
AN INTRODUCTION TO RCPP

A HANDS-ON OVERVIEW

Dirk Eddelbuettel

NISS Virtual Seminar

25 Mar 2022

https://dirk.eddelbuettel.com/papers/niss_rcppIntro_mar2022.pdf

https://dirk.eddelbuettel.com/papers/niss_rcppIntro_mar2022.pdf

WHO AM I ?

Talk @ NISS 2/72

MY DAY JOB

And we are hiring!Talk @ NISS 3/72

https://apply.workable.com/tiledb/

MY OTHER JOBS

(Adjunct) Clinical Professor, University of Illinois

• teaching STAT447 ‘Data Science Programming Methods’

Open Source Work

• Debian developer since 1995, currently maintaining about 185 packages

• R package author since 2002, author or maintainer of over 60 CRAN packages

• R Foundation Board Member; JSS Associate Editor

• Rocker Project co-founder: Docker for R, including official ‘r-base’ image

Talk @ NISS 4/72

https://www.stat447.org

INTRODUCTION TO RCPP

Talk @ NISS 5/72

VERY BROAD OUTLINE

Overview

• Some Historical Context (or “Why ?”)

• Brief Notes on First Steps (or “How ?”)

• Some Tips and Further Reference

• Interwoven with Some Empirics

Talk @ NISS 6/72

HISTORY: BELL LABS, 1976

Bell Labs meeting notes from May 1976 (!!)

Describes an outer ‘user interface’ layer to algorithms, with
extensibility a core feature

Key: abstract away inner details giving high-level accessible
view for analyst

Became “The Interface” / “The System” or just “S”

Which in turn became S which lead to R

So see R as an interactive shell, interpreter and language over
numeric, statistical, i/o, … ops

A language by statisticians for statisticians

Source: Chambers (2008, Appendix A); Chambers (2020), S, R, and Data Science, Proc ACM Prog Lang, Vol 4,
Issue HOPL, doi.org/10.1145/3386334.Talk @ NISS 7/72

https://doi.org/10.1145/3386334

IMPACT: ACM SOFTWARE SYSTEMS AWARD, 1998

For The S System, which has forever altered how people analyze,
visualize, and manipulate data.

Other Winners:
BerkeleyDB (2020), DNS (2019),
Wireshark (2018), Project
Jupyter (2017), GCC (2015), LLVM
(2012), VMware (2009), Eiffel
(2006), make (2003), Java (2002),
Apache (1999), Tcl/Tk (1997),
NCSA Mosaic (1996), World Wide
Web (1995), Remote Procedure
Call (1994), TCP/IP (1991),
Postscript (1989), Smalltalk
(1987), TeX (1986), VisiCalc
(1985), UNIX (1983)
Source: https://en.wikipedia.org/wiki/
ACM_Software_System_Award

Talk @ NISS 8/72

https://en.wikipedia.org/wiki/ACM_Software_System_Award
https://en.wikipedia.org/wiki/ACM_Software_System_Award

EVOLUTION OF PROGRAMMING WITH DATA FROM 1977 TO 2016

Note: The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.Talk @ NISS 9/72

PHILOSOPHY

Chambers (2016, pages 4-11)

objects: Everything that exists in R is an object.

functions: Everything that happens in R is a function call.

interfaces: Interfaces to other languages are a part of R.

Talk @ NISS 10/72

INTRODUCTION: WHY DO THIS?

Talk @ NISS 11/72

SO WHY RCPP?

Three key reasons

• Speed, Performance, …

• Do things you could not do before

• Easy to extend R this way

Talk @ NISS 12/72

EXTENDING R …

Why Choose C++ ?

• Asking Google leads to tens of million of hits.
• Wikipedia: C++ is a statically typed, free-form, multi-paradigm, compiled,
general-purpose, powerful programming language

• C++ is industrial-strength, vendor-independent, widely-used, and still evolving
• In science & research, one of the most frequently-used languages: If there is
something you want to use / connect to, it probably has a C/C++ API

• As a widely used language it also has good tool support (debuggers, profilers,
code analysis)

Talk @ NISS 13/72

http://en.wikipedia.org/wiki/C%2B%2B%7D%7BWikipedia

WHY C++?

Scott Meyers: View C++ as a federation of languages

• C provides rich inheritance and interoperability: Unix, Windows, … all built on C.
• Object-Oriented C++ (maybe just to provide endless discussions about exactly
what OO is or should be)

• Templated C++ which is mighty powerful; template meta programming unequalled
in other languages.

• The Standard Template Library (STL) is a specific template library which is
powerful but has its own conventions.

• C++11, C++14, C++17, C++20 (and beyond) add enough to be called a fifth language.
NB: Meyers original list of four languages appeared years before C++11.

Talk @ NISS 14/72

WHY C++?

Reasons For C++
• Mature yet current
• Strong performance focus:

• You don’t pay for what you don’t use
• Leave no room for another language between the machine level and C++

• Yet also powerfully abstract and high-level
• C++11, C++14, C++17, C++20, … are a big deal giving us new language features
• While there are (plenty of) complexities, Rcpp users are somewhat shielded

Talk @ NISS 15/72

GETTING STARTED

Talk @ NISS 16/72

SIMPLE EXAMPLE

R Version of ‘ is this number odd or even’

isOdd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
c(isOdd_r(42L), isOdd_r(43L))

[1] FALSE TRUE

Talk @ NISS 17/72

SIMPLE EXAMPLE (CONT.)

C++ Version of ‘ is this number odd or even’

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

}

Free-standing code, not yet executable…

Talk @ NISS 18/72

SIMPLE EXAMPLE (CONT.)

Rcpp Version of ‘ is this number odd or even’

Rcpp::cppFunction(”
bool isOdd_cpp(int num = 10) {

bool result = (num % 2 == 1);
return result;

}”)
c(isOdd_r(42L), isOdd_r(43L))

[1] FALSE TRUE

Talk @ NISS 19/72

SIMPLE EXAMPLE (CONT.)

In R

##
isOdd_r <- function(n=10L) {

res = (n %% 2L == 1L)
return(res)

}
isOdd_r(42L)

[1] FALSE

In C++ via Rcpp

Rcpp::cppFunction(”
bool isOdd_cpp(int n=10) {

bool res = (n % 2 == 1);
return res;

}”)
isOdd_cpp(42L)

[1] FALSE

Talk @ NISS 20/72

SECOND EXAMPLE: VAR(1)

Let’s consider a simple possible VAR(1) system of k variables.

For k = 2:

Xt = Xt−1B+ Et

where Xt is a row vector of length 2, B is a 2 by 2 matrix, and Et is a row of the error
matrix of 2 columns.

Talk @ NISS 21/72

SECOND EXAMPLE: VAR(1)

In R code, given both the coefficient and error matrices (revealing k and n):

rSim <- function(B,E) {
X <- matrix(0,nrow(E), ncol(E))
for (r in 2:nrow(E)) {

X[r,] = X[r-1,] %*% B + E[r,]
}
return(X)

}

Talk @ NISS 22/72

SECOND EXAMPLE: VAR(1)

Rcpp::cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {
int m = E.n_rows, n = E.n_cols;
arma::mat X(m,n);
X.row(0) = arma::zeros<arma::mat>(1,n);
for (int r=1; r<m; r++)

X.row(r) = X.row(r-1) * B + E.row(r);
return X; }', depends=”RcppArmadillo”)

a <- matrix(c(0.5, 0.1, 0.1, 0.5), nrow=2)
e <- matrix(rnorm(10000), ncol=2)
rbenchmark::benchmark(cppSim(a,e), rSim(a,e), order=”relative”)[,1:4]

test replications elapsed relative
1 cppSim(a, e) 100 0.010 1.0
2 rSim(a, e) 100 0.728 72.8

Talk @ NISS 23/72

SO WHEN DO WE USE RCPP?

New things: Easy access to C/C++ libraries

• Sometimes speed is not the only reason
• C & C++ provide numerous libraries + APIs we may want to use
• Easy to provide access to as Rcpp eases data transfer

Talk @ NISS 24/72

EMPIRICAL ASIDE

Talk @ NISS 25/72

GROWTH OF RCPP

2010 2012 2014 2016 2018 2020 2022

0
50

0
10

00
15

00
20

00
25

00

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
50

0
10

00
15

00
20

00
25

00

2010 2012 2014 2016 2018 2020 2022

0
2

4
6

8
10

12

Data current as of March 21, 2022.

Talk @ NISS 26/72

USERS ON CORE REPOSITORIES

Rcpp is currently used by

• 2524 CRAN packages

• 239 BioConductor packages

• an unknown (but “large”) number of GitHub projects

Talk @ NISS 27/72

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- ”https://cloud.r-project.org”
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp ggplot2 dplyr MASS magrittr
2.744 1.516 1.274 1.122 0.814

Talk @ NISS 28/72

PAGERANK

zoo
raster
R6
lattice
scales
lubridate
doParallel
sp
reshape2
igraph
foreach
shiny
plyr
survival
mvtnorm
httr
purrr
RcppArmadillo
tidyr
jsonlite
data.table
tibble
stringr
rlang
Matrix
magrittr
MASS
dplyr
ggplot2
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of March 2022

Talk @ NISS 29/72

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0
db <- db[!duplicated(db[,1]),] # rows: nb of pkgs,
nTot <- nrow(db) # cols: diff attributes
nRcpp <- length(tools::dependsOnPkgs(”Rcpp”,recursive=FALSE, installed=db))
nCompiled <- table(db[, ”NeedsCompilation”])[[”yes”]]
propRcpp <- nRcpp / nCompiled * 100
data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,

RcppPctOfCompiled = propRcpp)

tot totRcpp totCompiled RcppPctOfCompiled
1 19004 2524 4462 56.5666

Talk @ NISS 30/72

INTRODUCTION: HOW TO DO THIS?

Talk @ NISS 31/72

JUMPING RIGHT IN: VIA RSTUDIO

Talk @ NISS 32/72

A FIRST EXAMPLE: CONT’ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can source this function into an
// R session using the Rcpp::sourceCpp function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp (useful for testing and
// development). The R code will be automatically run after the compilation.

/*** R
timesTwo(42)
*/

Talk @ NISS 33/72

A FIRST EXAMPLE: CONT’ED

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We ask Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name

Talk @ NISS 34/72

ANOTHER EXAMPLE: FOCUS ON SPEED

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

Talk @ NISS 35/72

AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}
sapply(0:10, f) # Using it on first 11 arguments

[1] 0 1 1 2 3 5 8 13 21 34 55

Talk @ NISS 36/72

AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.008 1.000
2 f(15) 100 0.097 12.125
3 f(20) 100 1.101 137.625

Talk @ NISS 37/72

AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }')

sapply(0:10, g) # Using it on first 11 arguments

[1] 0 1 1 2 3 5 8 13 21 34 55
Talk @ NISS 38/72

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

test replications elapsed relative
1 f(20) 100 1.034 517
2 g(20) 100 0.002 1

A nice gain of a few orders of magnitude.

Talk @ NISS 39/72

SOME BACKGROUND

Talk @ NISS 40/72

TYPES

R Type mapping

Standard R types (integer, numeric, list, function, … and compound objects) are mapped
to corresponding C++ types using extensive template meta-programming – it just works:

library(Rcpp)
cppFunction(”NumericVector logabs(NumericVector x){

return log(abs(x));
}”)
logabs(seq(-5, 5, by=2))

Also note: vectorized C++! Here log(abs()) runs directly on vectors as R would.

Talk @ NISS 41/72

STL TYPE MAPPING

#include <Rcpp.h>
using namespace Rcpp;

inline double f(double x) { return ::log(::fabs(x)); }

// [[Rcpp::export]]
std::vector<double> logabs2(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(), f);
return x;

}

Not vectorized but ‘sweeps’ f() along std::vector<double> via STL std::transform()

Talk @ NISS 42/72

STL TYPE MAPPING

Used via

library(Rcpp)
sourceCpp(”code/logabs2.cpp”)
logabs2(seq(-5, 5, by=2))

Talk @ NISS 43/72

TYPE MAPPING IS SEAMLESS

Simple outer product of a col. vector (using RcppArmadillo):

Rcpp::cppFunction(”arma::mat v(arma::colvec a) { return a*a.t(); }”,
depends=”RcppArmadillo”)

v(1:3)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

Uses implicit conversion via as<> and wrap – cf vignette Rcpp-extending.

Talk @ NISS 44/72

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-extending.pdf

C++11: LAMBDAS, AUTO, AND MUCH MORE

We can simplify the log(abs(...)) example further:

#include <Rcpp.h>
// [[Rcpp::plugins(cpp11)]]

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<double> logabs3(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(),
[](double x) { return ::log(::fabs(x)); });

return x;
}

Talk @ NISS 45/72

HOW TO: MAIN USAGE PATTERNS

Talk @ NISS 46/72

BASIC USAGE: EVALCPP()

evalCpp() evaluates a single C++ expression. Includes and dependencies can be
declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

[1] 4

evalCpp(”std::numeric_limits<double>::max()”)

[1] 1.79769e+308

Talk @ NISS 47/72

BASIC USAGE: CPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates an R function to
access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function

Talk @ NISS 48/72

BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is
described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but
provides even more ease-of-use, control and helpers – freeing us from boilerplate
scaffolding.

A key feature are the plugins and dependency options: other packages can provide a
plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen,
RcppGSL).

Talk @ NISS 49/72

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

BASIC USAGE: PACKAGES

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can be created by
Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of March 2022, there are 2524 CRAN and 239 BioConductor packages which use Rcpp
all offering working, tested, and reviewed examples.

Talk @ NISS 50/72

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

Best way to organize R code with Rcpp is via a package:

Talk @ NISS 51/72

PACKAGES AND RCPP

Rcpp.package.skeleton() and e.g. RcppArmadillo.package.skeleton()
create working packages.

// another simple example: outer product of a vector, returning a matrix
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

Talk @ NISS 52/72

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

• Full copies: Do what mlpack does and embed a full copy; larger build time, harder
to update, self-contained

• With linking of libraries: Do what e.g. RcppGSL does and use hooks in the package
startup to store compiler and linker flags which are passed to environment
variables

• With C++ template headers only: Do what RcppArmadillo and other do and just
point to the headers

More details in extra vignettes.

Talk @ NISS 53/72

PACKAGES AND RCPP

Vignette and pre-print

Talk @ NISS 54/72

https://arxiv.org/abs/1911.06416

BIG PICTURE

Talk @ NISS 55/72

SHOULD YOU USE RCPP? OR NOT?

Choice is yours

• Code generation helps remove tedium
• Interfaces are shorter / simpler / more R like

• recall the is_odd function earlier

• Plain C API to R is of course perfectly fine
• But IMHO requires more work

• more manual steps for type conversion
• additional required memory protection
• all of which is error prone

Talk @ NISS 56/72

COMPARE
#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for(int i = 0; i < nab; i++)

xab[i] = 0.0;
for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector convolve2cpp(Rcpp::NumericVector a, Rcpp::NumericVector b) {

int na = a.length(),
nb = b.length();

Rcpp::NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
ab[i + j] += a[i] * b[j];

return(ab);
}

You always have a choice between the code (from Section
5.10.1 of Writing R Extensions) on the left, or the
equivalent Rcpp code on the right.

Talk @ NISS 57/72

THIRD EXAMPLE: SUGAR

Talk @ NISS 58/72

SYNTACTIC ‘SUGAR’: SIMULATING π IN R

Draw (x, y), compute distance to
origin.

Do so repeatedly, and ratio of
points below one to number N of
simulations will approach π/4 as
we fill the area of 1/4 of the unit
circle.

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x^2 + y^2)
return(4 * sum(d <= 1.0) / N)

}
set.seed(5)
sapply(10^(3:6), piR)

[1] 3.15600 3.15520 3.13900 3.14101

Talk @ NISS 59/72

SYNTACTIC ‘SUGAR’: SIMULATING π IN C++

Rcpp sugar enables us to write C++
code that is almost as compact.

The code is essentially identical.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {

NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d <= 1.0) / N;

}

Talk @ NISS 60/72

SYNTACTIC ‘SUGAR’: SIMULATING π

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

[1] TRUE

print(c(a,b), digits=7)

[1] 3.140899 3.140899

Talk @ NISS 61/72

SYNTACTIC ‘SUGAR’: SIMULATING π

The performance is close with a small gain for C++ as R is already vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

test replications elapsed relative
1 piR(1e+06) 100 4.606 2.938
2 piSugar(1e+06) 100 1.568 1.000

Talk @ NISS 62/72

TIPS

Talk @ NISS 63/72

AN (ALMOST) FREQUENTLY ASKED QUESTION

Compare These Two Cases

implicit pass by value
Rcpp::cppFunction(”void impl(NumericVector X) {

X = X + 1.0; }”)
a <- 1.5:4.5
impl(a)
a

[1] 2.5 3.5 4.5 5.5

implicit pass by reference (via &)
Rcpp::cppFunction(”void expl(NumericVector& X) {

X = X + 1.0; }”)
b <- 1.5:4.5
expl(b)
b

[1] 2.5 3.5 4.5 5.5

The implicit case will surprise C++ programmers as they expect ‘pass by value’
semantics. But we have SEXP here: Pointers!

See Rcpp FAQ Queston 5.1 for longer discussion.

Talk @ NISS 64/72

ANONTER (ALMOST) FREQUENTLY ASKED QUESTION

Now Compare These Two Cases

passing an integer vector
Rcpp::cppFunction(”void intvec(IntegerVector X) {

X = X + 1.0; }”)
a <- 1:5
intvec(a)
a # changed as side effect

[1] 2 3 4 5 6

passing a numeric vector
Rcpp::cppFunction(”void numvec(NumericVector& X) {

X = X + 1.0; }”)
b <- 1:5
numvec(b)
b # unchanged -- why?

[1] 1 2 3 4 5

The int vector needed to get copied to numeric in the second case, and that
numeric vector is not connected to the int vector.

See the second part of Rcpp FAQ Queston 5.1 for more.

Talk @ NISS 65/72

LESSONS

Careful with Function Arguments

• Best to consider them ‘read-only’ and not assign to them

• Difficult to make them ‘non-mutable’ (without changing existing Rcpp semantics)

• Keep these examples in mind:
• you may get changes in the input argument even if you think ‘by value’
• or you may ‘accidentally’ not get changes because of a cast / copy

Talk @ NISS 66/72

DEBUGGING

Can Be Challenging

• We generally lack good integrated tooling for integrated R and C++ debugging

• Some tutorials exist, current favourite of some users is VS Code

• “Old-school” gdb and alike work (with some getting used-to)

• “Old-school” print statements and alike also work (albeit inelegantly)

Talk @ NISS 67/72

MORE

Talk @ NISS 68/72

DOCUMENTATION

Core Documentation

• The package comes with ten pdf vignettes, and help pages.
• The introductory vignettes are now published (Rcpp and RcppEigen in J Stat
Software, RcppArmadillo in Comp Stat & Data Anlys, Rcpp again in TAS)

• The rcpp-devel mailing list is the recommended resource, generally very helpful,
and fairly low volume.

• StackOverflow has over 2800 posts on Rcpp as well (and is searchable).
• And a number of blog posts introduce/discuss features.

Talk @ NISS 69/72

RCPP GALLERY

Talk @ NISS 70/72

THE RCPP BOOK

On sale since June 2013.

Talk @ NISS 71/72

THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/

web https://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Talk @ NISS 72/72

https://dirk.eddelbuettel.com/presentations/
https://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Who am I ?
	Introduction to Rcpp
	Introduction: Why Do This?
	Getting Started
	Empirical Aside
	Introduction: How To Do This?
	Some Background
	How to: Main Usage Patterns
	Big Picture
	Third Example: Sugar
	Tips
	More

