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Methodological Challenges



EHR and PM

EHR is an information resource that takes PM : Personalization, precision (time and plan), and health
residents' personal health as the core, runs management. High-level medical technology is formed on the basis

through the entire life process, covers various ©f in-depth understanding of people, diseases, and medicines.
health-related factors. realizes multi-channel Analyze the health status of the entire population and improve the

information dynamic collection, and meets the health of the general public.
needs of residents' self-care, health management

and health decision-making.

Record the changes of all vital signs of an individual from birth to death, including personal living habits, past
medical history, diagnosis and treatment, family medical history, current medical history, previous diagnosis and
treatment history, previous physical examination results and other information, and accurately record digitally, so
as to construct an integrated health service of prevention, diagnosis, treatment, rehabilitation, and health

management.



Multi-modal Data




Data Challenges

Disease

EHR PM



Data Challenges

« Over 15M labeled high resolution images

* Roughly 80K categories

» Collected from web and labeled by Amazon

Mechanical Turk

FFERR

o

E

Lack of a large number of annotated data
with high-quality



Method Challenges
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— Ecological Layout —

Integration
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: Prediction
Learning



Ecological Layout




Large-scale Medical Studies

PING - 900 Pediatric Imaging, Neurocognition, and Genetics
BCP - 300 Baby Connectome Project

ADNI - 2000 Alzheimer’s Disease Neuroimaging Initiative

PNC - 1400 Philadelphia Neurodevelopmental Cohort

HCP - 1200 Human Connectome Project
ABCD - 10000 Adolescent Brain Cognitive Development
UKB - 500,000 UK Biobank Project
TCIA - 37,600 The Cancer Imaging Archive
NLST - 19,000 National Lung Screening Trial
OAIl - 4800 Osteoarthritis Initiative
AllOfUs-1000,000+ All of us project




“Big Data” Brain Imaging Genetics Cohorts

“Big data” Brain imaging genetics datasets become available in recent few years
Systematically collect publicly available individual-level data for > 50k individuals
Build the largest database in this field

BCP PING ABCD PNC HCP UK Biobank RADC
(Age [0,5]) (Age [3,21]) (n~ 10k, (Age [14,29])(Age [22,35]) (n ~ 100k [Ongoing],  (Age > 65)
Age [9,11]) Age [40,63])) ADNI

UNC BIG-KP | https://bigkp.org/



. Cardiovascular Disease & Brain Health —

(Neuro)imaging: help understand the complex interplay between brain
and other human organs and their underlying genetic overlaps

Possible causal factors of brain structure Many diseases (e.g., microvascular
changes, resulting in brain disorders like disease, high blood pressure) are
stroke, dementia and cognitive impairment multisystem disorders



Ecological Layout

Deconvolution

1. Gerstung, M. ..., H. Zhu,..., P. V. Loo. and PCAWG network. The evolutionary history of 2,658

cancers. bioRxiv. Nature, 578(7793):122-128, 2020.
2. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of

whole genomes. Nature, 578, 82-93, 2020.
3. Y.Jdiang, K.Yu, ...., H. Zhu, W. Wang. CIiP: subclonal architecture reconstruction of cancer cells in

DNA sequencing data using a penalized likelihood model: 36059962 (biorxiv.org)



https://www.biorxiv.org/content/10.1101/2021.03.31.437383v1.full.pdf

Tumor Heterogeneity: identification

We tested CIiP on 965 simulated samples
We developed a CIiP (Clonal and subclonal structure generated by the Broad Institution, all samples
identification through Pairwise difference penalization), are generated using copy number profiles from
to distinguish the sub-clones. actual patients samples.



Results on ICGC samples

The International Cancer Genome Consortium has collected whole genome sequencing for
over 2,700 samples. The clonality study shows that the clone/subclonality compositions are
quite different across cancer types.

Figure: clonality composition of selected types of cancer. Both the number of subclones
and subclonal fractions are different across tumor types



Ecological Layout

Learning

« W.Yin, T.Li, SC.Hung, H.Zhang, L. Wang, D. Shen, H.Zhu, P.J.Mucha, J.R.Cohen, Weili Lin. The
Emergence of a Functionally Flexible Brain During Early Infancy. PNAS, 117 (38) 23904-23913.

« Smith, . T., Townsend, L.B., Huh, R. H. Zhu, and Smith, S. L. (2017) Stream-dependent development of higher visual
cortical areas. Nature Neuroscience, 20, 200-208.

« Z.Zhang, M. Descoteaux, J. Zhang, G. Girard, M. Chamberland, D. Dunson, A. Srivastava, and H. Zhu. (2018).

Mapping Population based Structural Connectomes. Neurolmage, 172, 130-145.



Population based Structural Connectomes



Brain Function-based Structural Connectome Atlas
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Ecological Layout

Prediction

C. W. Wang, Y.C. Lee, E.Calista, F. Zhou, H. Zhu, R.Suzuki, D. Komura, S.Ishikawa, S.P. Cheng (2018).
A benchmark for comparing precision medicine methods in thyroid cancer diagnosis using tissue microarrays.
Bioinformatics, 34, 1767-1773.
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http://www.pnas.org/content/105/13/5213/F 1.expansion.html

Integration



Image Genetics

Genome-wide association
study (GWAS) of hundreds o
Imaging phenotypes with
more than 50,000 subjects
from five publicly available
datasets (largest brain
imaging GWAS so far)

leftrog
tral, ante
eriorcing
'Qulate

leftlingug

right vessel

right pericalcarine
eral.orbitofrontal

arginel

rightat

eft.supram
dala

Outer: P-value<5e-08

10 20
Middle: P-value<5e-09

0 10 20

Inner: P-value<4.9e-10

|
01020

A

4
1
3
4
1
1
3
4
3
A

wiopsnyHel

|BIUOLONGIO" [eIPaW Sl

left.pars.triangu

rerse.tem

left.tray

it lateray

o \
”\ egiorfo?
g suP° jor

al
nsuperio” tempord

ig

n
right basal forebra!
optic.chiasm
cerebellar.vermal obul

left hippocampys




&= Partl

Big Data In Imaging Genetics



— Brain Imaging for Brain Disorders —

Capture the brain structure and function changes associated
with major brain-related disorders and normal development

Normal AD

Alzheimer’s disease (AD) is
associated with brain shrinkage

Neuropsychiatric

disorders Normal AD



N Genetics of Brain Disorders —_

Most major brain disorders (like AD) are heritable complex traits/diseases

Together 50%-70% of AD risk
75%-90% of ADHD risk
60%-85% of Schizophrenia risk
~80% of Autism Spectrum Disorder (ASD) risk

Complex traits/diseases
(many genes,
environmental factors,
complex functional Many genes contribute to

mechanism) the risk of AD
(polygenic genetic architecture)

Genetic signals are non-spare (small but nonzero contribution)

and weak:
Need large sample size to
detect weak signals



— Brain Imaging Genetics Paradigm —

Neuroimaging: an important component to help understand the
complex biological pathways of brain disorders

G olecules, brain cells, structure/functic Brain
€Nes ession at RNA  [IEEIEEnges in neu IR ture disorders
Cmotein levels and function

Molecular function and
cell metabolism
Biological
causes

Uncover the profile of brain
abnormalities in each clinical outcome

Social and psychological influences to study how disorders develop



S Brain Imaging Modality Examples —
Harmonize tools/pipelines to consistently generate the

full spectrum of neuroimaging features

Cortical and subcortical structures White matter microstructure

(Structural connectivity,
diffusion MRI)

Functional networks
(Functional connectivity,
functional MRI)



——  Regional Brain Volumes and Shape

Generate regional brain volumes and shape representations for 98 pre-specified
brain regions and total grey matter, white matter, and brain volumes

Subcortical structures Cortical structures
(deep within the brain) (outer layer of the cerebrum)



R White Matter Microstructure -

5 white matter microstructure measures (DTl parameters)
for 21 white matter tracts

21 white matter tracts from
ENIGAMA-DTI pipeline

fractional anisotropy (FA)
mean diffusivity (MD),
axial diffusivity (AD),

radial diffusivity (RD), and

mode of anisotropy (MO)

sensitive to specific types of

microstructural changes and

have also been widely used
in clinical research



— C—

Resting/task functional MRI (fMRI)
Independent component analysis (ICA)-based methods to form 76 functional
regions and generate 1,701 functional connectivity traits

Net100_Nodell
(Angular, Middle temporal)
(Default mode,
Central executive)
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(Inferior parietal, Angular)
(Central executive,
Attention)
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(Attention, Visual)
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Central executive)
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Net25_Node5
(Inferior parietal, Cerebellum,
Angular)

(Central executive, Attention,
Default mode)

Characterize
major functional
brain regions and
their connectivity



— Brain Imaging Genetics: Learning Problems+—

(a) Learning Problems in Brain

: . Brain imagin nomi
Imaging Genomics ging Genomics

* Voxels, ROIs, spatial correlation * SNPs, LD blocks
* Multimodal, longitudinal studies * Genes, pathways, networks

Heritability estimation of brain * Prior knowledge, brain network ﬁ * Polygenic risk scores (PRSs)

imaging phenotypes
Genetic variation

Imaging genomics associations
Fundamentals

Meta-analysis
Multivariate regression

Bi-multivariate correlation

(b) Biomedical | Clinical outcome Cognitive Condition Diagnosis

— Application Elagnos|§
Int.egratmglmaglnganc'i ' Considerations rogression o]
genomics for outcome prediction * Impairment score © pezin @ ~ma |

‘Normal‘ ‘ SMC ‘

() Statistical & Increasing power Overfitting control Other topics

* Quantitative traits * Dimensionality reduction * Biological interpretation

*  Multiple comparison * Regularization * Scalability

* Meta/mega analysis * Knowledge-guided learning * Biased sampling
Multivariate models * Qutcome-guided learning * Interaction

Machine
Learning
Considerations




—  Methodological Challenges —

Multiple Biobanks Integration
(e.g., Heterogeneity in global
populations)

Omics Data Integration
(e.g., new tech, biological pathway)

Tool/Theory for
Brain Imaging
Genetics

New Computational Tools
(e.g., challenge of dense signal in
biobank-scale database)

Sther

Otner

Advanced Methods for Dense Signals
(e.g., deep learning)



—— Brain Imaqging Genetics: Learning Problems+—

B. Zhao and H. Zhu. On genetic correlation estimation with summary statistics from genome-wide association studies. Journal of American Statistical
Association, in press, 2021.

Zhao, Y., Li, T.F., and Zhu, H. Bayesian sparse heritability analysis with high-dimensional neuroimaging phenotypes. Biostatistics, in press, 2020.

Zhou, F., Zhou, H.B., Li, T., and Zhu, H. Analysis of Secondary Phenotypes in Multi-group Association Studies. Biometrics, in press, 2020.

Kong, D.H., An, B. G., Zhang, J. W., and Zhu, H. L2RM: Low-rank Linear Regression Models for High-dimensional Matrix Responses. Journal of American
Statistical Association, in press, 2020.

Benjamin, R. and Zhu, H.T. ACE of Space: Estimating Genetic Components of High-Dimensional Imaging Data. Biostatistics, in press, 2020.

Zhang, J., Xia, K., Ahn, M., Jha, S.C., Blanchett, R., Crowley, J.J., Szatkiewicz, J.P., Zou, F., Zhu, H., Styner, M., Gilmore, J.H., Knickmeyer, R.C. Genome-
Wide Association Analysis of Neonatal White Matter Microstructure. Cerebral Cortex, in press, 2020.

Yize Zhao, Hongtu Zhu, Zhaohua Lu, Rebecca Knickmeyer, and Fei Zou. Bayesian Hierarchical Variable Selection for Structured Genome-wide
Association Studies, Genetics, 212, 397-415, 2019.

S.J. Lee, J.W.Zhang, M. C. Neale, M. Styner, H. Zhu, J.H. Gilmore. Quantitative tract-based white matter heritability in 1- and 2-year-old twins. Human Brain
Mapping, 40, 1164-1173, 2019.

Zhang, J.W., Ibrahim, J. G., Li, T.F., and Zhu, H.T. A Powerful Global Test Statistic for Functional Statistical Inference. AAAI/ 2019.

Farouk Nathoo, Linglong Kong, and Zhu, Hongtu. A Review of Statistical Methods in Imaging Genetics. The Canadian Journal of Statistics, 47, 108-131, 2019.
Huang, C., Thompson, P., Wang, Y., Yu, Y., Zhang, J., Kong, D., Colen, R., Knickmeyer, R., Zhu, H. T. "FGWAS: Functional genome wide association
analysis." Neurolmage, 159, 107-121, 2017.

Zhaohua Lu, Zakaria Khondker, Joseph G |Ibrahim, Yue Wang, and H. Zhu. Bayesian longitudinal low-rank regression models for imaging genetic data from
longitudinal studies. Neurolmage, 149:305-322, 2017.

Zhang, J.W., Ibrahim, J.G., R.C. Knickmeyer, M. Styner, Gilmore, J. H., and H. Zhu. HFPRM: Hierarchical Functional Principal Regression Model for Diffusion
Tensor Image Bundle Statistics. IPMI 2017.
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Lin, J, Zhu, H.T., Ahn, M., Sun, W, and Ibrahim, J. G. Functional mixed effects models for imaging genetic data. Genetic Epidemiology, 38, 680-691, 2014.
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Novel Clinical findings



Brain Imaging Genetics Knowledge Portal —



S— GWAS Locus Browser —_

Searchable database for 1593+ neuroimaging
traits across four imaging modalities:
(grey matter volume, white matter microstructure,
resting-state and task functional
activity/connectivity)

UNC Biostatistics BIG-KP | https://bigkp.org/



— GWAS Locus Browser —

Amplitude Trait (node activity)
(Precuneus)
(Default mode, Central executive)




— GWAS Summary Statistics —

The full set of GWAS summary statistics have been made freely
available to the research community

Resources with the largest sample size
(>4,350 page views since Sep 2019)

UNC Biostatistics BIG-KP | https://bigkp.org/



— GWAS of White Matter Tracts —
Overview of the ENIGMA-DTI pipeline and the multiple-stage design in GWAS

Apply the same pipeline in different
datasets (UKB, ABCD, PING, PNC, HCP)



—  @Genetic Architecture of White Matter —
We observed 109 novel genomic regions (151 in total, P< 2.3e-10, 5e-8/215)
associated with white matter microstructure

Heritability A2 ~ 45% ~1£'I:'->(o)hci) ldeogram of genomic regions

® FAPC1 FA PC4
FA PC2 FA PC5
FAPC3 A Not significant

Proportion of SNP heritability

SNP heritability
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Sample size is essential for gene discovery of traits with
highly polygenic genetic architecture



Colocalization with Glioma/GBM

For the 25 known genomic risk regions of Glioma/GBM, 11 are associated with
white matter microstructure
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Colocalization with Stroke

Genetic colocalizations among vascular risk factors (e.g., obesity, diabetes, high

blood pressure), white matter microstructure, and stroke
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— Genetic Correlations with Brain Disorders —

Strong genetic correlation
between white matter microstructure and small vessel stroke subtype




—  Heritability Enrichment in Brain Cells —
|dentify brain cell types where genetic variation leads to
changes in white matter connectivity

Gross cell types (neuron, non-neuron [glia, including oligo, mitlia, astrocyte])

7
U
/

. . . q .
Oligo annotation accounted for 10.4% Microglia
& astrocyte

White matter is largely

composed of e )
glial cell types heritability while only composed 0.3% of

(oligo, microglia, astrocyte) the genetic variants



B DTl annotation enrichment —

Heritability of 49 complex traits was significantly enriched in genetic regions
influencing white matter microstructure, such as stroke, schizophrenia, ADHD, bipolar
Alzheimer's Disease, T2D, high blood pressure, and coronary artery disease

oligo
Partiti heritability enrichment analysis using DTl
annotatio efined by significant genes of DTI par ers

of white matter microstructure)

7
/
/

. . . q .
Oligo annotation accounted for 10.4% Microglia
& astrocyte

White matter is largely

composed of e )
glial cell types heritability while only composed 0.3% of

(oligo, microglia, astrocyte) the genetic variants



— Triple Network Model of Psychopathology —

The salience network (SN) plays a crucial role in dynamic switching
between the central executive (CE) and default mode (DM) networks

Three core functional
networks that support
efficient cognition

ventromedial anterior dorsolateral
prefrontal Insula prefrontal  Related to major brain
cortex cortex disorders, such as
Alzheimer’s disease (AD),
posterior anterior posterior  Parkinson’s disease (PD),
cingulate cingulate parietal and major depressive
cortex gelfiz i disorder (MDD)

UNC Biostatistics BIG-KP | https://bigkp.org/



— Genetics of the Triple Networks —_—
Higher heritability than other functional networks (e.g., motor, vision)

The level of genetic control is higher in the triple networks, which closely control multiple
UNC Biostatistics cognitive functions and affect major brain disorders? | https//bigkp.org/



— Genetics of Functional Brain —_—

ldeogram of the loci influencing rsfMRI traits of intrinsic brain activity at the significance
level 2.8e-11 (5e-8/1777)



— Colocalization with AD and SCZ —
Colocalization between brain function in the default mode (DM) and central
executive (CE) networks with Alzheimer's disease (AD) and Schizophrenia (SCZ)

Alzheimer's Schizophrenia
disease

(APOE)



S Colocalization at APOE —

APOE gene has stronger genetic relationships
with brain function than brain structures

functional activity

(FMRI)
white matter grey matter
microstructure volume
(diffusion MRI) (structural MRI)

UNC Biostatistics BIG-KP | https://bigkp.org/



Colocalization at 17921.31 regions —

Sleep

Neurological disorders
(e.g., Parkinson's disease, Alzheimer’s
disease, corticobasal degeneration)
Psychiatric disorders
(e.g., autism spectrum disorder,
depression)
Education, cognitive ability

Psychological traits (e.g., neuroticism)

Alcohol use disorder



Colocalization with Sleep and Cognition —

Cognitive traits/education
Sleep



— Resting/task functional MRI (fMRI) —

Parcellation-based approach to provide fine-grained details about
the cerebral cortex functional organizations

Partitioned the cerebral cortex into 360 well-defined functional areas with known biological functions



— GWAS of Brain Functions




— Area-level Heritability Pattern of Functional Brain —

Fine details about the heritability pattern (> 64k fMRI connectivity traits among 360 regions)




— Heritability Pattern in the Default Mode Network —




— APOE-associations across functional networks —

observations: 1) Enriched in the secondary visual and default mode networks;
2) Stronger connections in fMRI than in structural MRI.




— It's just a beginning —

Hundreds of associated genetic variants for 1593+ neuroimaging traits across
three modalities:
(grey matter volume, white matter microstructure, resting-state functional

connectivity+rfMRI, task fMRI, )
[Cover Feature]

Genetics discovery in human brain by big data integration



Human Body Imaging Genetics Network (1-5 yrs)

Multi-organ images Other images
(abdominal, brain, and heart) (eye, face, knee, hip, etc.)
Kidne '
Y Liver MRI Retinal DXA bone
images images
Interplay?
Genetics ﬁ Environment? (e.g., sleep,
A,
Disease?

(e.g., T2D) Data from > 100k subjects (by 2024)



Heart-Brain Connections
Zhao et al. medRxiv , 2021, multi-organ images from 40k subjects

Shared genetic influence between heart and brain structures

Heart MRI

Maximum area of
ascending aorta

Volume of cerebrospinal
fluid (CSF)

Brain MRI



Heart Knowledge Portal



— Ongoing/Future Directions —

Causal relationships among disease, brain structures, and brain
functionalities (e.g., the genetic pathway among vascular risk
factors, white matter, and stroke)

. Build optimal models for complex traits and diseases prediction
using imaging and genetics data (e.g., deep learning)

' Compare and identify the best practical strategy and pipelines to
process different neuroimaging modalities (e.g., ICA for fMRI)

. Model brain changes and genetics effects across the life span

‘ Align and integrate different neuroimaging modalities
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