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Algorithm = Abstraction

Quicksort A:
Select element x 
from array A: 
constant cost

Partition A around 
x: linear cost 

Recur to left of x

Recur to right of x

void Qsort(A, l, h) {

if (l >= h) return; 

int p = Partition(A);

Qsort(A, l, p-1);

Qsort(A, p+1, h);

}

Algorithm Program/Code Running Process

Measure this

Draw conclusions 
about this 



Analyzing an Algorithm

Input instance of size n

Input Space, with 
parameters m, k, etc. 

Output for the instance

For a given input space:

How much time will the 
algorithm take, as a 
function of n?

How close to optimal is 
the output it produces, as 
a function of n?



Asymptotic Analysis

f(n) = 3n2 - 6n + 12  is  O(n2)

What is the order of the leading term 
of the function? What is an upper 
(lower) bound on the order of the 
leading term?

f(n) = 0.5n + log2 n   is  O(n)

f(n) = 20 log2 n + 4  is O(log n)

f(n) = 3500 -

 

7/n   is O(1) 



Asymptotic Curve Bounding

Curve fitting = find a curve that 
is close to the observed data 
within the range of 
observations.

Curve bounding = find a curve 
that you are confident is an 
upper (lower) bound on the 
data, even beyond the range of 
observations.



Why Asymptotic Algorithm Analysis?
• Dominant cost model explains / predicts  
performance best when n is large. 

• We care more about cost when n is large.

• Death, taxes, problem sizes:  n will be larger 
in the future. 

• Asymptotic properties are universal, 
fundamental, and independent of transient 
technology (platforms, programming 
languages, coding skills). 



Average-Case Analysis

• Input: Draw instances of size n at random from 
parameterized space S(m, k, ... ).

• Experiment: Measure algorithm performance in 
several independent trials for varying n, m, k... 

• Goal: Find an asymptotic function Cm,k (n) that bounds 

the mean cost (Time or Solution Quality). 



Experiments on Algorithms

Good news Bad news
Nearly total control over the 
experiment.  
Algorithms are easy to probe. 
Simple mechanisms, models 
(compared to living things). 
Lots of data points, usually.
Model validation not much of a 
problem. 

Unusual data: skewed, bounded, 
nonmonotonic, stepped. 
Unusual questions: Asymptotic 
analysis.
Unusual questions: Curve bounding 
vs curve fitting. 
Unusually precise questions: is it 
O(n) or O(n log n)? 



Outline

• Three Case Studies in Algorithm Research
– FF Rule for Bin Packing  
– All Pairs Shortest Paths with Essential Subgraph
– Sampling Graph Colorings

• Some Data Analysis ''Techniques'' I've Tried
– Power Law
– Guessing 
– Data Transformation
– Others

• My Questions, Your Questions



Three Case Studies, Many 
Questions

• FF Rule for Bin 
Packing  

• All Pairs Shortest 
Paths with the 
Essential Subgraph

• Sampling Graph 
Colorings with 
Jerrum's algorithm

•How do I analyze the data to find 
asymptotic bounds?

•How do I assess the quality of my 
analysis? How confident am I in the 
results? 

•Where do I place sample points? How 
many random trials?  

•How do I design my second experiment? 

•Which performance measures are easier 
to analyze?  How can I tell in advance? 



First Fit (FF) Bin Packing

Input: List of n item sizes 
drawn uniformly iid from 
(0,u),  0 < u <= 1.

First Fit Algorithm: Pack items into unit-sized bins

Solution Quality:

How much empty 
space in the 
packing?

u



First Fit (FF)

First Fit Algorithm

For given u, mean empty 
space eu (n) is either 
asymptotically linear or strictly 
sublinear in n. Sublinearity 
implies optimality. 

For which values of u is eu (n) 
optimal? 



Empty Space at N = 8 million

n=8x106
Some 
values of u 
produce 
bad FF 
packings. 
How bad?  
Which 
values of u?



Empty Space growth in n
Power law:  Linear regression on log-log scale.  Analyze 
slope: If e = anb then log e = b log n + log a

u=1 appears 
to be 
sublinear, 
slope near 
0.68. 

Others have 
slopes in 
(0.974 ... 
0.998).  Are 
they 
asymptotically 
1 (linear)? 

+

u

+

+

+



Sublinear when u=1.  What function? 

Is e 
asymptotically 
O(n2/3) or    
O(n 2/3 log n)?

Is this function 
bounded above 
by a constant? 

Guess the leading term is of the form cn2/3, plot e/n2/3, 
assess convergence to a constant.  



All Pairs Shortest Paths (APSP)

Input: Complete graphs G, on n 
vertices, with weights on edges iid 
uniform from (0,1). 
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Algorithm computes 
APSP using subgraph H

.01

.23
.4

.011

.67
.45 .5

Time depends 
on H: How 
many edges in 
H? 

Input G, n=5

APSP: all 
vertex- 
pair 
distances



S edges in H: O(n) or O(n log n)?

Plot: S/n log n. 

Does this converge 
to 0 or to c>0?

What is the 
asyptotic lower 
bound on c? 

Known:  n-2 < s and  E[s] < 13.5 n log e n 



S: O(n) or O(n log n)?

Plot: S/n. 
Does this 
converge to     
c > 0?  Or 
does it grow 
unbounded 
by a 
constant?



What is the rank R of the largest edge in H 
among the n(n-1)/2 edges in G?

Plot of n vs 
R/S. Does 
this converge 
to a constant 
c? What is an 
upper bound 
on c?

Known:  S <= R  and n log e n  < E[R] 



Size vs Rank 

Plot of S vs R.  
How can I 
bound 
asymptotically 
the mean and 
the expected 
max value of 
of R? 



Jerrum’s Graph Coloring Sampling 
Algorithm

Input: Grid graph G of n vertices, 
degree d in (4,6,8), and a color 
count k. 

Jerrum's Algorithm: 
random walk in 
space of coloringsd=4, k=6

Output C: A 
valid coloring 
of G, drawn 
uniformly 
from the 
space of 
valid k- 
colorings. 

Time: How quickly does 
the distribution of the 
random walk converge 
to (within ε of) uniform?



Jerrum’s Algorithm
Theorem: For any graph G, n nodes, 
maximum degree d, color set k:

•If k >= 2d the algorithm converges to 
Uniform in polynomial time. 

•If k = d+1 the algorithm takes 
exponential time to converge. 

•If k <= d the algorithm does not 
converge. 

What about k in the range (d+2, 2d-1)? 

Conjecture: exponential throughout.

Time to couple is an upper bound on 
convergence rate.   Proofs  are 
especially difficult for grid graphs.....

Jerrum's Algorithm: random 
walk in space of colorings

d=4, k=6

C: A random 
valid coloring 
of G



Jerrum's Algorithm: Coupling Time

Time to Couple, 
T, is an upper 
bound on time 
to converge. 
Three trials, 
n=64, d=8, 
k=12. 



Coupling Time 

Grid graph 
d=8, 
k=(9..17),           
n=(36, 64, 
... 144), 50 
trials; note 
cutoff at 
500000.



Coupling Time 

Grid graph d=8, 
k=(9..17),            
n=(36, 64, ... 
144). Means of 
50 trials; note 
cutoff.

For which k does 
T show 
exponential 
growth in n? 



Coupling Times for Grid Graphs

Log coupling time 
means of 50 trials.

d=8, k=9: known 
exponential.

d=8, k=17: known 
polynomial.

How do I classify the 
others? Where is the 
critical point?



Coupling Times for Grid Graphs

Log coupling 
times, means of 
50 trials.

d=6, k=7: known 
exponential.

d=6, k >=12: 
known 
polynomial.

How do I classify 
the others? 
Where is the 
critical point?



Questions

•Bin Packing: Convergence of empty space (a difference)  is 
easier to evaluate than convergence of bin counts (a ratio).  
Why? 

• Is R (rank of largest edge) easier to analyze than S 
(number of edges)?  How to find an asymptotic upper bound 
on the expected maximum?  

•Jerrum's algorithm:  How to distinguish polynomial from 
exponential functions? 

• Sampling: Is an experiment with 1000 N values evenly 
spaced between 1 and Nmax easier to evaluate than  one 
with 10 points each at  N, N/2, N/4, N/8 ...?  Why? 



Where to place sample points?
Empty space as f(u) ESL as f(u)

n=128k
n=8m



Three Case Studies, Many 
Questions

• FF Rule for Bin 
Packing  

• All Pairs Shortest 
Paths with the 
Essential Subgraph

• Sampling Graph 
Colorings with 
Jerrum's algorithm

•How do I analyze the data to find 
asymptotic bounds?

•How do I assess the quality of my 
analysis? How confident am I in the 
results? 

•Where do I place sample points? How 
many random trials?  

•How do I design my second experiment? 

•Which performance measures are easier 
to analyze?  How can I tell in advance? 



Asymptotic Curve Bounding

Generated data: 
Is y growing 
linearly, 
quadratically, or 
somewhere in 
between? Find 
an upper or 
lower bound. 



Some Asymptotic Curve Bounding 
Techniques

• Power Law
• Guess - Ratio
• Guess - Difference
• Box - Cox transformation
• Newton's method of differences
• Generalized regression
• Tukey's ladder of transformations



Power Law

1. Plot log-log 
data. 

2. Fit a line.      

3. Check slope. 

4. Check 
residuals.



Residuals from Power Law Fit

Conclusion: y 
grows faster 
than x1.02



Guess - Ratio

1. Guess a function g(x).

2. Plot y/g(x).

3. If increasing: y grows 
faster than g(x). 

4. If decreasing to 0: y 
grows slower than x

5. If converging to 
constant > 0: y grows 
as x. 

(Faster than x)



Guess - Ratio

Conclusion (from 
iterated 
guesses): y 
grows faster than 
x 1.1.

(Slower than x 2 ?)



Guess - Difference

1. Guess the first 
term g(n) = an 
b.

2. Plot g(n) - Y: If 
down-up, g(n) 
is an upper 
bound. 

3. Iterate guess 
to find a tigher 
upper bound 
g(n).

Conclusion: y grows more 
slowly than x 2 .



Box-Cox Rule

1. Transform y using yt 

(with scaling function).

2. Compare transformed 
data to a straight line.

3. Use scaled RSS to 
assess fit to line. 

4. Repeat, find t with min 
scaled  RSS.

5. Invert t to find y as f(x)

y.714



Residuals from Box Cox Fit

Conclusion: y 
grows more slowly 
than x 1.4



Newton's Method of Differences
1. Evaluate polynomial 

f(x) at evenly 
spaced  x1 , x2 , x3 , ... 
xn

2. Find differences in 
adjacent 
evaluations.

3. Repeat until 
differences are 
constant.

4. Number of 
repetitions = degree 
of polynomial.

Problems: 

•Only works on integer degree polynomials. 

•Requires evenly spaced x values

•Can't cope with random data. No answer for 
this problem.  

43   123    243    403   603

80     120     160    200

40      40 40
quadratic! 



Generalized Regression
Problems: 

• Best fit to the curve does not imply 
best choice of leading term.

• Different iteration methods 
(insert/delete paths) give different 
``best'' fits.  No sense of convergence 
to an optimal fit  -- need an alternative 
to RSS. 

• Residuals analysis can give  
contradictory results: growing faster 
than xa and also growing slower than 
xa.

•It doesn't work. 

1. Guess a multi-term 
function g(n).

2. Iterate: add a term, 
delete a term ... 

3. Use residuals, RSS 
to evaluate fit.

4. Find best fit, look at 
the leading term. 



Digression 

• Can computer science help build a 
better generalized regression method? 
Current practice seems to be hill 
climbing with bad neighborhood rule 
and sketchy objective function.



Tukey's Transformation Ladder 
1 Transform y according to a 

scale (ladder) of 
choices:

– y 2
– y 1/2

– log y
– 1/y
– 1/y 2

2 Look for a straight line.  If 
sqrt(y) is straightest, 
conclude y = x2.

3 Or transform x , or 
transform both.  

Problems:

• Transforming x can give 
answers that contradict 
transforming y:  y is faster than 
x a, and y is slower than x a. 

• Low order terms have different 
importance in the transformed 
space.

•It doesn't work.



Asymptotic Curve Bounding

wD Power law:  y faster than x 1.02

wD Guess - Ratio: y faster than  x 1.1  

wD Guess - Difference:  y slower than x 2

• U Box - Cox: y slower than x 1.4

• (no answer) Newton's method of differences: 

The answer: y = 3 x 1.8 + 1000 x + 1000 + noise



Tests on Generated and Real  Data

• PW: Power Law
• PW3: Power Law high 3 

data points
• PWD: Power Law with 

differencing
• GR: Guess - Ratio 
• GD: Guess - Difference with 

up/down heuristic 
• BC: Box Cox 
• DF: Newton's Differencing 

with ``almost flat'' heuristic

Functions y = axb + cxd varying 
a, b, c, d.  Find a bound on b. 

Functions y = axb + cxd + r with 
noise variate r. 

Functions from algorithm 
research (some ranges known).

How much does  increasing x 
help?

How much does random noise 
hurt? 

Can humans do better? 



Nonrandom Functions
3x .2 + 1 bc .127 ...  .2 pwd
3x .2 + 10 2 pwd .2  ......  .24 gd
3x .2 + 10 4 pwd .2  ......  .24 gd

3x .8 + 10 4 pwd .8 ........  1 *gd,df
3x .8 + x .2 pwd .793 ...  1 *gd,df
3x .8 - x .2 x .......  .807 pwd
3x .8 + x .6 pwd, bc .778 ... 1 *gd, df
3x .8 - x .6 x .......  .829 pwd
3x .8 +10 4 x .6         gr,pw,pw3,pwd,bc    .6 ....... 1 *gd, df
3x .8 - 10 4 x .6 + 10 6 x  ....... 1 *gd

3x 1.2 + 10 4 pwd 1.2 ....... 1.22 gd
3x 1.2 + x .2 pwd 1.19 ......1.2 bc
3x 1.2 + 10 4 x .2 pwd 0.263 ... x
3x 1.2 + x pwd 1.175 ... 1.21 gd
3x 1.2 - x  x  .......  1.233 pwd
3x 1.2 + 10 4 x      gr,pw,pw3, pwd,bc 1 ....... 2 *gd

Tightest 
bounds 
found.

x = 
8,16,32, 
64,128



Nonrandom Functions
3x .2 + 1 
3x .2 + 10 2
3x .2 + 10 4      bc NA   

3x .8 + 10 4       bc NA  
3x .8 + x .2
3x .8 - x .2 gr .825 lb 
3x .8 + x .6
3x .8 - x .6         gr .838 lb,  bc .819 lb
3x .8 +10 4 x .6
3x .8 - 10 4 x .6 + 10 6 pw,  pw3, df 

negative/zero  ub;  pwd, bc NA 

3x 1.2 + 10 4 bc NA  
3x 1.2 + x .2
3x 1.2 + 10 4 x .2    gd NA,  df 1 ub
3x 1.2 + x
3x 1.2 - x     gr 1.238 lb, bc 1.228 lb
3x 1.2 + 10 4 x   df 1ub 

Wrong answers (bad 
bounds shown) and no 
answers (NA). 

BC fails on nearly constant 
data (transformation y 1/b is 
undefined if b=0).

GR fails on negative 
second order terms

DF ``almost flat'' rule can be 
fooled

All can fail on decreasing 
data, large second terms 



Data From Algorithms Research
What is known: wrong/NA     lower ... upper bounds 
y = (x+1)(2H x+2 -2) gr, pwd x  ... 1.18   pw3
y = (x 2 - x ) / 4  pwd gr 2  ...  3.001 pw3
E[y] = x/2 + O(1/x 2 ) gr,pw .99 ...  x 
E[y]  = Theta (x 1/2 ) gr x ...  .5716 pw3
E[y] =  O(x 2/3 ( log x) 1/2)      gr x ...  .695 pw3

=  Omega (x 2/3)
E[y] <= 0.68 x pwd pw .954 ... 1    gd,df
x-1 <=  y  <= 13.5 x log e x    gr, pw3, pwd x ... 1.142  pw
x log e x < y < 1.2 x 2 pwd gr 1.3 ... 1.31  pw

Note: Many rules failed to decide if the bound was upper or  
lower: returned ``close''.  A close fit is bad in this context.



Some Conclusions
• Power Law
• Power Law Top 3
• Power Law with 

differencing
• Guess - Ratio 
• Guess - 

Difference
• Box Cox 
• Newton's 

Differencing
• Generalized 

regression
• Tukey's Ladder

Every rule sometimes fails.

Generalized regression & Tukey's Ladder are 
not internally consistent.  Contradictory 
answers are artifact of application. 

Doubling the largest problem size is less 
effective than expected:  no rule ``became 
correct,'' and only a few have slightly tighter 
bounds. 

Randomness in data makes curves in 
residuals harder to find; more ``close'' 
answers, fewer ``upper/lower bound'' 
answers. 

Humans do about as well as automated rules, 
but much more slowly. 



More Questions
• Power Law
• Power Law Top 3
• Power Law with 

differencing
• Guess - Ratio 
• Guess - 

Difference
• Box Cox 
• Newton's 

Differencing
• Generalized 

regression
• Tukey's Ladder

How to cope with logarithms in terms? 

When/why should I trust the answer returned 
by the rule? 

Can generalized regression & Tukey's Ladder 
be fixed? 

I can't always choose whether the rule returns 
an upper bound  or  lower bound. Is there a 
way to control this? 

I prefer a clear upper / lower bound to a close 
fit.  How can I tune the rules? 

How can I design my second experiment to 
get better results? 



More Questions?



Top = 1-u

Bottom = 
.55 - u/2

Describe the 
the `gap’ 
where:

prob(x) < 
ε(u,n)



Unusual Functions



SYMBOL FONT
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Theory and Practice
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