavy hitters over 
all items returned.
Update cost.
Size.

All algorithms consistently had 100% recall.



Precision

 0

 20

 40

 60

 80

 100

 0.01  0.02  0.03

P
r
e
c
i
s
t
i
o
n

Theta

Precision vs Theta

MG
QD
CMH
LC



Update cost

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 0.01  0.02  0.03

U
p
d
a
t
e
s
 
p
e
r
 
s
e
c
o
n
d

Theta

Update cost vs Theta

MG
QD

CMH
LC



Size

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.01  0.02  0.03

S
i
z
e
 
(
b
y
t
e
s
)

Theta

Size vs Theta

MG
QD
CMH
LC



Conclusion

Many interesting data stream applications.
Setting necessitates use of approximate, 
small space algorithms.
Some algorithms give theoretical guarantees, 
but have problems in practice.
Some algorithms behave very well.
There is always room for improvement.



Outline

Heavy Hitters

End



References
[S. Muthukrishnan 2003]: Data Streams: Algorithms and 
Applications.
[CCMN00]: Towards estimation error guarantees for distinct 
values.
[FM85]: Counting Algorithms for Data Base Applications.
[BHRSG07]: On synopses for distinct-value estimation under 
multiset operations.
[AMS96]: The Space Complexity of Approximating the 
Frequency Moments.
[CG05]: Sketching streams through the net: Distributed 
approximate query tracking.
[MG82]: Finding repeated elements.
[MM00]:Approximate frequency counts over data streams.
[SBAS04]: Medians and beyond: approximate aggregation 
techniques for sensor networks.


	One-Pass Streaming Algorithms
	Disclaimer
	Outline
	Setting
	Formally
	Example
	One-Pass Algorithm
	Example (cont.)
	Outline
	Randomness is key
	Outline
	We need to be more clever
	How clever do we need to be?
	Lets compare
	But first … a practical issue
	Let’s run some experiments
	Sketch size
	Insertion cost
	Speeding up FM
	Sketch size
	Insertion cost
	Uniformly distributed data
	Zipf data
	Any conclusion?
	Outline
	The problem
	A Counter-Example!
	Not convinced yet?
	Theoretical bounds
	Experiments with AT&T data
	Outline
	The problem
	The solutions
	Misra-Gries
	Misra-Gries Cost
	Lossy Counting
	Lossy Counting Cost
	Quantile Digest
	Quantile Digest Cost
	Experiments
	Precision
	Update cost
	Size
	Conclusion
	Outline
	References

