
Daniel R. Jeske, Department of Statistics, University of California, Riverside

Discussion of a Special Issue of The American Statistician

Technical overview of some of the alternative procedures

Daniel R. Jeske

Professor

Department of Statistics

University of California – Riverside

Editor-in-Chief, The American Statistician

May 23, 2019

1



Wendy’s television commercial (1984)

Where’s the Beef?



Wendy’s television commercial (1984)

In the TAS Special Issue!

Where’s the Beef?



Daniel R. Jeske, Department of Statistics, University of California, Riverside

Setting the Scene
• 43 papers in the special issue can be grouped into 5 categories:

1. Getting to post p<0.05 era
2. Interpreting and using p
3. Supplementing or replacing p
4. Adopting more holistic approaches
5. Reforming institutions: changing publication policies and statistical education

• I will discuss 7 papers in the special issue that I found interesting.

• Not all of the ideas in the papers are new.  Some of the papers highlight  and/or 
add emphasis to previous work published elsewhere

• My specific aims are:

1. Share some of the techniques you might use.

2. Provide you with the main ideas and a glimpse of some technical ideas.  

3. Tweak your curiosity enough  that you look further at the special issue.

• The P-value topic brings both Bayesian and Frequentist thinking into the 
conversation.  
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One Last Thing Before We Really Start

A nice paper in the special issue that reviews the long history 
of p-values, including their origins, the controversies, and 
many of the principal characters involved in these facets:

“Before p < 0.05 to Beyond p < 0.05: Using History to 
Contextualize p-Values and Significance Testing,” 

by Lee Kennedy-Shaffer
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 No bright line threshold for reporting p-value results.  Report continuous p-values 
(i.e., not p<.05 or p<.01).  It does NOT mean we no longer should use p-values.

 Avoid using the term “statistically significant” to avoid confusion with 
scientifically important.   

 It should be recognized that a small p-value is a poor measure of evidence against 
a null because it only signals that there is a problem with at least one 
assumption behind it, without saying which one.

 Sharp null hypotheses are poorly suited for statistical inference. 

 Authors (and editors) should place more emphasis on what motivates the 
research questions by discussing ‘currently subordinate factors,’ such as prior 
evidence and possible mechanisms for real effects.

Abandon Statistical Significance
McShane, Gal, Gelman, Robert and Tackett
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 10:35 AM Abandon Statistical Significance 
Blakeley McShane,; Andrew Gelman, Christian Robert, David Gal, Jennifer Tackett

 10:55 AM On Mixture Alternatives and Wilcoxon’s Signed-Rank Test 
Jonathan Rosenblatt, Yoav Benjamini

 11:15 AM A Bayesian Survival Analysis of a Historical Dataset: How Long Do Popes Live? 
Luciana Dalla Valle, Julian Stander, Mario Cortina-Borja

 11:35 AM Guns and Suicides 
Danilo Santa Cruz Coelho, Daniel Cerqueira, Marcelo Fernandes, Jony Pinto Junior

 11:55 AM Forecasting at Scale 
Sean Taylor

 12:15 PM Floor Discussion

TAS Topic-Contributed Session at JSM 2019
Monday, July 29th, CC-110

Editor's Choice:  Papers Published in The American Statistician During 2018
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Many thanks to Biometrics Section, Section on Bayesian Statistical Science, 
and Section on Statistical Learning and Data Science
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Valid p-values behave exactly as they should:  
some misleading criticisms of p-values 

and their resolution with s-values
Sander Greenland
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 If using the current language of ‘statistical significance’ for a novel discovery, 
replace the .05 threshold with .005.  Refer to discoveries with a p-value between 
.005 and .05 as ‘suggestive,’ rather than ‘significant.’

Improving the Use of P-Values
Daniel Benjamin  and James O. Berger
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 If using the current language of ‘statistical significance’ for a novel discovery, 
replace the .05 threshold with .005.  Refer to discoveries with a p-value between 
.005 and .05 as ‘suggestive,’ rather than ‘significant.’

 When reporting a p-value in a test of a hypothesis  
also report
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Aligning P-values and Bayes Factors
Jonathan Rougier
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“Jeffrey’s Evidence” Against H0 

.05 .259 (at best) there is substantial evidence .205

.01 .067 (at best) there is strong evidence .063
.005 .036 (at best) there is very strong evidence .035

p 0:1Lower Bound on BF 0Lower Bound on P(H |x ) 
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Second-Generation P-Values
Blume, Greevy, Welty, Smith, Dupont

Basic Idea

 Switch from point null to interval null

 A descriptive statistic that conveys the fraction of data-supported 
hypotheses that are null hypotheses

 Retain old characteristics of p-values (e.g., 0<p<1) but add new 
characteristics such as an ability to indicate when data supports the null
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A proposed hybrid effect size plus p-value criterion
William Goodman, Susan Spruill, Eugene Komaroff

Basic Idea

 Switch from point null to interval null

 Decision criteria:  Reject null only if there is no overlap between the 
interval null and a 95% confidence interval

 Another option:   Reject null for cases where p-value is smaller than 
.05 and the observed effect size is greater than a “minimum effect 
size of interest” 
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A Close Relative
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Moving Towards the Post p < 0.05 Era 
via the Analysis of Credibility

Robert Matthews

Basic Idea

 A data set is analyzed by a frequentist

 Find “the” priors that would lead to a Bayesian analysis that would 
support the frequentist analysis

 Assess the feasibility of those priors
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Moving Towards the Post p < 0.05 Era 
via the Analysis of Credibility

Robert Matthews
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0

1 1

0 0

A skeptical Bayesian might use a prior like ~ (0, ).  

The resulting 95% credibility interval is
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0 0

0 0

Alternatively, suppose 0 ( , ) so that the frequentist declares no effect.

An advocating Bayesian might use a prior like ~ ( , ) 

with the constraint  1.96 0.  
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Thank You!
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