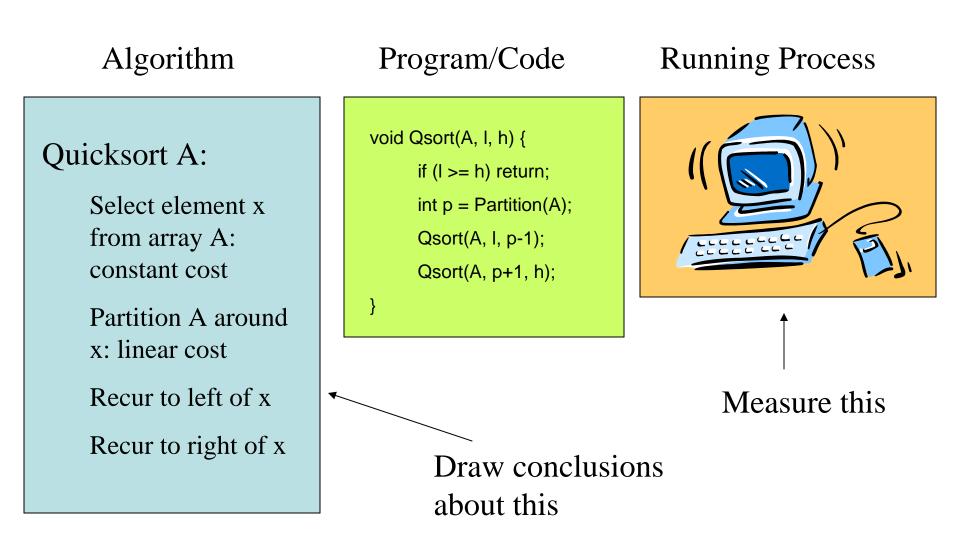
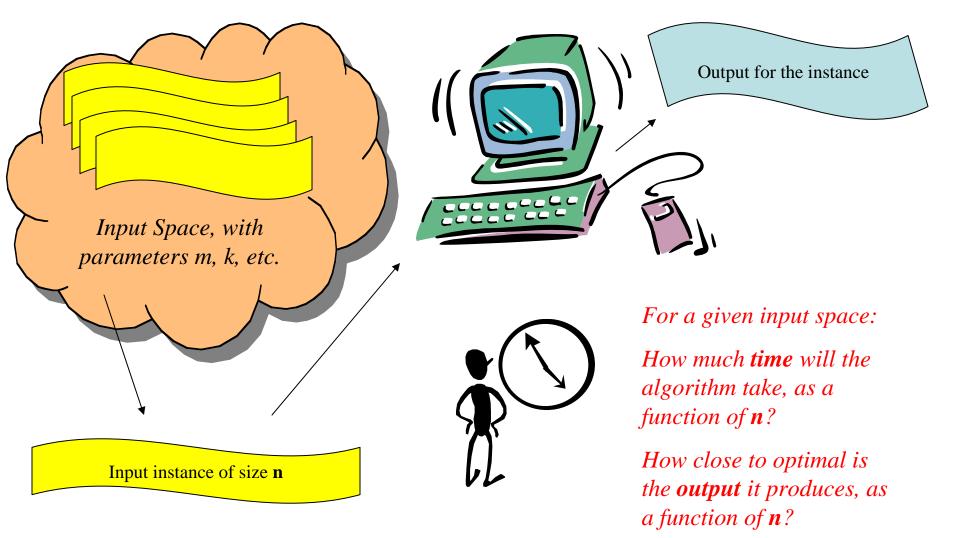
Experimental Asymptotic Analysis of Algorithms

NISS Catherine C. McGeoch March 2008

Algorithm = Abstraction



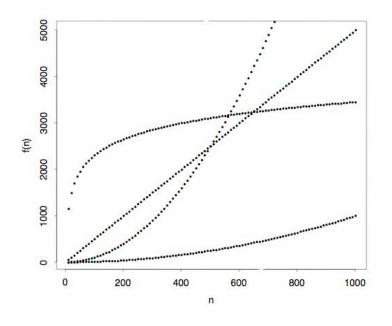
Analyzing an Algorithm



Asymptotic Analysis

Definition: A function f(n) is in the set O(g(n)) if there exist constants c > 0 and $n_0 > 0$ such that

$$0 \le f(n) \le c \cdot g(n) \quad \forall n > n_0.$$



What is the order of the leading term of the function? What is an upper (lower) bound on the order of the leading term?

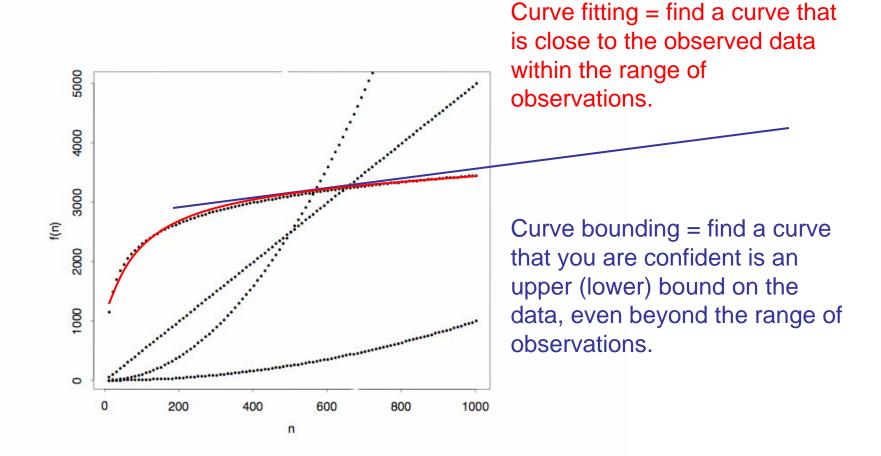
$$f(n) = 3n^{2} - 6n + 12 \text{ is } O(n^{2})$$

$$f(n) = 0.5n + \log_{2} n \text{ is } O(n)$$

$$f(n) = 20 \log_{2} n + 4 \text{ is } O(\log n)$$

$$f(n) = 3500 \cdot 7/n \text{ is } O(1)$$

Asymptotic Curve Bounding



Why Asymptotic Algorithm Analysis?

- Dominant cost model explains / predicts performance best when *n* is large.
- We care more about cost when *n* is large.
- Death, taxes, problem sizes: *n* will be larger in the future.

• Asymptotic properties are universal, fundamental, and independent of transient technology (platforms, programming languages, coding skills).

Average-Case Analysis

- Input: Draw instances of size *n* at random from parameterized space S(*m*, *k*, ...).
- Experiment: Measure algorithm performance in several independent trials for varying *n*, *m*, *k*...
- Goal: Find an asymptotic function $C_{m,k}(n)$ that bounds the mean cost (Time or Solution Quality).

Experiments on Algorithms

Good news	Bad news
Nearly total control over the experiment.	Unusual data: skewed, bounded, nonmonotonic, stepped.
Algorithms are easy to probe. Simple mechanisms, models (compared to living things). Lots of data points, usually. Model validation not much of a problem.	Unusual questions: Asymptotic analysis. Unusual questions: Curve bounding vs curve fitting. Unusually precise questions: is it <i>O(n)</i> or <i>O(n log n)</i> ?

Outline

- Three Case Studies in Algorithm Research
 - FF Rule for Bin Packing
 - All Pairs Shortest Paths with Essential Subgraph
 - Sampling Graph Colorings
- Some Data Analysis "Techniques" I've Tried
 - Power Law
 - Guessing
 - Data Transformation
 - Others
- My Questions, Your Questions

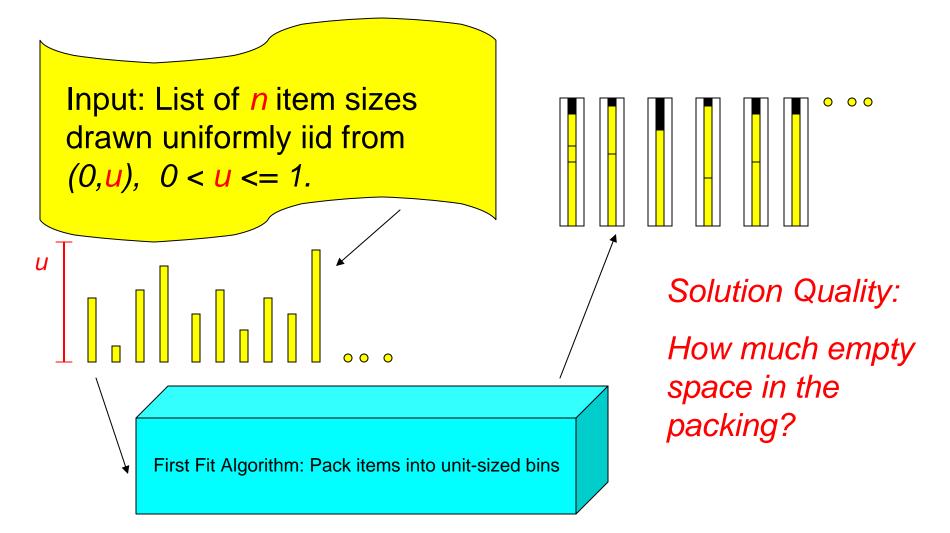
Three Case Studies, Many Questions

- FF Rule for Bin Packing
- All Pairs Shortest Paths with the Essential Subgraph
- Sampling Graph Colorings with Jerrum's algorithm

•How do I analyze the data to find asymptotic bounds?

- •How do I assess the quality of my analysis? How confident am I in the results?
- •Where do I place sample points? How many random trials?
- •How do I design my second experiment?
- •Which performance measures are easier to analyze? How can I tell in advance?

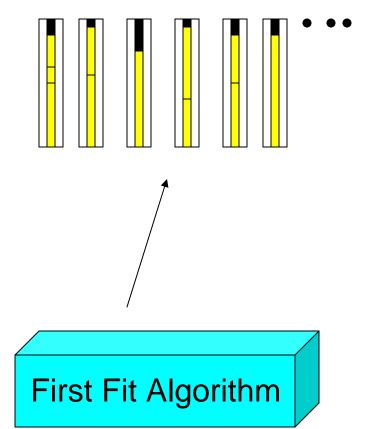
First Fit (FF) Bin Packing



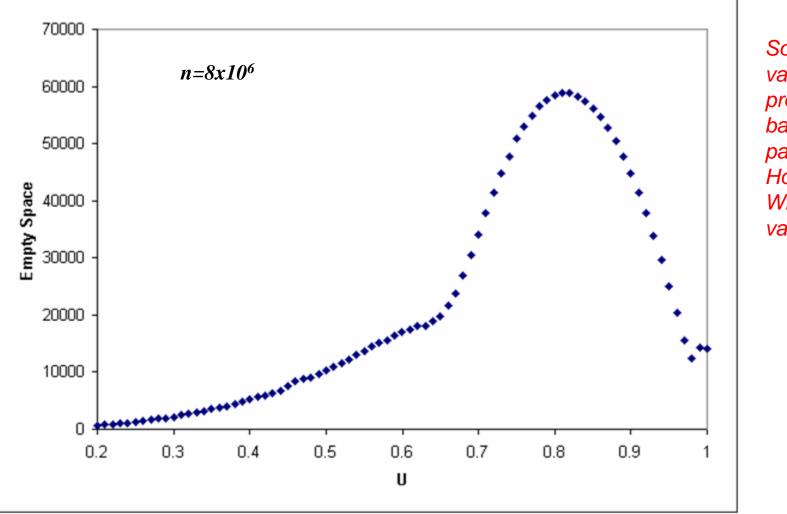
First Fit (FF)

For given u, mean empty space $e_u(n)$ is either asymptotically linear or strictly sublinear in n. Sublinearity implies optimality.

For which values of u is $e_u(n)$ optimal?



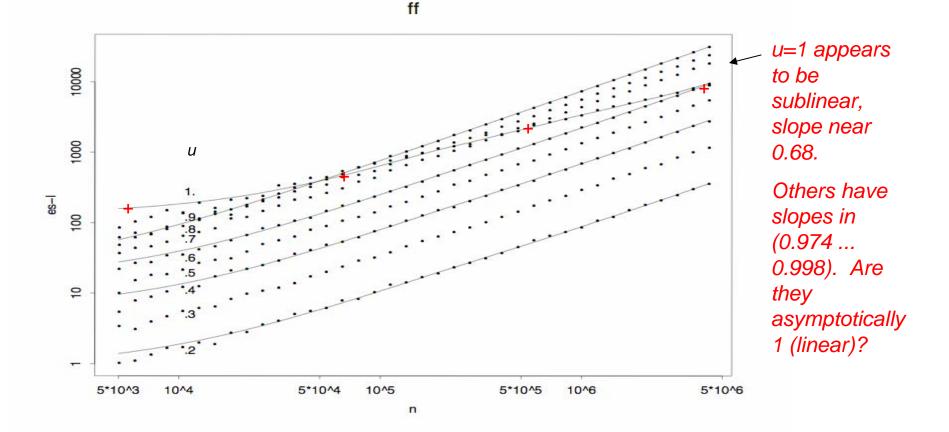
Empty Space at N = 8 million



Some values of u produce bad FF packings. How bad? Which values of u?

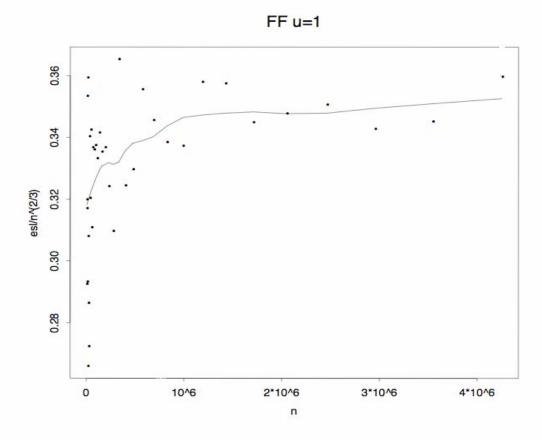
Empty Space growth in n

Power law: Linear regression on log-log scale. Analyze slope: If $e = an^b$ then log $e = b \log n + \log a$



Sublinear when *u*=1. What function?

Guess the leading term is of the form $cn^{2/3}$, plot $e/n^{2/3}$, assess convergence to a constant.



Is e asymptotically $O(n^{2/3})$ or $O(n^{2/3} \log n)$?

Is this function bounded above by a constant?

All Pairs Shortest Paths (APSP)

Input: Complete graphs G, on n vertices, with weights on edges iid uniform from (0,1). Time depends on H: How many edges in H?

.23

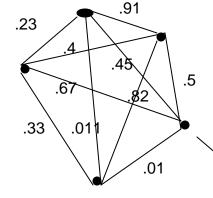
.67

.01

APSP: all vertexpair distances

.5

.01

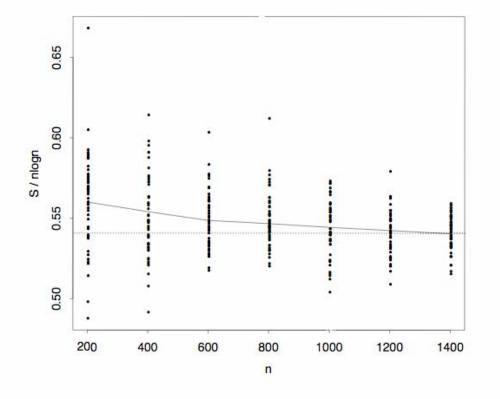


Input *G*, *n*=5

Algorithm computes APSP using subgraph *H*

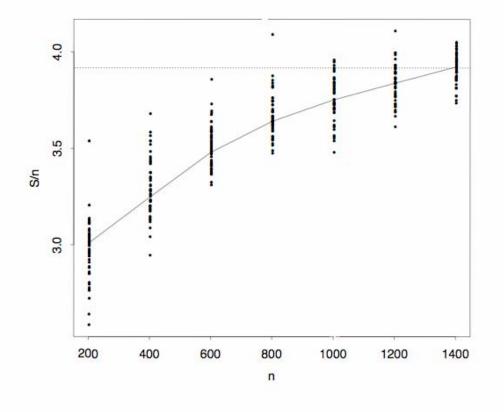
S edges in H: O(n) or O(n log n)?

Known: n-2 < s and $E[s] < 13.5 n \log_e n$



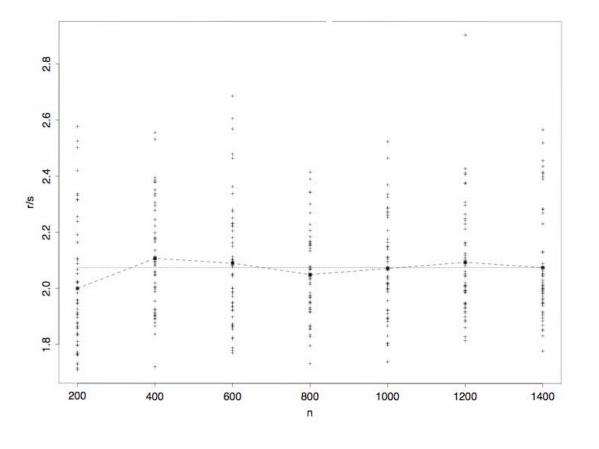
Plot: *S/n* log *n*.
Does this converge to 0 or to *c*>0?
What is the asyptotic lower bound on c?

S: O(*n*) or O(*n* log *n*)?



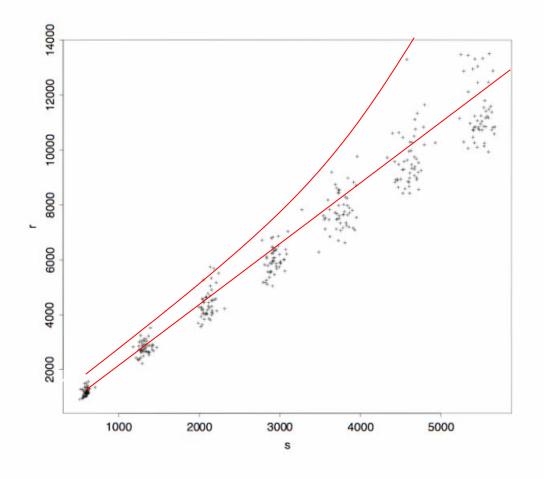
Plot: S/n. Does this converge to $c > 0? \ Or$ does it grow unbounded by a constant? What is the rank *R* of the largest edge *in H* among the *n(n-1)/2* edges in *G*?

Known: $S \leq R$ and $n \log_e n \leq E[R]$



Plot of n vs R/S. Does this converge to a constant c? What is an upper bound on c?

Size vs Rank



Plot of S vs R. How can I bound asymptotically the mean and the expected max value of of R?

Jerrum's Graph Coloring Sampling Algorithm

Input: Grid graph G of n vertices, degree d in (4,6,8), and a color count k.

d=4, k=6

Output C: A valid coloring of G, drawn uniformly from the space of valid kcolorings.

Jerrum's Algorithm: random walk in space of colorings Time: How quickly does the distribution of the random walk converge to (within ε of) uniform?

Jerrum's Algorithm

Theorem: For any graph G, *n* nodes, maximum degree *d*, color set *k*:

• If $k \ge 2d$ the algorithm converges to Uniform in polynomial time.

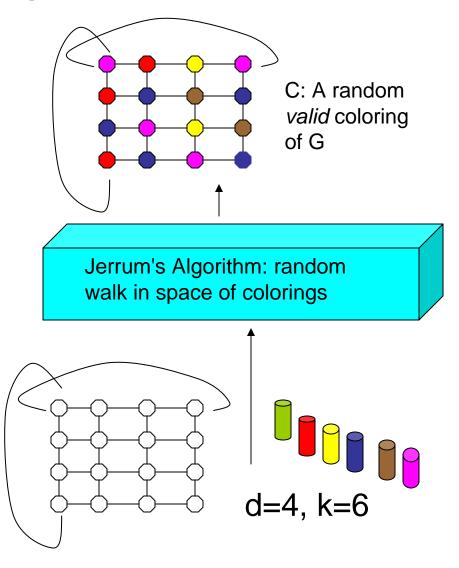
• If k = d+1 the algorithm takes exponential time to converge.

•If *k* <= *d* the algorithm does not converge.

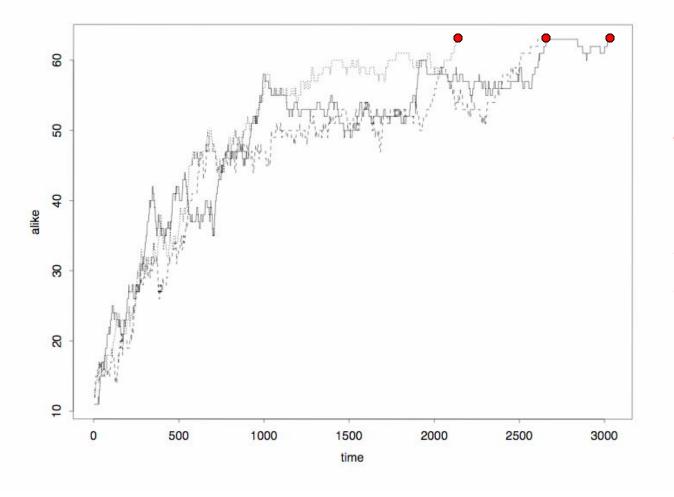
What about k in the range (d+2, 2d-1)?

Conjecture: exponential throughout.

Time to couple is an upper bound on convergence rate. Proofs are especially difficult for *grid graphs*.....

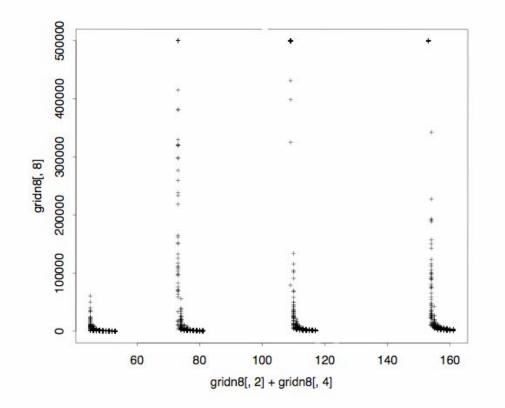


Jerrum's Algorithm: Coupling Time



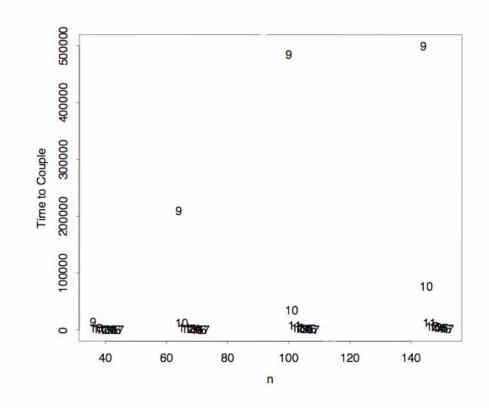
Time to Couple, T, is an upper bound on time to converge. Three trials, n=64, d=8, k=12.

Coupling Time



Grid graph d=8, k=(9..17), n=(36, 64, ... 144), 50 trials; note cutoff at 500000.

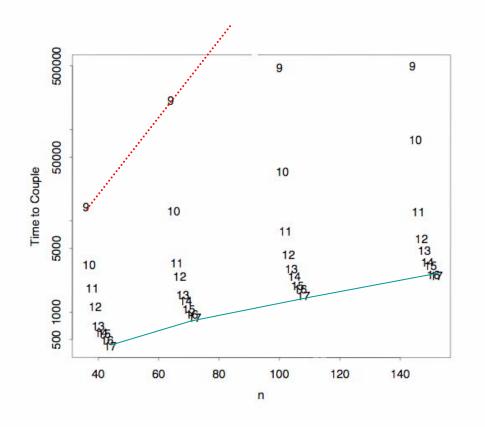
Coupling Time



Grid graph d=8, k=(9..17), n=(36, 64, ... 144). Means of 50 trials; note cutoff.

For which *k* does *T* show exponential growth in *n*?

Coupling Times for Grid Graphs



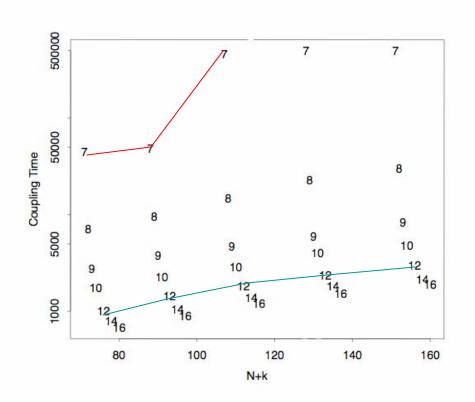
Log coupling time means of 50 trials.

d=8, k=9: known exponential.

d=8, k=17: known polynomial.

How do I classify the others? Where is the critical point?

Coupling Times for Grid Graphs



Log coupling times, means of 50 trials. *d*=6, *k*=7: known exponential. *d*=6, *k* >=12: known polynomial. How do I classify the others? Where is the critical point?

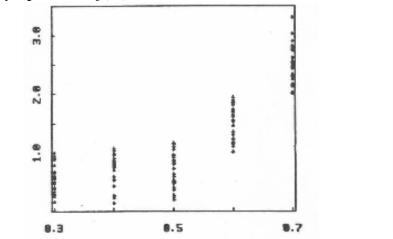
Questions

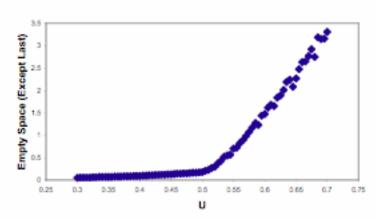
•Bin Packing: Convergence of empty space (a difference) is easier to evaluate than convergence of bin counts (a ratio). Why?

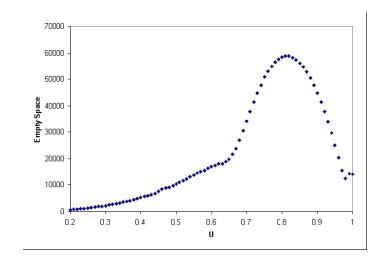
- Is R (rank of largest edge) easier to analyze than S (number of edges)? How to find an asymptotic upper bound on the expected maximum?
- •Jerrum's algorithm: How to distinguish polynomial from exponential functions?
- Sampling: Is an experiment with 1000 N values evenly spaced between 1 and N_{max} easier to evaluate than one with 10 points each at N, N/2, N/4, N/8 ...? Why?

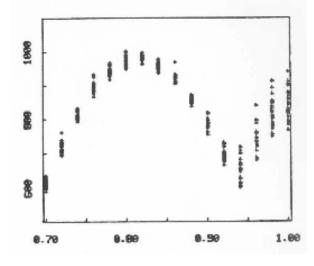
Where to place sample points?

Empty space as f(u)









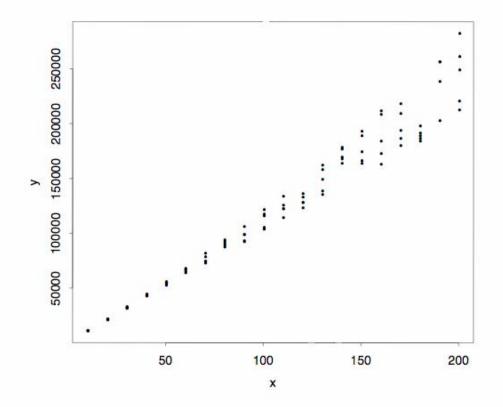
Three Case Studies, Many Questions

- FF Rule for Bin Packing
- All Pairs Shortest Paths with the Essential Subgraph
- Sampling Graph Colorings with Jerrum's algorithm

•How do I analyze the data to find asymptotic bounds?

- •How do I assess the quality of my analysis? How confident am I in the results?
- •Where do I place sample points? How many random trials?
- •How do I design my second experiment?
- •Which performance measures are easier to analyze? How can I tell in advance?

Asymptotic Curve Bounding

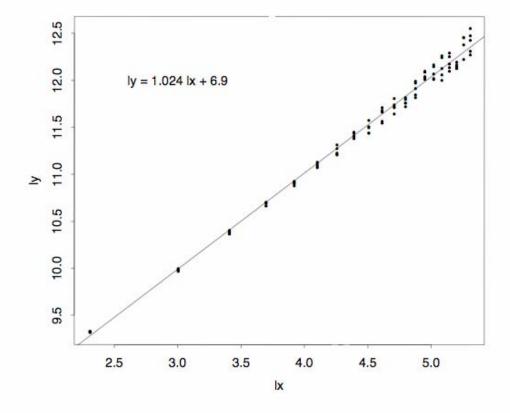


Generated data: Is y growing linearly, quadratically, or somewhere in between? Find an upper or lower bound.

Some Asymptotic Curve Bounding Techniques

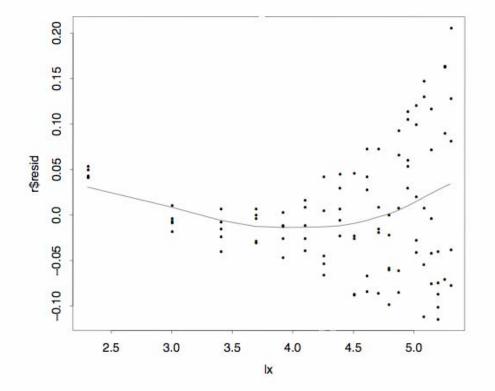
- Power Law
- Guess Ratio
- Guess Difference
- Box Cox transformation
- Newton's method of differences
- Generalized regression
- Tukey's ladder of transformations

Power Law



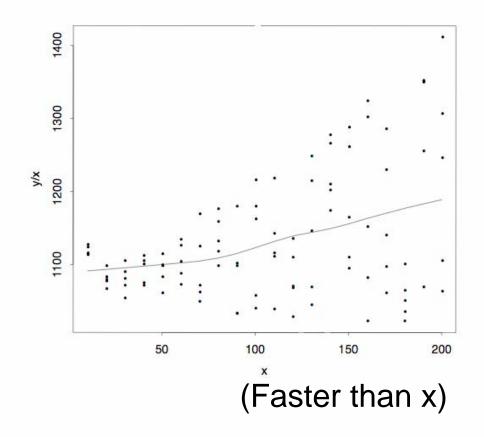
- 1. Plot log-log data.
- 2. Fit a line.
- 3. Check slope.
- 4. Check residuals.

Residuals from Power Law Fit



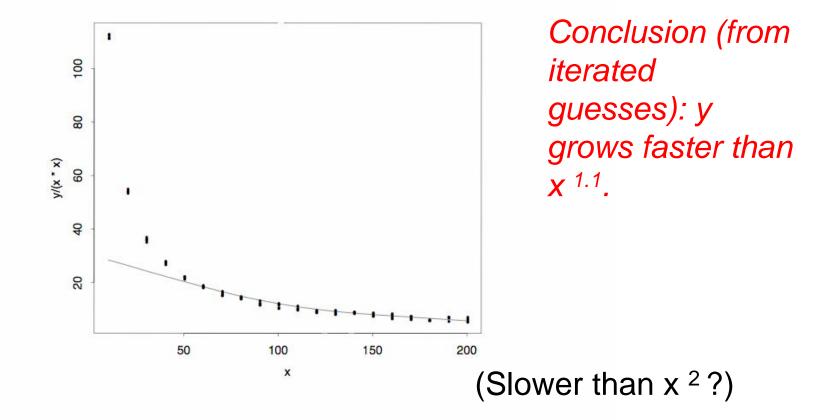
Conclusion: y grows faster than x^{1.02}

Guess - Ratio



- 1. Guess a function g(x).
- 2. *Plot y/g(x)*.
- 3. If increasing: y grows faster than g(x).
- 4. If decreasing to 0: y grows slower than x
- 5. If converging to constant > 0: y grows as x.

Guess - Ratio

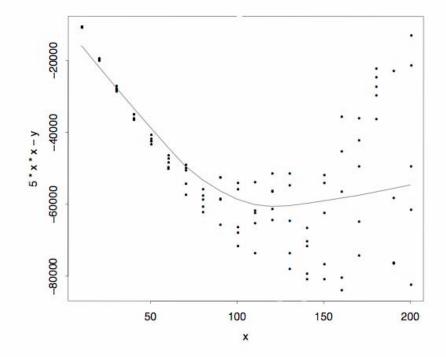


Guess - Difference

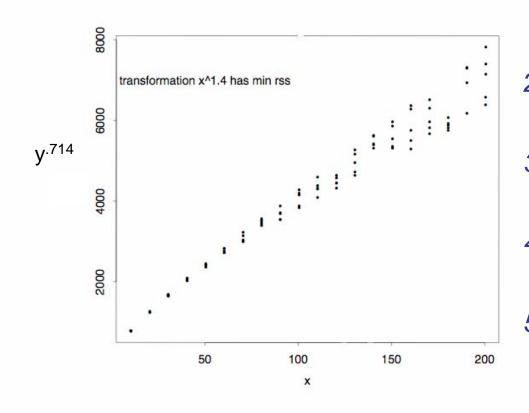
1. Guess the first term g(n) = an

Conclusion: y grows more slowly than x^2 .

- 2. Plot g(n) Y: If down-up, g(n) is an upper bound.
- 3. Iterate guess to find a tigher upper bound g(n).

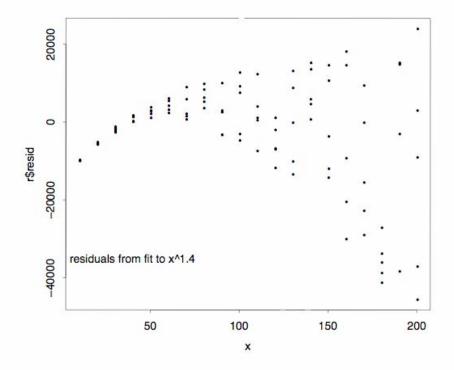


Box-Cox Rule



- 1. Transform y using y^t (with scaling function).
- 2. Compare transformed data to a straight line.
- 3. Use scaled RSS to assess fit to line.
- 4. Repeat, find t with min scaled RSS.
- 5. Invert t to find y as f(x)

Residuals from Box Cox Fit



Conclusion: y grows more slowly than x ^{1.4}

Newton's Method of Differences

- 1. Evaluate polynomial f(x) at evenly spaced $x_1, x_2, x_3, ...$ x_n
- 2. Find differences in adjacent evaluations.
- 3. Repeat until differences are constant.
- 4. Number of repetitions = degree of polynomial.

43 123 243 403 603 80 120 160 200 40 40 40 quadratic!

Problems:

- •Only works on integer degree polynomials.
- •Requires evenly spaced x values

•Can't cope with random data. No answer for this problem.

Generalized Regression

- 1. Guess a multi-term function g(n).
- 2. Iterate: add a term, delete a term ...
- 3. Use residuals, RSS to evaluate fit.
- 4. Find best fit, look at the leading term.

Problems:

- Best fit to the curve does not imply best choice of leading term.
- Different iteration methods (insert/delete paths) give different
 ``best'' fits. No sense of convergence to an optimal fit -- need an alternative to RSS.
- Residuals analysis can give contradictory results: growing faster than *x*^a and also growing slower than *x*^{a.}

•It doesn't work.

Digression

 Can computer science help build a better generalized regression method? Current practice seems to be hill climbing with bad neighborhood rule and sketchy objective function.

Tukey's Transformation Ladder

1 Transform y according to a scale (ladder) of choices:

- *y*²
- *y* ^{1/2}
- log y
- 1/y
- 1/y²

2 Look for a straight line. If sqrt(y) is straightest, conclude $y = x^{2}$.

3 Or transform x , or transform both.

Problems:

• Transforming *x* can give answers that contradict transforming *y*: *y* is faster than *x*^{*a*}, and *y* is slower than *x*^{*a*}.

• Low order terms have different importance in the transformed space.

•It doesn't work.

Asymptotic Curve Bounding

The answer: $y = 3x^{1.8} + 1000x + 1000 + noise$

 $\frac{1.02}{1.02}$

- $\frac{1}{2}$ Guess Ratio: y faster than $x^{1.1}$
- **X** Box Cox: y slower than $x^{1.4}$
- (no answer) Newton's method of differences:

Tests on Generated and Real Data

- PW: Power Law
- PW3: Power Law high 3 data points
- PWD: Power Law with differencing
- GR: Guess Ratio
- GD: Guess Difference with up/down heuristic
- BC: Box Cox
- DF: Newton's Differencing with ``almost flat" heuristic

Functions $y = ax^b + cx^d$ varying *a*, *b*, *c*, *d*. Find a bound on b.

Functions $y = ax^b + cx^d + r$ with noise variate *r*.

Functions from algorithm research (some ranges known).

How much does increasing *x* help?

How much does random noise hurt?

Can humans do better?

Nonrandom Functions

3x ^{.2} + 1	bc	.1272	pwd
$3x^{2} + 10^{2}$	pwd	.224	gd
$3x^{.2} + 10^{.4}$	pwd	.224	gd
$3x^{.8} + 10^{.4}$	pwd	.8 1	*gd,df
$3x^{.8} + x^{.2}$	pwd	.793 1	*gd,df
3x ^{.8} - x ^{.2}		x807	pwd
$3x^{.8} + x^{.6}$	pwd, bc	.778 1	*gd, df
3x ^{.8} - x ^{.6}		x829	pwd
$3x^{.8} + 10^4 x^{.6}$ gr,pw,pw3	3,pwd,bc	.6 1	*gd, df
• • • •		x 1	
$3x^{1.2} + 10^{4}$	pwd	1.2 1.22	gd
$3x^{1.2} + x^{.2}$	pwd	1.19 1.2	bc
$3x^{1.2} + 10^4 x^{.2}$	pwd	0.263 x	

Tightest bounds found.

x = 8,16,32, 64,128

3x ^{1.2} + 10 ⁴	pwd	1.2 1.22 gd
$3x^{1.2} + x^{.2}$	pwd	1.191.2 bc
$3x^{1.2} + 10^4 x^{.2}$	pwd	0.263 x
$3x^{1.2} + x$	pwd	1.175 1.21 gd
3x ^{1.2} - x		x 1.233 pwd
$3x^{1.2} + 10^4 x$	gr,pw,pw3, pwd,bc	1 2 *gd

Nonrandom Functions

 $3x^{.2} + 1$ $3x^{.2} + 10^{2}$ $3x^{.2} + 10^{4} bc NA$ $3x^{.8} + 10^{4} bc NA$ $3x^{.8} + x^{.2}$ $3x^{.8} - x^{.2} gr .825 lb$ $3x^{.8} - x^{.6} gr .838 lb, bc .819 lb$ $3x^{.8} + 10^{4} x^{.6}$ $3x^{.8} - 10^{4} x^{.6} + 10^{6} pw, pw3, df$ negative/zero ub; pwd, bc NA $3x^{1.2} + 10^{4} bc NA$

 $3x^{1.2} + x^{.2}$ $3x^{1.2} + 10^4 x^{.2}$ gd NA, df 1 ub $3x^{1.2} + x$ $3x^{1.2} - x$ gr 1.238 lb, bc 1.228 lb $3x^{1.2} + 10^4 x$ df 1ub Wrong answers (bad bounds shown) and no answers (NA).

BC fails on nearly constant data (transformation y ^{1/b} is undefined if b=0).

GR fails on negative second order terms

DF ``almost flat" rule can be fooled

All can fail on decreasing data, large second terms

Data From Algorithms Research

What is known:	wrong/NA	lower upper bounds
$y = (x+1)(2H_{x+2}-2)$	gr, pwd	x 1.18 pw3
$y = (x^2 - x) / 4$	pwd	gr 2 3.001 pw3
$E[y] = x/2 + O(1/x^2)$		gr,pw .99 x
$E[y] = Theta (x^{1/2})$	gr	x5716 pw3
$E[y] = O(x^{2/3} (\log x)^{1/2})$	gr	х695 рw3
= Omega (x ^{2/3})		
<i>E[y]</i> <= 0.68 <i>x</i>	pwd	pw .954 1 gd,df
$x-1 \le y \le 13.5 \times \log_{e} x$	gr, pw3, pwd	x 1.142 pw
$x \log_{e} x < y < 1.2 x^{2}$	pwd	gr 1.3 1.31 pw

Note: Many rules failed to decide if the bound was upper or lower: returned ``close''. A close fit is bad in this context.

Some Conclusions

- Power Law
- Power Law Top 3
- Power Law with differencing
- Guess Ratio
- Guess -Difference
- Box Cox
- Newton's
 Differencing
- Generalized
 regression
- Tukey's Ladder

Every rule sometimes fails.

Generalized regression & Tukey's Ladder are not internally consistent. Contradictory answers are artifact of application.

Doubling the largest problem size is less effective than expected: no rule ``became correct," and only a few have slightly tighter bounds.

Randomness in data makes curves in residuals harder to find; more ``close'' answers, fewer ``upper/lower bound'' answers.

Humans do about as well as automated rules, but much more slowly.

More Questions

- Power Law
- Power Law Top 3
- Power Law with differencing
- Guess Ratio
- Guess -Difference
- Box Cox
- Newton's
 Differencing
- Generalized
 regression
- Tukey's Ladder

How to cope with logarithms in terms?

When/why should I trust the answer returned by the rule?

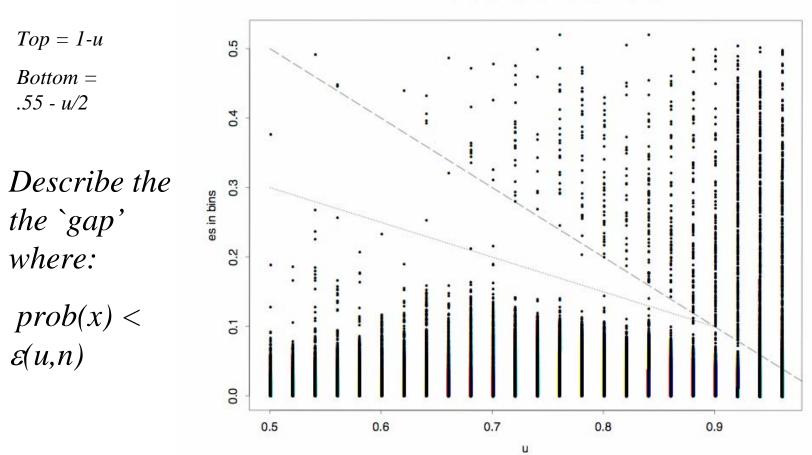
Can generalized regression & Tukey's Ladder be fixed?

I can't always choose whether the rule returns an upper bound or lower bound. Is there a way to control this?

I prefer a clear upper / lower bound to a close fit. How can I tune the rules?

How can I design my second experiment to get better results?

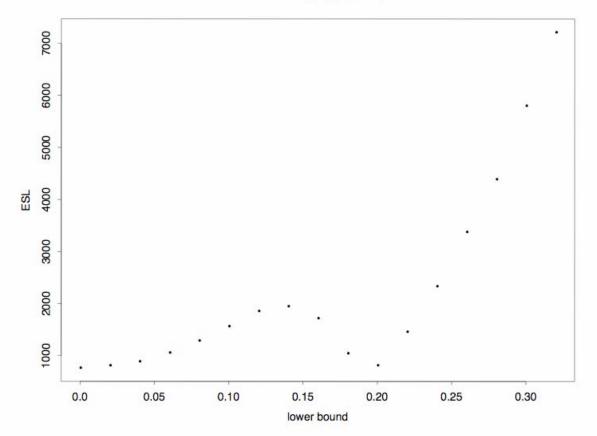
More Questions?



FF n=10k distribution of es in bins

Unusual Functions

FF n=100000 u=.8



SYMBOL FONT

αβχδεφγηιφκλμνοπθρστυσωξψζ

1234567890-=[].:;э,./

 $! \cong \# \exists \% \bot \& * ()_+ \{ \} |: \forall <> ?$

ΑΒΧΔΕΦΓΗΙθΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖ

Theory and Practice

