



## **Predicting Cell Capture from Dilute Samples for Microfluidic Biosensors**

Nathan S. Mosier and Bruce Craig

Department of Agricultural and Biological Engineering Laboratory of Renewable Resources Engineering Department of Statistics





# Acknowledgements

- This research was supported through a cooperative agreement with the ARS of the United States Department of Agriculture, project number 1935-42000-035.
- > Eastern Regional Research Center
- > Center for Food Safety Engineering
- > Yifei Zang, Benjamin Tyner
- > Laboratory of Renewable Engineering Faculty, Staff, and Students
  - Dr. Michael R. Ladisch, LORRE Director
  - Dr. Tom Huang, Xingya Liu, Amanda Stewart, Wan-Tzu Chen, and Miroslav Sedlak











## Food Borne Pathogens

| BACTERIA                                                   | L. monocytogenes                       | <i>E. coli</i> O157:H7   |  |  |
|------------------------------------------------------------|----------------------------------------|--------------------------|--|--|
| Incubation period                                          | > 1-5 days                             | 2-5 days                 |  |  |
| Symptoms                                                   | Gastroenteritis<br>Stillbirth<br>Death | Hemorrhagic colitis      |  |  |
| Infectious dose                                            | unknown                                | As few as 10 cells       |  |  |
| Common sources                                             | Soil, food processing<br>environment   | Feces/manure<br>Raw meat |  |  |
| www.foodsafety.gov http://www.cfsan.fda.gov/~mow/intro.htm |                                        |                          |  |  |

# Listeria monocytogenes

IVERSIT

Gram positive (1x 2  $\mu m$  )

Grows at 1 to 45 °C

Acid and salt tolerant

Annual cases >2,500; Mortality 20-28%







## Rapid detection of bacteria

| Technique      | Growth | Viability | Cell Comp. | Nucleic Acid- |
|----------------|--------|-----------|------------|---------------|
| Features       | Based  | Based     | Based      | based         |
| Live/Dead      | Yes    | Yes       | No         | No            |
| Identification | Yes    | No        | Yes        | Yes           |

#### Using selective media

Growth steps required to provide live/ dead information

Through antibody-based capture

### Our research addresses growth-based and cellcomponent based approaches to provide live/dead and ID information

Adapted from M.R. Ladisch, presentation to USDA-ARS-EERC, 8 November 2004

How/why?

## **Evolution of Growth Detection**





Rapid detection during food processing

Elapsed time between sampling and result (time to result) of 3 hours or less

Detection against background of other non-pathogenic organisms



## **Pathogen Detection on Biochips**











## Microchips: Can be made in large numbers



Microchips for adsorption studies
PECVD fabricated oxide layer
SiO<sub>2</sub> with Pt patterns













## Protein Biochip Technology Platform



### **Micro-fabricated Biochip for Bacterial Cell Culture**



**Edge Connector** 

**BioChip** 



ERRC, 2000

### General strategy for present work: Recovery of live bacteria



# 2. Extract Microorganisms

### In order of decreasing severity

| stomacher > machine | massage                                                              |
|---------------------|----------------------------------------------------------------------|
| 2 min               | 2 min                                                                |
| in air              | in air                                                               |
| 20°C                | 20°C                                                                 |
| In stomacher        | In stomache                                                          |
| bag                 | bag                                                                  |
|                     | <pre>stomacher &gt; machine 2 min in air 20°C In stomacher bag</pre> |









## **Homogenized Hotdog Experiment**

### Before blending the hotdog







### **Homogenized Hotdog Experiment**

#### After hotdog was blended

















### **Massaged Hotdog Experiment**













### General strategy for present work: Recovery of live bacteria



## **Cell Concentration and Recovery**



# CCR Kit Assembly

Microfiltration basis

•Designed to capture and recover bacterial cells from a food-derived sample

•Uses membranes in series to process 100 mL hot dog extract into 0.1 to 1 mL sample







# **CCR Work Summary**

- > Careful selection of membranes
  - Pore size and distribution
  - Surface chemistry
  - Interaction of target cell

SEM by Chia-Ping Huang



### 2.5µm depth filter – 47mm dia PRE-FILTER



0.4µm screen filter – 25mm dia capture and conc. bacteria

## **Depth Filter Before Use**













## **Screen Filter Before Use**













## **Membrane Properties**



### Polycarbonate membrane









# Bacterial cells recovered in 500 $\mu L$ from hot dog meat broth containing 15 cells/ mL



# Validating Location of Cells

Need to "see" cells for rapidly screening different filtration and sensing systems:

led to use of GFP bacteria

red or green E. coli

green L. monocytogenes

(Applegate and Sedlak, 2004)









### **Expressing Fluorescent Proteins**



#### Listeria monocytogenes ATCC 23074

Mutant GFP protein – GFP-mut1

Mutant GFP protein – GFP-mut3



## GFP L. monocytogenes

### RFP E. coli and GFP L monocytogenes

## Sampling Issue

> How high a concentration is needed in sample introduced to biochip to guarantee detection of cells?

How much volume must be processed from hot dog sample to guarantee capture of at least one cell?



# **SYSTEM CHARACTERIZATION**

> Uneven distribution of microbes – Graininess;

> Uneven distribution of sample matrices.







10<sup>8</sup> cells/mL 10X













10<sup>7</sup> cells/mL 10X













10<sup>6</sup> cells/mL 10X













10<sup>5</sup> cells/mL 10X









