17 ILLINOIS

https://dirk.eddelbuettel.com/papers/niss_rcppIntro_mar2022.pdf

WHO AM | ?

Talk @ NISS 2/72

My DAY JOB

[tile] DB Products v Blog Documentation Community v Login m

Data management -
made universal

Manage any data as multi-dimensional arrays and
access with any tool at global scale.

Get started Request a demo

rak@nss And we are hiring! .

https://apply.workable.com/tiledb/

My OTHER JOBS

(Adjunct) Clinical Professor, University of Illinois

- teaching STAT447 ‘Data Science Programming Methods'’

Open Source Work
- Debian developer since 1995, currently maintaining about 185 packages
- R package author since 2002, author or maintainer of over 60 CRAN packages
- R Foundation Board Member; JSS Associate Editor

- Rocker Project co-founder: Docker for R, including official ‘r-base’ image

Talk @ NISS 472

https://www.stat447.org

INTRODUCTION TO RCPP

Talk @ NISS 5/72

VERY BROAD OUTLINE

Overview
- Some Historical Context (or “Why ?")
- Brief Notes on First Steps (or “How ?”)
- Some Tips and Further Reference

- Interwoven with Some Empirics

Talk @ NISS 6/72

HISTORY: BELL LABS, 1976

£ Aigorithm ke cloce sisrze Bell Labs meeting notes from May 1976 (!!)
x - %w..‘,al
(PoRTRAWY i . , . .
syt Describes an outer ‘user interface’ layer to algorithms, with
L s extensibility a core feature

provide intecfoce
between ARS &
Language andloe

Ay peograms Key: abstract away inner details giving high-level accessible
xAsc (TNSTR , OUTSTRY

XA BDC

view for analyst

Tapet TINSTR —>

Became “The Interface” / “The System” or just “S”

Pointers/Valves

Argument Nawmes o

(3NN Which in turn became S which lead to R

So see R as an interactive shell, interpreter and language over

sinters [Values . - .
e numeric, statistical, i/o, ... ops

Resul+ Names

A language by statisticians for statisticians

Source: Chambers (2008, Appendix A); Chambers (2020), S, R, and Data Science, Proc ACM Prog Lang, Vol 4,
Talk @ NISS Issue HOPL, doi.org/101145/3386334. 7172

https://doi.org/10.1145/3386334

IMPACT: ACM SOFTWARE SYSTEMS AWARD, 1998

ACMHomed ACMAM. Turing Awardc? Turing S0¢2

Digtallbrary? CACMZ? Quewer TechNewscr Other Winners:
Home Award Winners Contact Us Q Search BerkeleyDB (2020), DNS (20,]9)’
Wireshark (2018), Project

ACM recognizes excellence

ACMAWARDS ~ ADVANCED MEMBER GRADES ~ SIG AWARDS ~ REGIONAL AWARDS ~ NOMINATIONS ~ HONORS AND ETHICS ~ AWARDS COMMITTEES ESTABLISHING AN AWARD

Jupyter (2017), GCC (2015), LLVM
John M. Chambers & A oyt o 1935 (2012), VMware (2009), Eiffel
ACM Software System Award (2006), make (2003), Java (2002),
s o averem Apache (1999), Tcl/Tk (1997),
Jhmm NCSA Mosaic (1996), World Wide
For The S system, which has forever altered how people analyze, visualize, and manipulate Web (1 995), Remote Procedure

data.

Call (1994), TCP/IP (1991),
Postscript (1989), Smalltalk
(1987), TeX (1986), VisiCalc
(1985), UNIX (1983)

For The S System, which has forever altered how people analyze,

visualize, and manipulate data.
Source: https://en.wikipedia.org/wiki/
ACM_Software_System_Award
Talk @ NISS 8/72

https://en.wikipedia.org/wiki/ACM_Software_System_Award
https://en.wikipedia.org/wiki/ACM_Software_System_Award

EVOLUTION OF PROGRAMMING WITH DATA FROM 1977 TO 2016

Omputational The S La
Methods .
For Data
Analysis

Extending R

Talk @ NISS Note: The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016. 9/72

PHILOSOPHY

Chambers (2016, pages 4-11)

objects: Everything that exists in R is an object.
functions: Everything that happens in R is a function call.

interfaces: Interfaces to other languages are a part of R.

Talk @ NISS 10/72

INTRODUCTION: WHY DO THIS?

Talk @ NISS 1/72

SO WHY RCPP?

Three key reasons
- Speed, Performance, ...
- Do things you could not do before

- Easy to extend R this way

Talk @ NISS 12/72

EXTENDING R ...

Why Choose C++ ?

- Asking Google leads to tens of million of hits.

- Wikipedia: C++ is a statically typed, free-form, multi-paradigm, compiled,
general-purpose, powerful programming language

- C++is industrial-strength, vendor-independent, widely-used, and still evolving

- In science & research, one of the most frequently-used languages: If there is
something you want to use / connect to, it probably has a C/C++ API

- As a widely used language it also has good tool support (debuggers, profilers,
code analysis)

Talk @ NISS 13/72

http://en.wikipedia.org/wiki/C%2B%2B%7D%7BWikipedia

Scott Meyers: View C++ as a federation of languages

- C provides rich inheritance and interoperability: Unix, Windows, ... all built on C.
- Object-Oriented C++ (maybe just to provide endless discussions about exactly

what 00 is or should be)

- Templated C++ which is mighty powerful; template meta programming unequalled

in other languages.

- The Standard Template Library (STL) is a specific template library which is

powerful but has its own conventions.

- C++11, C++14, C++17 C++20 (and beyond) add enough to be called a fifth language.

NB: Meyers original list of four languages appeared years before C++11.

Talk @ NISS

1472

Reasons For C++
- Mature yet current
- Strong performance focus:
- You don't pay for what you don't use
- Leave no room for another language between the machine level and C++
- Yet also powerfully abstract and high-level
- C++11, C++14, C++17, C++20, ... are a big deal giving us new language features
- While there are (plenty of) complexities, Rcpp users are somewhat shielded

Talk @ NISS 15/72

GETTING STARTED

Talk @ NISS 16/72

SIMPLE EXAMPLE

R Version of ‘is this number odd or even’

is0dd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
c(isodd_r(42L), is0dd_r(43L))

[1] FALSE TRUE

Talk @ NISS 17/72

SIMPLE EXAMPLE (CONT.)

C++ Version of ‘is this number odd or even’

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

Free-standing code, not yet executable...

Talk @ NISS 18/72

SIMPLE EXAMPLE (CONT.)

Rcpp Version of ‘is this number odd or even’

Rcpp: :cppFunction(”

bool is0dd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

")

c(isodd_r(42L), isodd_r(43L))

[1] FALSE TRUE

Talk @ NISS 19/72

SIMPLE EXAMPLE (CONT.)

InR In C++ via Rcpp

Hit Rcpp::cppFunction(”

is0dd_r <- function(n=10L) { bool is0dd_cpp(int n=10) {
res = (n %% 2L == 1L) bool res = (n % 2 == 1);
return(res) return res;

} ")

isodd_r(42L) isodd_cpp(42L)

[1] FALSE ## [1] FALSE

Talk @ NISS 20/72

SECOND ExAMPLE: VAR(1)

Let’'s consider a simple possible VAR(1) system of k variables.

Fork = 2:

Xe = Xt—1B + E;

where X; is a row vector of length 2, Bis a 2 by 2 matrix, and E; is a row of the error
matrix of 2 columns.

Talk @ NISS 21/72

SECOND ExAMPLE: VAR(1)

In R code, given both the coefficient and error matrices (revealing k and n):

rSim <- function(B,E) {
X <- matrix(0,nrow(E), ncol(E))
for (r in 2:nrow(E)) {

X[r,] = X[r-1, 1 %*% B + E[r,]
}

return(X)

Talk @ NISS 22/72

SECOND ExAMPLE: VAR(1)

Rcpp::cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {
int m = E.n_rows, n = E.n_cols;
arma::mat X(m,n);
X.row(0) = arma::zeros<arma::mat>(1,n);
for (int r=1; r<m; r++)
X.row(r) = X.row(r-1) = B + E.row(r);
return X; }', depends="RcppArmadillo”)
a <- matrix(c(0.5, 0.1, 0.1, 0.5), nrow=2)
e <- matrix(rnorm(10000), ncol=2)
rbenchmark: :benchmark(cppSim(a,e), rSim(a,e), order="relative”)[,1:4]

#H#t test replications elapsed relative
1 cppSim(a, e) 100 0.010 1.0
2 rSim(a, e) 100 0.728 72.8

Talk @ NISS 23/72

SO WHEN DO WE USE RCPP?

New things: Easy access to C/C++ libraries

- Sometimes speed is not the only reason
- C & C++ provide numerous libraries + APIs we may want to use
- Easy to provide access to as Rcpp eases data transfer

Talk @ NISS 2472

EMPIRICAL ASIDE

Talk @ NISS 25/72

GROWTH OF RcPP

Growth of Rcpp usage on CRAN

§ -| —— Number of CRAN packages using Rcpp (left axis)
~ Percentage of CRAN packages using Repp (right axis)

L o

=

o
o
(=3
S e
8
3 1 - o
B

b o
[=3
s
=3
=

F o<
[=3
8
B

SN
o - = - o

T T T T T T T
2010 2012 2014 2016 2018 2020 2022

Data current as of March 21, 2022

Talk @ NISS 26/72

USERS ON CORE REPOSITORIES

Rcpp is currently used by
- 2524 CRAN packages
- 239 BioConductor packages

- an unknown (but “large”) number of GitHub projects

Talk @ NISS 27/72

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- "https://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Hit Rcpp ggplot2 dplyr MASS magrittr
HHt 2.744 1.516 1.274 1.122 0.814

Talk @ NISS 28/72

PAGERANK

Talk @ NISS

Repp
ggplot2
dplyr
MASS
magrittr
Matrix
rlang
stringr
tibble
data.table
jsonlite
tidyr
RcppArmadillo
purrr

httr
mvtnorm
survival
plyr

shiny
foreach
igraph
reshape2

sp
doParallel
lubridate
scales
lattice

R6

raster
200

Top 30 of Page Rank as of March 2022

o
°
o
o
°
o
°
°
o
o
o
o
o
o
°
°
°
o
°
o
o
T T T T T
0.005 0.010 0.015 0.020 0.025

29/72

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0

db <- db['duplicated(db[,1]1),] # rows: nb of pkgs,

nTot <- nrow(db) # cols: diff attributes

nRcpp <- length(tools::dependsOnPkgs(”Rcpp”,recursive=FALSE, installed=db))

nCompiled <- table(db[, "NeedsCompilation”])[["yes”]]

propRcpp <- nRcpp / nCompiled * 100

data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,
RcppPctOfCompiled = propRcpp)

#Hit tot totRcpp totCompiled RcppPctOfCompiled
1 19004 2524 4462 56.5666

Talk @ NISS 30/72

INTRODUCTION: HOW To DO THIS?

Talk @ NISS 31/72

JUMPING RIGHT IN: VIA RSTUDIO

Rstudio
File Edit Code View Plots Session Build Debug Profile Tools Help

New File » RSeript Ctrlsshift+N
New Project.. Quarto Document...
Open File... ctrl+0 Quarto Presentation...
Open File in New Column. R Notebook
Recent Files R Markdown...
Open Project... shiny web App...
Open Project in New Session... Plumber API..
Recent Projects CFile
Import Dataset C++ File

Header File

Markdown File
save All Ctri+Alt+S HTML File

CsSFile
Close ctrl+w JavaScript File

D3 Script

Python Script

shell script
Quit Session... ctrl+Q SQL Script

StanFile

TextFile

R Sweave

RHTML

R Documentation...

Talk @ NISS

A FIRST EXAMPLE: CONT'ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can source this function into an
// R session using the Rcpp::sourceCpp function (or via the Source button on the editor toolbar).

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {
return x * 2;

// You can include R code blocks in C++ files processed with sourceCpp (useful for testing and
// development). The R code will be automatically run after the compilation.

/x%* R

timesTwo(42)

*/

Talk @ NISS 33/72

A FIRST EXAMPLE: CONT'ED

So what just happened?

- We defined a simple C++ function

- |t operates on a numeric vector argument

- We ask Rcpp to ‘source it' for us

- Behind the scenes Rcpp creates a wrapper

- Rcpp then compiles, links, and loads the wrapper
- The function is available in R under its C++ name

Talk @ NISS 34/72

ANOTHER EXAMPLE: FOCUS ON SPEED

Consider a function defined as

f(n) such that i when n < 2
f(n—1)+f(n—2) when n > 2

Talk @ NISS 35/72

AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}
sapply(0:10, f) # Using it on first 11 arguments

[1] 0 1 1 2 3 5 8 13 21 34 55

Talk @ NISS 36/72

AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

Hit test replications elapsed relative
1 f£(10) 100 0.008 1.000
2 f(15) 100 0.097 12.125
##t 3 £(20) 100 1.101 137.625

Talk @ NISS 37/72

AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }')
sapply(0:10, g) # Using it on first 11 arguments

[1] © 1 1 2 3 5 8 13 21 34 55
Talk @ NISS 38/72

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

Hit test replications elapsed relative
1 £(20) 100 1.034 517
2 g(20) 100 0.002 1

A nice gain of a few orders of magnitude.

Talk @ NISS 39/72

SOME BACKGROUND

Talk @ NISS 40/72

TYPES

R Type mapping

Standard R types (integer, numeric, list, function, ... and compound objects) are mapped
to corresponding C++ types using extensive template meta-programming - it just works:

library(Rcpp)

cppFunction(”NumericVector logabs(NumericVector x){
return log(abs(x));

")

logabs(seq(-5, 5, by=2))

Also note: vectorized C++! Here log(abs()) runs directly on vectors as R would.

Talk @ NISS 41/72

STL TYPE MAPPING

#include <Rcpp.h>
using namespace Rcpp;

inline double f(double x) { return ::log(::fabs(x)); }

// [[Rcpp::export]]
std::vector<double> logabs2(std::vector<double> x) {
std::transform(x.begin(), x.end(), x.begin(), f);

return Xx;

Not vectorized but ‘sweeps’ f() along std: :vector<double> via STL std: :transform()

Talk @ NISS 42[72

STL TYPE MAPPING

Used via
library(Rcpp)

sourceCpp(”code/logabs2.cpp”)
logabs2(seq(-5, 5, by=2))

Talk @ NISS 43/72

TYPE MAPPING IS SEAMLESS

Simple outer product of a col. vector (using RcppArmadillo):

Rcpp: :cppFunction(”arma::mat v(arma::colvec a) { return axa.t(); }”
depends="RcppArmadillo”)

v(1:3)

[,11 [,2]1 [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

Uses implicit conversion via as<> and wrap - cf vignette Rcpp-extending.

Talk @ NISS 4472

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-extending.pdf

C++11: LAMBDAS, AUTO, AND MUCH MORE

We can simplify the lTog(abs(...)) example further:

#include <Rcpp.h>
// [[Rcpp::plugins(cppil)]]

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<double> logabs3(std::vector<double> x) {
std::transform(x.begin(), x.end(), x.begin(),

[T(double x) { return ::log(::fabs(x)); });
return x;

Talk @ NISS 45172

How TO: MAIN USAGE PATTERNS

Talk @ NISS 46/72

BAsIC USAGE: EVALCPP()

evalCpp() evaluates a single C++ expression. Includes and dependencies can be
declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2") # simple test

##t [1] 4

evalCpp(”std::numeric_limits<double>::max()")

[1] 1.79769e+308

Talk @ NISS 47/72

BAsIC USAGE: cPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates an R function to
access it.

cppFunction(”
int exampleCpp11() {
auto x = 10;
return x;
}", plugins=c(”cpp11”))
exampleCppl11() # same identifier as C++ function

Talk @ NISS 48/72

BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). Itis
described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but
provides even more ease-of-use, control and helpers - freeing us from boilerplate
scaffolding.

A key feature are the plugins and dependency options: other packages can provide a
plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen,
RcppGSL).

Talk @ NISS 4972

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

BASIC USAGE: PACKAGES

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can be created by

Rcpp.package.skeleton()
The vignette Rcpp-packages has fuller details.

As of March 2022, there are 2524 CRAN and 239 BioConductor packages which use Rcpp

all offering working, tested, and reviewed examples.

Talk @ NISS 50/72

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

Best way to organize R code with Rcpp is via a package:

File Edit Code vVview Plots Session Build Debug Profile Tools Help
<% & - @ @ | & [Gotofieffunction

& untitiedl
.

Create R Package

Type! Package name
Package w/ Repp ¥
Create package based on source files:

Create project as subdirectory of:
~[git Browse...

NumericVec
retur

| Create a git repository (| Use renv with this project

Open in new session Create Project | | Cancel

Talk @ NISS 51/72

PACKAGES AND RCPP

Rcpp.package.skeleton() and e.g. RcppArmadillo.package.skeleton()
create working packages.

// another simple example: outer product of a vector, returning a matrix
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();

return m;

// and the inner product returns a scalar

// [[Rcpp::export]]

double rcpparma_innerproduct(const arma::colvec & x) {
double v = arma::as_scalar(x.t() = x);
return v;

Talk @ NISS 52/72

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

- Full copies: Do what mlpack does and embed a full copy; larger build time, harder
to update, self-contained

- With linking of libraries: Do what e.g. RcppGSL does and use hooks in the package
startup to store compiler and linker flags which are passed to environment
variables

- With C++ template headers only: Do what RcppArmadillo and other do and just
point to the headers

More details in extra vignettes.

Talk @ NISS 53/72

PACKAGES AND RCPP

Vignette and pre-print

Talk @ NISS

B [1911.06416] Thirteen i x | +

<« C @ anivorg/abs/1911.06416 #

@ Cornell University

arXiv.org > stat > arXiv:1911.06416

Alfelds

Help | Advanced Search

Statistics > Computation

[Submitted on 14 Nov 2019]

Thirteen Simple Steps for Creating An R Package with an
External C++ Library

Dirk Eddelbuettel

We desribe how we extend R with an extemal C++ code library by using the Rpp package. Our working
example uses the recent machine learning library and application 'Corels' providing optimal yet easily
Interpretable rule lists <arXiv:1704.01701> which we bring to R in the form of the 'ReppCorels’ package.
We discuss each step In the process, and derlve a set of simple rules and recommendations which are
Illustrated with the concrete example.

Subjects: Computation (stat.cO)
Clleas: arXiv:1911.06416 [stat.CO]
(or rxXiv1911.06416v1 [stat.CO] for his version)

Bibliographic data
[Enable Bibex (What Is Bibex?)]
Submission history

From: Dirk Eddelbuettel [view emai]

[v1] Th, 14 Nov 2019 23:42:35 UTC (24 KB)

Wnich authors of this paper are endorsers? | Disable MathJax (Wnat is MathJax?)

Download:
« PDF

« PostScript

« Other formats
Gurent browse context
statco

<prev | next>
new | recent | 1911
Change o browse by
stat

References & Citations
+ NASAADS

« Google Scholar

« Semantic Scholar

Export citation
Bookmark
£ ERGER

54/72

https://arxiv.org/abs/1911.06416

BIG PICTURE

Talk @ NISS 55/72

SHOULD YOU USE RCPP? OR NOT?

Choice is yours
- Code generation helps remove tedium
- Interfaces are shorter / simpler / more R like
- recall the is_odd function earlier
- Plain C API to R is of course perfectly fine
- But IMHO requires more work

- more manual steps for type conversion
- additional required memory protection

- all of which is error prone

Talk @ NISS 56/72

COMPARE

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {

}

int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for(int i = @; i < nab; i++)

xab[i] = 0.0;
for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++)

xab[i + j] += xa[il * xb[jI;

UNPROTECT(3);
return ab;

Talk @ NISS

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp: :NumericVector convolve2cpp(Rcpp::NumericVector a, Rcpp::NumericVector b) {
int na = a.length(),
nb = b.length();
Rcpp: :NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)
for (int j = 0; j < nb; j++)
ab[i + jl += a[i] = b[j];
return(ab);

You always have a choice between the code (from Section
5101 of Writing R Extensions) on the left, or the
equivalent Rcpp code on the right.

57/72

THIRD EXAMPLE: SUGAR

Talk @ NISS 58/72

SYNTACTIC ‘SUGAR’: SIMULATING 7T IN R

Draw (x, y), compute distance to
origin.

Do so repeatedly, and ratio of
points below one to number N of
simulations will approach /4 as
we fill the area of 1/4 of the unit
circle.

Talk @ NISS

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x”2 + y"2)
return(4 * sum(d <= 1.0) / N)
}
set.seed(5)
sapply(10”(3:6), piR)

[1] 3.15600 3.15520 3.13900 3.14101

59/72

SYNTACTIC ‘SUGAR’: SIMULATING 77 IN C++

Rcpp sugar enables us to write C++ #include <Rcpp.h>

code that is almost as compact. using namespace Rcpp;

The code is essentially identical. // [[Rcpp::export]]
double piSugar(const int N) {

NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x#x + yxy);
return 4.0 * sum(d <= 1.0) / N;

Talk @ NISS 60/72

SYNTACTIC ‘SUGAR’; SIMULATING 7T

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)

set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

[1] TRUE
print(c(a,b), digits=7)
[1] 3.140899 3.140899

Talk @ NISS 61/72

SYNTACTIC ‘SUGAR’; SIMULATING 7T

The performance is close with a small gain for C++ as R is already vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

#it test replications elapsed relative
1 piR(1e+06) 100 4.606 2.938
2 piSugar(1e+06) 100 1.568 1.000

Talk @ NISS 62/72

TIPS

Talk @ NISS 63/72

AN (ALMOST) FREQUENTLY ASKED QUESTION

Compare These Two Cases

implicit pass by value ## implicit pass by reference (via &)

Rcpp: :cppFunction(”void impl(NumericVector X) { Rcpp::cppFunction(”void expl(NumericVectors X) {
X =X+ 1.0; }") X =X+ 1.0; }")

a <- 1.5:4.5 b <- 1.5:4.5

impl(a) expl(b)

a b

[1] 2.5 3.5 4.5 5.5 ## [1] 2.5 3.5 4.5 5.5

The implicit case will surprise C++ programmers as they expect ‘pass by value’
semantics. But we have SEXP here: Pointers!

See Rcpp FAQ Queston 51 for longer discussion.

Talk @ NISS 64/72

ANONTER (ALMOST) FREQUENTLY ASKED QUESTION

Now Compare These Two Cases

passing an integer vector ## passing a numeric vector

Rcpp::cppFunction(”void intvec(IntegerVector X) { Rcpp: :cppFunction(”void numvec(NumericVectors X) {
X=X+ 1.0; ") X =X+ 1.0; }")

a <- 1:5 b <- 1:5

intvec(a) numvec(b)

a # changed as side effect b # unchanged -- why?

[1]1 23 456 ## [1] 123 45

The int vector needed to get copied to numeric in the second case, and that
numeric vector is not connected to the int vector.

See the second part of Rcpp FAQ Queston 51 for more.

Talk @ NISS 65/72

LESSONS

Careful with Function Arguments
- Best to consider them ‘read-only’ and not assign to them
- Difficult to make them ‘non-mutable’ (without changing existing Rcpp semantics)

- Keep these examples in mind:

- you may get changes in the input argument even if you think ‘by value’
- or you may ‘accidentally’ not get changes because of a cast / copy

Talk @ NISS 66/72

DEBUGGING

Can Be Challenging
- We generally lack good integrated tooling for integrated R and C++ debugging
- Some tutorials exist, current favourite of some users is VS Code
- “Old-school” gdb and alike work (with some getting used-to)

- “Old-school” print statements and alike also work (albeit inelegantly)

Talk @ NISS 67/72

MORE

Talk @ NISS 68/72

DOCUMENTATION

Core Documentation

- The package comes with ten pdf vignettes, and help pages.
- The introductory vignettes are now published (Rcpp and RcppEigen in J Stat
Software, RcppArmadillo in Comp Stat & Data Anlys, Rcpp again in TAS)

- The rcpp-devel mailing list is the recommended resource, generally very helpful,
and fairly low volume.

- StackOverflow has over 2800 posts on Rcpp as well (and is searchable).
- And a number of blog posts introduce/discuss features.

Talk @ NISS 69/72

RCPP GALLERY

Rcpp Gallery - Google Chrome

[Repp Gallery.

¢ o € [0 oleryrepporg Qs =
RCPp Projects- Gallery Book Events More~ =
Featured Articles
Quick conversion of lstof lsts into a data frame
This pest shows one method for creating a data frame quickly
Passing user-supplied C++ functio X
“This example shows how {0 select user-supplied G-+ funcions
Using Repp 10 access the C API of xis
This post shows how o use the exporied AP functions of xis
Timing normal RNGS
This post compares drawing N(0.1) veciors ffom R. BOost and C++11
Afirstlambda function ith C++11 and Repp
This post shows how o play With Iambda functions in C++11
Firststeps in using C+-+11 wih Repp
This post shows how o experimentwith C++11 features
Using Reoutfor autput synchronised vith R
“This pest shows how o use Reout (and Reer) for autput
Using the Repp sugar function clamp
This post ilustrates the sugar function clamp
Using the Repp Timer
“This post shows how o use the Timer class in Repp
Galling R Functions from C++
This post discusses calling R functions from C+
More »
Recently Published
» Using the ReppArmadillo-based Implementation of RS sample(
» Dynamic Wrapping and Recursion with Repp
» Using bigmemory with Repp
» Generating a multivariate gaussian distibution using ReppArmadilo
» Using Repp with Boost Regex for regular expre:

» Fast factor generation with Repp

Talk @ NISS 70/72

THE RCPP BOOK

Dirk Eddelbuettel

On sale since June 2013.

@ Springer

Talk @ NISS 7/72

THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/
web https://dirk.eddelbuettel.com/
mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Talk @ NISS 72/72

https://dirk.eddelbuettel.com/presentations/
https://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Who am I ?
	Introduction to Rcpp
	Introduction: Why Do This?
	Getting Started
	Empirical Aside
	Introduction: How To Do This?
	Some Background
	How to: Main Usage Patterns
	Big Picture
	Third Example: Sugar
	Tips
	More

