Discussion of a Special Issue of The American Statistician

Technical overview of some of the alternative procedures

Daniel R. Jeske

Professor

Department of Statistics

University of California – Riverside

Editor-in-Chief, The American Statistician

May 23, 2019

NISS National Institute of Statistical Sciences

Daniel R. Jeske, Department of Statistics, Unive

Wendy's television commercial (1984)

Where's the Beef?

Wendy's television commercial (1984)

Where's the Beef? In the TAS Special Issue!

Setting the Scene

- 43 papers in the special issue can be grouped into 5 categories:
 - 1. Getting to post p<0.05 era
 - 2. Interpreting and using p
 - 3. Supplementing or replacing p
 - 4. Adopting more holistic approaches
 - 5. Reforming institutions: changing publication policies and statistical education
- I will discuss 7 papers in the special issue that I found interesting.
- Not all of the ideas in the papers are new. Some of the papers highlight and/or add emphasis to previous work published elsewhere
- My specific aims are:
 - 1. Share some of the techniques you might use.
 - 2. Provide you with the main ideas and a glimpse of some technical ideas.
 - 3. Tweak your curiosity enough that you look further at the special issue.
- The P-value topic brings both **Bayesian and Frequentist** thinking into the conversation.

Intro

One Last Thing Before We Really Start

A nice paper in the special issue that reviews the *long history* of p-values, including their origins, the controversies, and many of the principal characters involved in these facets:

"Before *p* < 0.05 to Beyond *p* < 0.05: Using History to Contextualize *p*-Values and Significance Testing,"

by Lee Kennedy-Shaffer

Abandon Statistical Significance

McShane, Gal, Gelman, Robert and Tackett

- No bright line threshold for reporting p-value results. Report continuous p-values (i.e., not p<.05 or p<.01). It does NOT mean we no longer should use p-values.
- Avoid using the term "statistically significant" to avoid confusion with scientifically important.
- It should be recognized that a small p-value is a poor measure of evidence against a null because it only signals that there is a problem with at least one assumption behind it, without saying which one.
- Sharp null hypotheses are poorly suited for statistical inference.
- Authors (and editors) should place more emphasis on what motivates the research questions by discussing 'currently subordinate factors,' such as prior evidence and possible mechanisms for real effects.

Terminology

TAS Topic-Contributed Session at JSM 2019 Monday, July 29th, CC-110

Editor's Choice: Papers Published in The American Statistician During 2018

- 10:35 AM Abandon Statistical Significance Blakeley McShane,; Andrew Gelman, Christian Robert, David Gal, Jennifer Tackett
- 10:55 AM On Mixture Alternatives and Wilcoxon's Signed-Rank Test Jonathan Rosenblatt, Yoav Benjamini
- 11:15 AM A Bayesian Survival Analysis of a Historical Dataset: How Long Do Popes Live? Luciana Dalla Valle, Julian Stander, Mario Cortina-Borja
- 11:35 AM Guns and Suicides Danilo Santa Cruz Coelho, Daniel Cerqueira, Marcelo Fernandes, Jony Pinto Junior
- 11:55 AM Forecasting at Scale Sean Taylor
- 12:15 PM Floor Discussion

Many thanks to *Biometrics Section*, *Section on Bayesian Statistical Science*, and *Section on Statistical Learning and Data Science*

Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values

Sander Greenland

s - values

Let *p* denote the probability of an event *E*. Suppose we find *s* such that $p = \left(\frac{1}{2}\right)^s$. This expresses *p* as the probability of getting *s* consecutive heads in tosses of a fair coin.

The *s*-value, defined as $s = -\log_2(p)$, is a translation of how likely or unlikely *E* was.

Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values

Sander Greenland

s - values

Let *p* denote the probability of an event *E*. Suppose we find *s* such that $p = \left(\frac{1}{2}\right)^s$. This expresses *p* as the probability of getting *s* consecutive heads in tosses of a fair coin.

The *s*-value, defined as $s = -\log_2(p)$, is a translation of how likely or unlikely *E* was.

The *s*-value *contextualizes* the p-value by representing the evidence it conveys against the null as the same evidence that seeing all heads in *s* tosses of a coin would convey against a hypothesis thay the coin is fair.

Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values

Sander Greenland

For example, $s = -\log_2(.05) = 4.3$. Considering the .05 threshold as evidence against a null is no different than doubting a coin is fair because 4 tosses in a row came up heads. Is that really strong evidence?

On the other hand, $s = -\log_2(.005) = 7.6$.

Daniel Benjamin and James O. Berger

 If using the current language of 'statistical significance' for a novel discovery, replace the .05 threshold with .005. Refer to discoveries with a p-value between .005 and .05 as 'suggestive,' rather than 'significant.'

Thresholds

Daniel Benjamin and James O. Berger

- If using the current language of 'statistical significance' for a novel discovery, replace the .05 threshold with .005. Refer to discoveries with a p-value between .005 and .05 as 'suggestive,' rather than 'significant.'
- When reporting a p-value in a test of a hypothesis $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ also report

$$P(H_0 \mid X = x) = \left[1 + \frac{1 - \pi_0}{\pi_0} \times \frac{1}{\mathsf{BF}_{0:1}}\right]^{-1} \ge \left[1 + \frac{1 - \pi_0}{\pi_0} \times \frac{1}{-e\,\rho\log(\rho)}\right]^{-1}$$

intesholds

Daniel Benjamin and James O. Berger

 $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$

Marginal density of X: $m(x) = \pi_0 f(x \mid \theta_0) + (1 - \pi_0) \int f(x \mid \theta) g(\theta) d\theta$

$$P(H_0 \mid X = x) = \frac{f(x \mid \theta_0) \pi_0}{m(x)}$$
$$= \left[1 + \frac{1 - \pi_0}{\pi_0} \times \frac{1}{\mathsf{BF}_{0:1}} \right]^{-1} ,$$

where
$$BF_{0:1} = \frac{f(x \mid \theta_0)}{\int f(x \mid \theta) g(\theta) d\theta}$$
.

Daniel Benjamin and James O. Berger

From here there are a variety of ways to establish bounds for BF_{01} with one such way derived in Berger and Selke (JASA, 1987) and the later Selke (*The American Statistician*, 2001):

p is the observed data and *p*, given *a*, is distributed as beta(a,1)

$$H_{0}: a = 1$$

$$H_{1}: a \neq 1$$

$$\mathsf{BF}_{0:1} = \frac{1}{\int_{0}^{1} a p^{a-1} g(a) da} \geq \frac{1}{\max(ap^{a-1})} = -e p \log(p), \text{ and so}$$

$$P(H_{0} \mid X = x) = \left[1 + \frac{1 - \pi_{0}}{\pi_{0}} \times \frac{1}{\mathsf{BF}_{0:1}}\right]^{-1} \geq \left[1 + \frac{1 - \pi_{0}}{\pi_{0}} \times \frac{1}{-e p \log(p)}\right]^{-1}$$

Daniel R. Jeske, Department of Statistics, University of California, Riverside

Intesholds

Aligning P-values and Bayes Factors

Jonathan Rougier

 $X_1, \ldots, X_n \text{ iid } N(\theta, \sigma^2)$, $\Theta = \{\theta : \theta \ge 0\}$, σ^2 known

 $H_0: \theta = 0$ vs. $H_1: \theta > 0$, $p = 1 - \Phi(\sqrt{n} \overline{x} / \sigma)$

Aligning P-values and Bayes Factors

Jonathan Rougier

$$X_1, \ldots, X_n \text{ iid } N(\theta, \sigma^2)$$
, $\Theta = \{\theta : \theta \ge 0\}$, σ^2 known

$$H_0: \theta = 0$$
 vs. $H_1: \theta > 0$, $p = 1 - \Phi(\sqrt{n} \overline{x} / \sigma)$

$$\begin{aligned} \mathsf{BF}_{0:1} &= \frac{f(x \mid \theta = 0)}{\int_0^\infty f(x \mid \theta) g(\theta) d\theta} \geq \frac{f(x \mid \theta = 0)}{f(x \mid \theta = \hat{\theta})} , \quad \hat{\theta} = \max(0, \overline{x}) \\ &= \begin{cases} \exp(-n\overline{x}^2 \mid \sigma^2) &, \text{ if } \overline{x} \geq 0 \\ 1 &, \text{ if } \overline{x} < 0 \end{cases} \\ &= \begin{cases} \exp\{-(1/2)[\Phi^{-1}(1-p)]^2\} &, \text{ if } \overline{x} \geq 0 \\ 1 &, \text{ if } \overline{x} < 0 \end{cases} \end{aligned}$$

(see also, Edwards, Psychological Review, 1963)

Aligning P-values and Bayes Factors

Jonathan Rougier

p-value

р	Lower Bound on BF _{0:1}	"Jeffrey's Evidence" Against H ₀	Lower Bound on $P(H_0 x)$
.05	.259	(at best) there is substantial evidence	.205
.01	.067	(at best) there is strong evidence	.063
.005	.036	(at best) there is very strong evidence	.035

Second-Generation P-Values

Blume, Greevy, Welty, Smith, Dupont

Basic Idea

- Switch from point null to interval null
- A descriptive statistic that conveys the fraction of data-supported hypotheses that are null hypotheses
- Retain old characteristics of p-values (e.g., 0<p<1) but add new characteristics such as an ability to indicate when data supports the null

Interval Null

Second-Generation P-Values

Blume, Greevy, Welty, Smith, Dupont

Basic Idea

- Switch from point null to interval null
- A descriptive statistic that conveys the fraction of data-supported hypotheses that are null hypotheses
- Retain old characteristics of p-values (e.g., 0<p<1) but add new characteristics such as an ability to indicate when data supports the null

Pose the null hypothesis as $\theta \in [a, b] \equiv H_0$. Let I = [L, U] be a $100(1 - \alpha)\%$ confidence interval for θ . Denote measure of overlap as $|I \cap H_0|$

A proposed hybrid effect size plus p-value criterion

William Goodman, Susan Spruill, Eugene Komaroff

Basic Idea

- Switch from point null to interval null
- Decision criteria: Reject null only if there is no overlap between the interval null and a 95% confidence interval
- Another option: Reject null for cases where p-value is smaller than .05 and the observed effect size is greater than a "minimum effect size of interest"

A Close Relative

We know how to test an interval null hypothesis with a Union-Intersection Test

$$X_1, \ldots, X_n \text{ iid } N(\mu, \sigma^2)$$
, σ^2 known. $H_0 : \mu \in [a, b]$ vs. $H_1 : \mu \notin [a, b]$

Reject if either
$$\frac{\overline{X} - b}{\sigma / \sqrt{n}} > z_{\alpha/2}$$
 or $\frac{\overline{X} - a}{\sigma / \sqrt{n}} < -z_{\alpha/2}$

There is even a UMPU test for this particular case (Schervish, TAS, 1996)

Reject if either $|\overline{X} - (a+b)/2| > c$, choosing c to satisfy

$$\Phi\left[\frac{(a-b)/2-c}{\sigma/\sqrt{n}}\right] + \Phi\left[\frac{(b-a)/2-c}{\sigma/\sqrt{n}}\right] = \alpha$$

A Close Relative

$$X_1, ..., X_n \text{ iid } N(\mu, 1)$$

 $H_0: \mu \in [2,3] \text{ vs. } H_1: \mu \notin [2,3]$
 $\alpha = .05$

Robert Matthews

Basic Idea

- > A data set is analyzed by a frequentist
- Find "the" priors that would lead to a Bayesian analysis that would support the frequentist analysis
- Assess the feasibility of those priors

Robert Matthews

Basic Idea

- > A data set is analyzed by a frequentist
- Find "the" priors that would lead to a Bayesian analysis that would support the frequentist analysis
- Assess the feasibility of those priors

 X_1, \ldots, X_n iid $N(\mu, \phi)$, ϕ known

A 95% confidence interval is $\overline{X} \pm 1.96\sqrt{\phi/n} \equiv (L, U)$.

Suppose $0 \notin (L, U)$ so the frequentist declares a non-zero effect.

Reconcile

Moving Towards the Post p < 0.05 Era via the Analysis of Credibility

Robert Matthews

A skeptical Bayesian might use a prior like $\mu \sim N(0, \phi_0)$.

The resulting 95% credibility interval is

$$\left(\frac{n}{\phi} + \frac{1}{\phi_0}\right)^{-1} \frac{n\overline{X}}{\phi} \pm 1.96 \sqrt{\left(\frac{n}{\phi} + \frac{1}{\phi_0}\right)^{-1}}$$

Robert Matthews

A skeptical Bayesian might use a prior like $\mu \sim N(0, \phi_0)$.

The resulting 95% credibility interval is

$$\left(\frac{n}{\phi} + \frac{1}{\phi_0}\right)^{-1} \frac{n\overline{X}}{\phi} \pm 1.96 \sqrt{\left(\frac{n}{\phi} + \frac{1}{\phi_0}\right)^{-1}}$$

Credibility interval excludes 0 if and only if $\phi_0 \ge \frac{(U-L)^4}{1.96^2 \times LU}$.

If the skeptical Bayesian felt they had strong enough prior information that $\phi_0 < \frac{(U-L)^4}{1.96^2 \times LU}$ was reasonable they would dispute the frequentist finding.

Daniel R. Jeske, Department of Statistics, University of California, Riverside

Reconcile

Robert Matthews

Alternatively, suppose $0 \in (L, U)$ so that the frequentist declares no effect.

An advocating Bayesian might use a prior like $\mu \sim N(\mu_0, \phi_0)$ with the constraint $\mu_0 - 1.96\sqrt{\phi_0} = 0$.

Robert Matthews

Alternatively, suppose $0 \in (L, U)$ so that the frequentist declares no effect.

An advocating Bayesian might use a prior like $\mu \sim N(\mu_0, \phi_0)$ with the constraint $\mu_0 - 1.96\sqrt{\phi_0} = 0$.

Credibility interval includes 0 if and only if $\phi_0 \ge \frac{(U+L)^2}{L^2 U^2} \frac{(U-L)^2}{1.96^2 \times 16}$.

If the advocating Bayesian felt they had strong enough prior information that $\phi_0 < \frac{(U+L)^2}{L^2 U^2} \frac{(U-L)^2}{1.96^2 \times 16}$ was reasonable they would dispute the frequentist finding.

Thank You!