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How we fight Infectious Diseases 

• Identify
• Diagnostic Tests

• Describe
• Time from infection to symptoms (incubation) 
• Who has  been infected (sero-prevalence) 
• Within household transmission

• Treatment
• Adaptive Treatment Trial

• Prevention
• Vaccines
• Antibodies 



Identify: Diagnostics 

• Are you infected?   (PCR tests)

• Were you infected?  (Serology)

Y = abundance of 
SARS-CoV2 RNA

Y = abundance of 
antibodies
that fought  
SARS-CoV2



Exponential growth of testing? 

• Ten Samples, Ten individual tests, Ten hours of work. 
1 1 0 0 0 
0 0 0 0 0 

• 10, 20, 40, 80, 160, 320 test,   320 hours of work…



Exponential growth of testing? 

• Ten Samples, Ten individual tests, Ten hours of work. 
1 1 0 0 0 
0 0 0 0 0 

• Ten Samples: Two pooled tests.  5 individual tests.   7 hours of work.
1 Retest individual samples 1 1 0 0 0 

0   Infer individual samples 0 0 0 0 0 
 Concern

 1 positive in a big pool of negatives may be ‘drowned’ out 

 Remedy
 Do experiments



Current Work

• Collaborating with Asian Researchers to pool PCR tests
• Collaborating within NIAID to pool serologies
• Determine the pool size that still identifies one positive in the pool 
• Labs choose number based on their current positivity rate

• If rare maybe pool 10 or 20
• If common don’t pool 



Describe Incubation Distribution

P(I = 2 ) = ϴ2 =  #( I =2) / Total = 1/3  

I P(I)

1 ϴ1

2 ϴ2

3 ϴ3

4 ϴ4

True Incubation Distribution 

Infected                           Symptoms

If always   I < 14 days, then quarantine for 14 days

4

2

1



A natural experiment 

• In January,  Epidemic was mostly in Wuhan
• On Jan 23, China imposed a countrywide lockdown
• Suppose Zonghui leaves Wuhan on Jan 21 goes to Beijing.  On Jan 23 

she is stuck in her apartment
• Zonghui tests positive on Jan 30   

• Must’ve got it in Wuhan
• Incubation must be at least 9 days
• Can we do better?   

Jan 21                                       Jan 30                                 

?

Free Movement                              Lockdown



Two issues, but a solution 

• Incubation period as least what we see 
• Wuhan emigres tend to nave longer incubations

-3  -2   -1    0    1    2    3    4      

P( Symptoms day 4)      =     P( I=4 | Infected on Day   0)   P( Infected on Day  0)/C
=     ϴ4 (1/4)/C

P(Symptoms day  3)      =      P( I=4 | Infected on Day -1)  P( Infected on Day  0) + P( I=3 | Infected on Day 0) P(Infected on Day 0)
=   {ϴ4 (1/4) + ϴ3 (1/4)}/C

I P(I)

1 ϴ1

2 ϴ2

3 ϴ3

4 ϴ4

True Incubation Distribution 

3 4

4
2

1
4



Treatment:  ACTT-1

• Double blind,  adaptive, randomized trial of remdesivir vs placebo in mild-
severe COVID-19 disease 

• Measure ordinal scale every day. Feels, functions, survives, … & logistics

• Primary endpoint ordinal outcome at day 14, . . . But
• How firm are the categories?  
• What if treatment effects show up later.
• Blinded adaptation after pilot of 100 doesn’t help much

• 8  Death;
• 7  Hospitalized, on invasive mechanical ventilation or ECMO;
• 6  Hospitalized, on non-invasive ventilation or high flow oxygen devices;
• 5  Hospitalized, requiring supplemental oxygen;
• 4  Hospitalized, not requiring supplemental oxygen - requiring ongoing medical care
• 3  Hospitalized, not requiring supplemental oxygen - no longer requires ongoing medical care;
• 2  Not hospitalized, limitation on activities and/or requiring home oxygen;
• 1  Not hospitalized, no limitations on activities.



Simulate trajectories, determine power 

Test P-Odds
Day 1

P-Odds
Day 7

P-Odds
Day 14

P-Odds
Day 28

Mean
Score

Cox on 
2 point 

Cox on 
Recovery

Cox on
Death

28 Day
Mortality

Simple .046 .755 .851 .877 .800 .808 .818 .626 .579
Adjusted .917 .834 .909

Power:    
Proportion of times we conclude 
Remdesivir works for different tests 



Endpoint: Time to Recovery

• How to treat deaths?  People who die can never recover.  Set their 
recovery times to infinity.

• Use log-rank test with time to recovery over day [0,28]
• Kaplan-Meier curve estimates the cumulative incidence of recoveries.
• Corresponds to Fine-Grey method for competing risks
• Designed to achieve 400 recoveries 

Cao 2020 study of Kaletra



ACTT-1    

• Study accrued extremely rapidly as epidemic exploded
• Required quick flexible thinking/action   

• First interim look = final look had more than 400 recoveries
• Study well powered and well run

• 31% faster recovery p-value = 0.001
• Median recovery 11  days Remdesivir vs  15 days Placebo
• Mortality                8% Remdesivir 11% Placebo 

• ACTT --- a powerful collaboration poised to keep getting answers
• ACTT-2 being finalized given ACTT-1 results



Prevention: Planning for Vaccines

• Many vaccine candidates to be evaluated 
• Possible Endpoints

• Infection  - PCR+  for virus
• Disease    - PCR+  for virus   & symptomatic disease

• Which will be sensitive to vaccine effects?   Help patient health?
• What if major effect of vaccine is to lessen disease severity? 

Outcome Placebo Vaccine

Infection 1.0% 1.5%

Mild Disease 0.6%    0.4%

Hospitalized 0.3% 0.1%

Death 0.1% 0.0%

Vaccine “lift”



Prevention: Planning for Vaccines

• Many vaccine candidates to be evaluated 
• Possible Endpoints

• Infection  - PCR+  for virus
• Disease    - PCR+  for virus   & symptomatic disease

• Which will be sensitive to vaccine effects? Help patient health?  
• What if major effect of vaccine is to lessen disease severity? 

Outcome Placebo Vaccine

Infection 1.0% 1.5%

Mild Disease 0.6%    0.4%

Hospitalized 0.3% 0.1%

Death 0.1% 0.0%



Potential Analyses 

• Time to disease
• Use proportional hazards model
• % Reduction in the instantaneous of probability of disease  

• Time to weighted disease:  mild=1, hosp=2, death=3
• Proportional means model
• % Reduction in the mean severity of disease

• Simulations being conducted to inform choice
• Usual Wilcoxon                66% power
• Proportional Hazards      81% power
• Proportional Means        93% power

Outcome Placebo Vaccine

Infection 1.0% 1.5%

Mild Disease 0.6%    0.4%

Hospitalized 0.3% 0.1%

Death 0.1% 0.0%



Prevention: Antibodies 

• Injected SARS-CoV2 antibodies might prevent infection
• Identify someone with COVID-19
• Enroll them and their family members
• Randomize the entire family to 

• Anti-CoV2 antibodies
• Placebo

• Treatment trial for index case
• Prevention trial for family members

• Abs reduce individual risk AND cuts down on the within family attack rate

Index



Placebo Family                       Counterfactual Antibody Family 

Ab Takes Ab Useless

Randomize families:                75% of the family members are protected
Randomize individuals:           50% of the family members are protected.

Effective family-ring interventions will help to control the virus

Assume Equally likely

Index Index
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Treatment & Prevention

• Plasma from COVID-19 survivors is rich in SARS-CoV2 antibodies
• Extract it, check it, pool it, test it in clinical trials
• Huge logistical issues with tracking, cataloging,  verifying etc.
• BRB-CTRS is essential in ensuring that survivor’s donated antibodies 

can be rigorously evaluation for treatment and prevention



Invasive Mechanical Ventilation
Intubated & Sedated

High Flow Oxygen

Low flow oxygen



Describe: Sero-prevalence 

• Ideally, do a random sample of the US population
• That would take a while, especially for us

• Encourage people to volunteer throughout the country 
• d

• Fix up this convenience sample so it represents the US population of 
sero-prevalence volunteers

• Can’t really make it random 



Sero-prevalence fixup

10 Male 30-40 y.o. donors in Elgin
3 seropositive

Estimate =   3/10 x w_Elgin + . . .
--------------------------

w_Elgin + . . .

W_Elgin = 1/28



Generalization

• Can correct for geographical location, age, gender, etc.   Estimate of 
seroprevalence in Illinois

∑𝑖𝑖 𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝐼𝐼𝑖𝑖𝐼𝐼 𝑤𝑤𝑖𝑖 𝑌𝑌𝑖𝑖
∑𝑖𝑖 𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝐼𝐼𝑖𝑖𝐼𝐼 𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 = Pr person 𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑏𝑏𝑏𝑏 𝑠𝑠𝑏𝑏𝑤𝑤𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑎𝑎𝑖𝑖𝑤𝑤𝑤𝑤𝑟𝑟 𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠𝑤𝑤𝑏𝑏
𝑌𝑌𝑖𝑖 = 1 if person is is seropositive



Transmission

• NIH employees are getting COVID-19.  Designed a protocol
• Identify contacts and family members for onward transmission.          

Cluster Members Times of 
Detection

Covariates

1 A, B, C, D, E 0, 3, 7, --, 2,  4 X A  XB XC XD  XE

2 A, B 0, --- XA XB

3 A, B, C 0, 4, --- XA   XB  XC



A

C
B

D
E 

O
U
T
S
I
D
E

Transmission Sequence Known 



Logit 

• Each person A, . . . , E flips a coin to see if they’re infected
• logit{P(Out->A)} = 𝜶𝜶0+ 𝜶𝜶1 I(A works outside)

• Say A and B are infected from outside.   A and B draw avoidance 
scores for everyone else.   

• If S(AC) < 1 then A infects C
• S(AC) ~ Exponential{ exp(𝜷𝜷0 + 𝜷𝜷1I(A,C share room) }

• Repeat with the newly infected. 



A

C
B

D
E 

O
U
T
S
I
D
E

Outside:            P(Out->A) (1-P(Out->B))  (1-P(Out->C))  (1-P(Out->D)) (1-P(Out->E))
1 – P(no one is infected)

Inside Gen 1:   P( S(AB)<1)  P( S(AE)<1)           P(S(AC)>1)        P(S(AD)>1)

Inside Gen 2:   P( S(BD)<1 & S(BD) < S(ED) )   P(S(BC)>1)        P(S(EC)>1)

Transmission Sequence Known 

Likelihood equals
Product of : 



But we don’t know the sequence  

• Missing data Likelihood contribution sums over possibilities
• Suppose A,B infected, C not.   Three possibilities 

• Out-> A,B {2}
• Out-> A,      A->B         {1,1}
• Out-> B,      B->A         {1,1}

• With bigger clusters # of possibilities explodes.  Cluster of size 9 has 
many partitions

• {9}
• {8,1}, {7,2}, …. {1,8}
• {1,1,7}, {1,2,6}, …. {7,1,1}
• {1,1,1,6}, . . . 
• . . .    



Evaluate
Agree

Run 1 vs Run 2
Run 1

Individual
Run 2 

Individual
Pool Depooled Agree 

Run 2 vs Pool

Yes 0 0 0 0 0 0 0 0 0 0 0 Yes

Yes 0 0 0 0 0 0 0 0 0 0 0 Yes

No 1 0 0 0 0 0 0 0 0 0 0 Yes

Yes 1 0 0 0 0 1 0 0 0 0 0 No

Yes 1 0 0 0 0 1  0 0 0 0 1 1  0 0 0 0 Yes

Yes 0 0 0 0 0 0 0 0 0 0 0 Yes

5/6 Pooling and re-running have similar reproducibility
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