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Abstract

Dissemination of information derived from large contingency tables formed from confidential data
is a major problem faced by statistical agencies. In this paper we present solutions to several compu-
tational and algorithmic issues that arise in the dissemination of cross-tabulations (marginal sub-tables)
from a single underlying table. These include data structures that exploit sparsity and support efficient
computation of marginals as well as algorithms such as iterative proportional fitting, and a generalized
form of the shuttle algorithm that computes sharp bounds on (small, confidentiality threatening) cells in
the full table from arbitrary sets of released marginals. We give examples illustrating the techniques.

Keywords: Branch and bound; Contingency tables; Disclosure limitation; Integer programming;
Marginal bounds; Shuttle algorithm.

1 Introduction

Statistical agencies, such as the US Census Bureau and Statistics Canada, disseminate immense amounts
of tabular information derived from confidential microdata. Protecting this confidentiality (and thereby the
privacy of the data subjects) is mandated by law; doing so while releasing as much useful information as
possible presents major challenges to statistical agencies.

For the past three years, the National Institute of Statistical Sciences (NISS) has been developing sys-
tems for disclosure-limited dissemination of tabular summaries of confidential microdata. Such summaries
consist of marginal sub-tables of a large contingency table constructed by “summing out” one or more at-
tributes. The full table of frequency counts of data records with the same (categorical) attribute values is
assumed not to be releasable. More important, many sub-tables are also not releasable because either on
their own or in conjunction with other sub-tables they provide too much information about the full table.
Often, and in this paper, “too much information” means that small count (and therefore high risk [16]) cells
can be bounded too accurately on the basis of the released sub-tables.

∗Now at Duke University, Durham, NC 27708–0251.
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Two classes of software systems have been developed [6, 9]. Table servers are “live,” responding dy-
namically to incoming user queries for sub-tables of the full table, and assessing disclosure risk in light of
previously answered queries. Table servers can be built at realistic scales, but defensible release rules and
operating policies that the user community views as equitable are major impediments to their use in prac-
tice. Optimal tabular releases (OTRs), by contrast, are static releases of sets of sub-tables constructed by
maximizing the amount of information released, as given by a measure of utility of that information, subject
to a constraint on disclosure risk. Common underlying abstractions such as the query space and released
and unreleasable sub-tables and frontiers are discussed in [6, 9].

In this paper we describe computational and algorithmic issues that must be confronted in order to build
scalable implementations of table servers and OTRs. In the next section we introduce some basic notation
that is needed to formally define the bounds problem. In §3 we describe the infrastructure—data structures
and computational techniques—necessary to represent and operate on large (for example, 40–dimensional)
contingency tables in the context of safe releases of sets of sub-tables. The common theme is sparsity: real,
large tables are very sparse. §4 focuses on one method for computing sharp integer bounds based on any
set of released sub-tables. The approach is based on the underlying hierarchical structure of the categorical
data and includes a more general version of the shuttle algorithm [2], which we term thegeneralized shuttle
algorithm. §5 contains a concluding discussion.

2 Terminology and Notation

Consider ak-way contingency tablen = {n(i )}i∈I indexed byI = I1 × · · · × Ik, where eachI j =

{1, . . . , I j } is a finite set. WithA = {i1, . . . , i l } an arbitrary subset ofK = {1, . . . , k}, letIA = Ii1×· · ·×Ii l .
The A-marginal table of countsnA = {nA(i A)}i A∈IA corresponding toA is given by

nA(i A) =
∑

i K\A∈IK\A

n(i A, i K\A).

We refer toi (and i A) as thecoordinateof the table cell (and marginal table cell) it corresponds to. The
correspondingn(i ) (andnA(i A)) are referred to as the cellcount. The grand total of the table isn∅. Also,
let NK be the number of cells inn, and similarly, letNA be the number of cells in a marginal subtablenA.
Further, letN+K andN+A be the number of cells inn andnA with positive counts (thenon-zerocells).

Consider index setsC1, . . . , Cp. Suppose that for eachC j , we are given a tablen j , and that these
tables are consistent with each other: ifn j1 andn j2 overlap (C j1 ∩ C j2 6= ∅), thenn j1

C j1∩C j2
= n j2

C j1∩C j2
,

while if n j1 andn j2 do not overlap, thenn j1
∅
= n j2

∅
. Denote byT(n1, . . . , np) the set of all tables—termed

feasible—whoseC1, . . . , Cp–marginals are equal ton1, . . . , np.
Note thatT(n1, . . . , np) might be empty even ifn1, . . . , np are consistent with each other. “Good”

algorithms (for example, to compute bounds) should first check whether there exists at least one integer
table consistent with the constraints, and generate upper and lower bounds only if a feasible table exists.

Let
U (i ;T(n1, . . . , np)) = max

{
x(i ) : x ∈ T(n1, . . . , np)

}
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and
L(i ;T(n1, . . . , np)) = min

{
x(i ) : x ∈ T(n1, . . . , np)

}
.

be the maximum and minimum values of celli over all tables inT(n1, . . . , np)

We denote byP(Ir ) the set of all partitions ofIr and byRD the set of marginal tables that can be
obtained by aggregatingn not only across variables, but also across categories within variables. A table
n′ ∈ RD is uniquely determined fromn by choosingI ′1 ∈ P(I1), . . . , I ′k ∈ P(Ik):

n′ =
{
tJ1...Jk : (J1, . . . , Jk) ∈ I ′1× · · · × I ′k

}
,

where
tJ1...Jk =

∑
i1∈J1

· · ·

∑
ik∈Jk

nK (i1, . . . , ik).

Let T denote the set of cells of all tables inRD. If the set of cell entries inn that define a “super-cell”
t1 ∈ T is included in the set of cells defining another “super-cell”t2 ∈ T, we writet1 ≺ t2. Define a partial
ordering “≺” on the cells inT by

tJ1
1 ...J1

k
≺ tJ2

1 ...J2
k
⇔ J1

1 ⊆ J2
1 , . . . , J1

k ⊆ J2
k .

With this partial ordering,(T,≺) has a maximal element, namely the grand total ofn, and several minimal
elements—the cell entries in the initial tablen.

If t1 = tJ1
1 ...J1

k
andt2 = tJ2

1 ...J2
k

are such thatt1 ≺ t2 with J1
r = J2

r , for r = 1, . . . , r0 − 1, r0 + 1, . . . , k
andJ1

r0
6= J2

r0
, we define thecomplementof the cellt1 with respect tot2 to be the cellt3 = tJ3

1 ...J3
k
, where for

r = 1, . . . , k,

J3
r =

{
J1

r , if r 6= r0,

J2
r \ J1

r , if r = r0.

In this case we writet1⊕ t3 = t2. The operator “⊕” is equivalent to joining two blocks of cells inT to form
a third block. The blocks to be joined have to be composed from the same categories in(k− 1) dimensions
and cannot share any categories in the remaining dimension.

3 Data Structures and Algorithms for Large, Sparse Tables

The simplest computer representation of a contingency table is as a multi-dimensional array of non-
negative integers. (Even though it is unwieldy to use multi-dimensional arrays in most programming lan-
guages, this structure can readily be implemented as a one–dimensional array by representing the multi-
dimensional coordinates as mixed-radix integers [10].) However, the number of cells in a table increases
exponentially with the table dimension, and so even moderate sized tables (10–20 dimensional) can have
unmanageably large numbers of cells. For instance, a 14-dimensional table derived from the Current Public
Survey (CPS) data from 1993, which we have used as a test case, has 4.5 billion cells! The time and space
requirements of processing such tables using a naive representation are clearly prohibitive. Fortunately, ta-
bles of real data are extremely sparse—the 14-dimensional table mentioned above with 4.5 billion cells has
merely 76,000 cells with non-zero counts.
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In this section we describe useful data structures and algorithms that exploit the extreme sparsity of
the tables to enable us to perform certain operations on the tables. We first present a hash-table based
structure for tables and outline algorithms for building the table from microdata and for generating marginal
subtables (§3.1) followed by an illustration (§3.2) of how the basic structures and minor extensions can be
used to perform a variant of Iterative Proportional Fitting (IPF) [1]. We note thatAD-Trees [13] and certain
Online Analytical Processing (OLAP) technologies [8] provide complementary methods for handling tables.

3.1 Building Tables and Marginal Tables

It is clear that any viable representation for large, sparse tables (NK � N+K ) must exploit the table’s
sparseness. The most natural strategy is to store the location (coordinate) and content (count) of only the
non-zero cells. This leads to an enormous saving of space, since we only have to storeN+K items instead of
NK items. However, the naive storage of a list of (coordinate, count) pairs suffers from the disadvantage that
retrieving the count of an arbitrary cell entails a search through the list of cells. Hence, this query, which
could be processed inO(1) time with the multidimensional array representation, now takesO(N+K ) time (or
O(log N+K ) if the list is sorted). Fortunately, we can achieve the space-saving of a list with the fast access
time of an array by using ahash table.

Hash tables are well-known data structures that support efficient storage and retrieval for sets of (key,
value) pairs—(coordinate, count) pairs in our case. In a hash table, the data are stored in an array. The
essential component is ahash functionthat maps every key (coordinate) to a location in the array and allows
us almost instantly to access data corresponding to a given key. There are many design issues pertaining
to construction of a good hash function, selection of a good array size, and several implementation tricks
that could be employed. We do not cover the details here since this is a widely-used and well-studied data
structure [3, 10], and has implementations incorporated as standards in computer languages likeJava (part
of the “Java collections framework” [15]) andC++ (part of the standard library [14]).

Three essential aspects are relevant to us. First, tables and marginal subtables are stored in hash tables
where thekey is a K -variate generalized coordinate,(xi , . . . , xK ) with x j ∈ I j ∪ {0} and thevalue is the
corresponding cell count. (We call it a generalized coordinate since it can represent cells in both the full
table and any marginal subtable, with the key for a cell in a marginal tablenA being aK -variate coordinate
with x j = 0 if j 6∈ A). Second, the hash function is defined over the set of all generalized coordinates.

Third, the following operations are supported efficiently:

1. ADDCOUNT(Tab, coord ): Increments by one the count for the cell with coordinatecoord in table
or marginal tableTab.

2. GETCOUNT(Tab, coord ): Retreives the cell count for the cell with coordinatecoord in table or
marginal tableTab.

3. GETMARGINAL COORD(M, coord ): Returns the generalized coordinate in the marginal subtableM

corresponding tocoord in the full table (ifM≡ nA, then this can be computed by settingx j = 0 for
j 6∈ A).
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We assume the the full table fits into the computer’s main memory. This is a reasonable assumption for
modern computers in cases such as survey data, where the number of subjects,n∅, is seldom more than an
order of 105 and sinceN+K < n∅ and, usually,N+K � n∅. It is clear that the hash table representation of
the contingency table can be easily constructed by reading through the microdata records sequentially and
incrementally updating the table using ADDCOUNT.

Given the hash table representation, computation of an arbitrary marginal sub-table is easy:

Pseudocode 3.1COMPUTEMARGINAL (Table ,Marginal )
for eachcoord in Table do

marginalCoord = GETMARGINAL COORD(Marginal ,coord )
ADDCOUNT(Marginal , marginalCoord )

end for

3.2 Example: IPF

We illustrate here how the hash table representation can be used to develop efficient algorithms to process
large, sparse tables, using Iterative Proportional Fitting (IPF) as an example. Intuitively, IPF finds the “best”
reconstruction of the full table consistent with a set of marginal tables of the original full table. More
precisely, IPF calculates the maximum likelihood estimate for a log-linear model defined on variables on
the full table whose minimal sufficient statistics are the given by the set of marginal tables [1].

The algorithm involves iteratively refining estimated cell values for the table. Each iteration consists of
stepping through the list of marginal tables and scaling the current cell estimates to make the current table
estimate consistent with the marginal table. (To illustrate, for a two-way table, entries are alternately re-
scaled row-wise to make the row sums “correct” and then column-wise to make the column sums “correct.”)
Specifically, consider celli with n̂(i ) as its current estimate. Letn(+) be the cell count in the marginal table
currently under consideration to whichi contributes to, and let̂n(+) be the sum of all current estimates of
cells like i that contribute to the marginal total. Thenn̂(i ) is adjusted aŝn(i ) ← [n(+)/n̂(+)]n̂(i ). After
adjusting all cells for a given marginal, the current table estimate will be consistent with the marginal under
consideration [1].

The IPF variant we present here only considers non-zero cells—this is equivalent to the original IPF with
structural or known zeroes. Implementing it involves a minor extension the basic data structure. The (key,
value) pair in the hash table now consists ofkey= coordinate as before andvalue= (count,fit) = (n, n̂),
wheren ≡ n(i ), n̂ ≡ n̂(i ) for the table, andn ≡ n(+), n̂ ≡ n̂(+) for the marginal table. We define
procedures ADDFIT(Tab, coord ) and GETFIT analogous to ADDCOUNT and GETCOUNT in §3.1. We
also define a procedure UPDATEFIT(Tab, coord , fit ) that sets the “fit” component to the value offit .

The IPF employs two subroutines MAKEMARGINAL SUMS(Table ,Marginal ) (Pseudocode 3.2) and
ADJUSTTABLE(Table ,Marginal ) (Pseudocode 3.3) that compute then̂(+)s and thên(i )s respectively.

The IPF algorithm can be implemented as outlined in Pseudocode 3.4. This version trades off time
efficiency for memory space savings by recomputing marginal tables every time they are required. Since
this strategy maintains only two tables in memory at any given time, it allows us to handle arbitrarily large
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Pseudocode 3.2MAKEMARGINAL SUMS(Table ,Marginal )
for eachcoord in Table do

marginalCoord = GETMARGINAL COORD(MarginalTable ,coord )
ADDFIT(Marginal , marginalCoord )

end for

Pseudocode 3.3ADJUSTTABLE(Table ,Marginal )
for eachcoord in Table do

marginalCoord = GETMARGINAL COORD(Marginal ,coord )
marginalFit = GETFIT(Marginal ,marginalCoord )
tableFit = GETFIT(Table ,coord )
marginalCount = GETCOUNT(Marginal ,marginalCoord )
tableFit ← tableFit * (marginalCount /marginalFit )
UPDATEFIT(Table ,coord )

end for

sets of marginals. It is also possible to precompute the marginal tables and avoid the COMPUTEMARGINAL

in the inner loop if both the set of marginal tables and the full table can fit into main memory.

Pseudocode 3.4IPF(Table ,ListOfMarginalNames )
repeat

for eachMarginal in ListOfMarginalNames do
COMPUTEMARGINAL (Table ,Marginal )
MAKEMARGINAL SUMS(Table ,Marginal )
ADJUSTTABLE(Table ,Marginal )

end for
until Estimates converge

4 The Generalized Shuttle Algorithm

The fundamental idea behind the “shuttle” algorithm is that the upper and lower bounds for the cells
in a tableT, based on knowledge of an arbitrary set of marginal sub-tables, are interlinked. Our method
builds on [2], which treats the problem of a 3-way table given the three 2-way marginals, and sequentially
improves the bounds for cells of interest until no further adjustment can be made.

Denote byL(t) andU (t) the current lower and upper bounds for the “super-cell”t ∈ T. (See §2) for
details of the notation.) LetL(T) = {L(t) : t ∈ T} andU (T) = {U (t) : t ∈ T}. If N ⊂ T is the set of
cells inx ∈ T(n1, . . . , np), thenL(N ) andU (N ) are the bounds arrays to be determined. Everyt ∈ T has
a valueV(t) assigned to it. Ift corresponds to an entry in a fixed marginal, we “know” the valueV(t) of
that entry, so we set both current bounds oft to V(t).
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Let T0 be the set of cells inT for which the lower bound is currently equal to the upper bound. If we
fix all the cells inN at a certain value, then all the remaining cells inT will also be fixed:N ⊂ T0 implies
T = T0. ConsiderM ⊂ T to be the set of cells in the fixed marginalsn1, . . . , np. When the iterative
procedure described below starts,T0 will contain only the cells in the fixed marginals, i.e.,T0 = M . For the
remaining cells inT, we setL(t) = 0 andU (t) = n∅. Denote byL0(T) andU0(T) this initial set of upper
and lower bounds induced byn1, . . . , np.

As the algorithm progresses, the current boundsL(T) andU (T) are improved (lower bounds increase
and upper bounds decrease), and more and more cells are added toT0. When the bounds associated witht
become equal,t is added toT0, and is assigned valueV(t) = L(t) = V(t). We state the bounds problem in
a new equivalent form:Find sharp integer bounds for the cells inT if the values of some cellsT0 ⊂ T are
fixed.

LetQ = Q(T) denote the triplets of cellsQ(T) = {(t1, t2, t3) ∈ T × T × T : t1⊕ t3 = t2} that represent
the cell dependencies to be satisfied. LetS[L0(T),U0(T)] be the set of integer tables consistent withL0(T)

andU0(T). It is easy to see that

{V(N ) : V(T) ∈ S[L0(T),U0(T)]} = T(n1, . . . , np).

To improve the current bounds, we go sequentially through all dependencies inQ and update upper
and lower bounds in the following way. Consider a triplet(t1, t2, t3) ∈ Q with t1 ≺ t2 and t3 ≺ t2. If
t1, t2, t3 ∈ T0, we check whether we came across an inconsistency. The procedure stops ifV(t1)+ V(t3) 6=
V(t2). Assume thatt1, t3 ∈ T0, andt2 /∈ T0. Thent2 can only take one value, namelyV(t1) + V(t3). If
V(t1) + V(t3) /∈ [L(t2),U (t2)], we have encountered an inconsistency and exit the procedure. Otherwise
we setV(t2) = L(t2) = U (t2) = V(t1) + V(t3), and includet2 in the setT0 of cells having a fixed value.
Similarly, if t1, t2 ∈ T0 andt3 /∈ T0, t3 can only be equal toV(t2)−V(t1). If V(t2)−V(t1) /∈ [L(t3),U (t3)],
we again discovered an inconsistency. Otherwise, we setV(t3) = L(t3) = U (t3) = V(t2) − V(t1) and
T0 = T0 ∪ {t3}. In the case thatt2, t3 ∈ T0 andt1 /∈ T0 is handled analogously.

Now we examine the situation when at least two of the cellst1, t2, t3 do not have a fixed value. For each of
the three cells not having a fixed value, we update its upper and lower bounds so that the new bounds satisfy
the dependencyt1 ⊕ t3 = t2. Suppose thatt1 /∈ T0. If U (t2) − L(t3) < L(t1) or if L(t2) − U (t3) > U (t1),
an inconsistency is detected and the procedure stops. Otherwise, the updated bounds fort1 will be U (t1) =
min{U (t1),U (t2)− L(t3)} andL(t1) = max{L(t1), L(t2)−U (t3)}. If t3 /∈ T0, we updateL(t3) andU (t3) in
the same way. Finally, assume thatt2 /∈ T0. If U (t1)+U (t3) < L(t2) or if L(t1)+L(t3) > U (t2), we stop the
algorithm. Otherwise, we setU (t2) = min{U (t2),U (t1) + U (t3)} andL(t2) = max{L(t2), L(t1) + L(t3)}.
After updating the bounds oft ∈ T, we check whether the new upper bound is equal to the new lower bound.
If so, we addt to T0 and setV(t) = L(t) = U (t).

We continue cycling through dependencies inQ until the upper bounds no longer decrease, the lower
bounds no longer increase and no new cells are added toT0. The procedure terminates in a finite number of
steps: either an inconsistency is detected or bounds cannot be improved.

If an inconsistency is detected,S[L0(T),U0(T)] is empty and no bounds are generated. However,
S[L0(T),U0(T)] could still be empty even if the shuttle procedure did not come across any inconsisten-
cies and has converged to boundsLs(T) andUs(T). These two bounds arrays define the same feasible set of
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tables as the arraysL0(T) andU0(T) we started with, namelyS[Ls(T),Us(T)] = S[L0(T),U0(T)]. The fact
that, for anyt ∈ T, we haveL0(t) ≤ Ls(t) ≤ Us(t) ≤ U0(t), could make one think thatS[Ls(T),Us(T)]
might be strictly included inS[L0(T),U0(T)]. Nevertheless, the dependencies inQ(T) imply the equality
of the two sets of feasible integer tables [4].

4.1 Convergence Properties

The bounds produced by the generalized shuttle algorithm (provided it did not stop due to an inconsis-
tency) arevalid in the sense that the sharp bounds for each cellt0 ∈ T lie inside the interval defined by
the shuttle bounds fort0. However, there are two cases when the shuttle bounds are sharp: dichotomous
k-dimensional tables with all (k − 1)-dimensional marginals fixed, and when fixed the marginals are the
minimal sufficient statistics of a decomposable log-linear model. In both instances, explicit formulas for
the bounds exist, and employing the generalized shuttle algorithm is equivalent to using these formulas.
Computing the bounds directly is more efficient, but it is insightful to examine how the algorithm works in
these two cases.

4.2 Dichotomousk-way Tables with Fixed (k− 1)-way Marginals

Consider ak-way tablen = {n(i )}i∈I for whichI1 = · · · = Ik = {1, 2}. Collapsingn across categories
is equivalent to collapsingn across variables, thus the setT associated with the dichotomous tablen is the
set of cells in every marginal ofn. Assume that (k − 1)-dimensional marginals ofn are fixed. This implies
that every lower-dimensional marginal ofn will also be known. The only cells inT that are unknown are
those in the original table.

The (k−1)-dimensional marginals ofn are the minimal sufficient statistics of the log-linear model of no
(k − 1)-order interaction. This log-linear model has only one degree of freedom becausen is dichotomous
[7]. Consequently, we can uniquely express the count in any cell as a function of one single fixed cell
alone—only one more quantity is needed in order to determine the entries for the full table.

Let n∗ be the unknown count in the(1, . . . , 1) cell. In Proposition 1 [4] we give an explicit formula for
computing the count in an arbitrary cell based onn∗ and on the set of fixed marginals.

Proposition 1. Consider an index i0 ∈ I. Let{q1, . . . , ql } ⊂ K be such that, for r∈ K,

i 0
r =

{
1, if r ∈ K \ {q1, . . . , ql },

2, if r ∈ {q1, . . . , ql }.
(1)

For s= 1, . . . , l, let Cs = K \ {qs}. Then

n(i 0) = (−1)l
· n∗ −

l−1∑
s=0

(−1)l+s
· nC(l−s)(1, . . . , 1, i 0

q(l−s)+1, . . . , i 0
k). (2)
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The upper and lower bounds can therefore be obtained by imposing the non-negativity constraints
n(i 0) ≥ 0, i 0

∈ I, in these relations. For example, the sharp lower bound for the cell(1, . . . , 1) is

max

{
l−1∑
s=0

(−1)s
· nC(l−s)(1, . . . , 1, i 0

q(l−s)+1, . . . , i 0
k) : l even

}
, (3)

wherei 0 is as in (1), and the corresponding upper bound is given by

min

{
l−1∑
s=0

(−1)s
· nC(l−s)(1, . . . , 1, i 0

q(l−s)+1, . . . , i 0
k) : l odd

}
. (4)

The generalized shuttle algorithm converges to the bounds in (3) and (4) [4]. Moreover, one can obtain
all feasible tables consistent with the (k− 1)-dimensional marginals ofn by replacing every possible value
n∗ that the cell(1, 1, . . . , 1) can take in (2) applied for all cellsi 0. In particular, all the cells inn can take
the same number of values—the difference between the upper and lower bounds is constant for all cells, and
is equal with the number of feasible integer tables consistent with the (k− 1)-dimensional marginals ofn.

4.3 The Decomposable Case

Log-linear models are a common way of representing and studying contingency tables with fixed margi-
nals. In particular, agraphical log-linear model corresponds to conditional independence relationships that
can be summarized by means of an independence graph [12]. Decomposable log-linear models [11] are a
sub-class of graphical models with closed form structure and special properties that lead to explicit formulas
for computing bounds [5]. The complete proof of the next theorem appears in [4].

Theorem 1. Letn1
= n1

C1
, . . . , np

= n1
Cp

be a set of tables that are consistent with each other. Assume that
C1, . . . , Cp are the minimal sufficient statistics of a decomposable log-linear model. Let S2, . . . , Sp be the
set of separators associated with C1, . . . , Cp in the corresponding independence graph. Then:

(i) T(n1, . . . , np) contains at least one table.
(ii) The sharp upper bound for i∈ I givenn1, . . . , np is

U
(
i ;T(n1, . . . , np)

)
= min

{
n j

(
iC j

)
: j = 1, . . . , p

}
.

(iii) The sharp lower bound for i∈ I givenn1, . . . , np is

L
(
i ;T(n1, . . . , np)

)
= max


p∑

j=1

n j
(
iC j

)
−

p∑
j=2

n j
Sj

(
i Sj

)
, 0

 .

Therefore, when the fixed marginals define a decomposable graphical model, pairwise consistency of
marginals implies the existence of a feasible table. In this case, the generalized shuttle algorithm converges
to the bounds in Theorem 1 [4].
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4.4 Finding a Feasible Integer Table

As noted above, the generalized shuttle algorithm can converge to boundsLs(T) andUs(T) even if
there does not exist an integer table consistent with the fixed marginalsn1, . . . , np. Since bounds make no
sense when no table exists, we augment our procedure by proposing a method that will actually determine a
feasible table inT(n1, . . . , np), provided one exists.

This is done by sequentially choosing possible values for cells inN . Once a new cell has been fixed,
bounds for all the cells inT are updated using the shuttle algorithm. If the shuttle procedure did not stop
because of an inconsistency, we pick a value for another cell. Otherwise, we choose a new value for the
cell fixed at the current step. If all the cells inN have been fixed and the shuttle procedure completed
successfully, which indicates that the dependencies inQ(T) are satisfied, we have determined a table in
T(n1, . . . , np). We denote byT (0)

0 = T0 the set of cells fixed by the shuttle procedure when computing the
boundsLs(T) andUs(T). Also, initialize the bounds arraysL (0)(T) = Ls(T) andU (0)(T) = Us(T). Here
is the procedure in pseudo-code:

Step 1. Setl = 1.

Step 2. Check whetherN l
= N ∪ (T \ T(l−1)

0 ) is empty. If so, a feasible table has been determined; stop
the algorithm.

Step 3. Select a cellt l
∈ N l .

Step 4. FORevery integervl ∈ [L (l−1)(tl ),U (l−1)(tl )] DO

• Initialize new bound arraysL (l )(T) = L (l−1)(T) andU (l )(T) = U (l−1)(T).

• SetV(tl ) = L (l )(tl ) = U (l )(tl ) = vl and putT(l )
= T(l−1)

∪ {tl }.

• Run the generalized shuttle algorithm to updateL (l )(T), U (l )(T) andT(l ).

• If the generalized shuttle algorithm did not stop because of an inconsistency, setl = l + 1 and
go to Step 2.

END FOR.

Step 5. The algorithm stops; there does not exist a feasible integer table inT(n1, . . . , np).

Instead of “blindly” searching the entire space of all possible combinations of values for the cells inN
defined by the bounds arraysLs(N ) andUs(N ), the procedure reduces the search space continuously as the
algorithm progresses because the bounds are updated at each step. Several heuristics exist for substantially
increasing the speed of this search procedure [4]. Moreover, if we do not stop the algorithm at Step 2 once
the first feasible table is generated, thenall the integer tables inT(n1, . . . , np) will be identified.
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4.5 Calculating Sharp Bounds

We can now obtain sharp bounds for any cellt0 ∈ T . Let Ls(T) andUs(T) be the bounds produced by
the generalized shuttle algorithm. Then

Ls(t0) ≤ L t0 ≤ Ut0 ≤ Us(t0).

We need to “adjust”Ls(t0) andUs(t0) to the sharp boundsL t0 andUt0 by making use of the simple fact that,
for any integerv ∈ [Ls(t0), L t0)∪(Ut0,Us(t0)], there does not exist an integer arrayV(T) ∈ S[Ls(T),Us(T)]
such thatV(t0) = v. To determineL t0, we start withv = Ls(t0) and attempt to determine an array
V(T) ∈ S[Ls(T),Us(T)] with V(t0) = v. If such an array exists,L t0 = v. Otherwise, we do the same thing
for v = Ls(t0) + 1, and so on. Here is the complete algorithm in pseudo-code. (Again,T0 represents the
cellst with Ls(t) = Us(t).)

FOR every integer valuevl ∈ [Ls(t0), Ls(t0)+ 1, . . . ,Us(t0)] DO

• Initialize new bound arraysLv(T) = Ls(T) andU v(T) = Us(T).

• SetV(t0) = Lv(t0) = U v(t0) = v and setTv
= T0 ∪ {t0}.

• Run the generalized shuttle algorithm to updateLv(t0), U v(t0) andTv.

• Using the procedure described in the previous section, find out whetherS[Lv(t0),U v(t0)] is
empty.

• If S[Lv(t0),U v(t0)] is not empty, setL t0 = v and stop the algorithm.

END FOR

Determination ofUt0 is similar: start withv = Us(t0) and attempt to determine an arrayV(T) ∈

S[Ls(T),Us(T)] with V(t0) = v. If such an array exists,Ut0 is equal tov; otherwise, we setv = Us(t0)− 1
and continue. In this way, we obtain sharp bounds not only for the cells inN but also for any cell in a
cross-classification obtained by collapsingn across categories.

Example 1. The left-hand panel of Table 1 contains a2×2×2×2 contingency table. The generalized shuttle
algorithm was used to compute the upper and lower bounds induced by fixing the6 two-way marginals of
this table. There is only one table consistent with this set of two-way marginals, so for all the cells in this
table, the sharp integer upper and lower bounds are equal to the actual cell entries.

The right panel in Table 1 contains comparable bounds compute using linear programming (specifically,
the simplex algorithm). For all the cells, one of the bounds is different from the corresponding sharp integer
bound. In some cases, the simplex algorithm found fractional bounds. In other cases, although simplex
converged to integer bounds, these bounds are not sharp. Especially, cell(1, 1, 2, 1), marked with a box in
Table 1, contains a count of 0, while the actual upper bound is 1.67. Therefore the distance between the
integer and the real bounds can be strictly greater than1.

Adjusting the bounds can be donein parallel for all the cells in the table [4]. Other methods for reducing
the computational effort required by the generalized shuttle algorithm in the case of large sparse multi-way
tables, as well as an example of calculating bounds in parallel for a 216, table are presented in [4].
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C no yes C no yes
A B D no yes no yes D no yes no yes

no no 1 0 0 1 [0, 1] [0, 0.67] [0, 1.67] [0, 1]

yes 0 0 1 0 [0, 0.67] [0, 0.67] [0, 1] [0, 0.67]
yes no 0 0 1 0 [0, 0.67] [0, 0.67] [0, 1] [0, 0.67]

yes 0 1 0 0 [0, 0.67] [0, 1] [0, 0.67] [0, 0.67]

Table 1: A 2× 2× 2× 2 table (left-hand panel) and the real bounds computed using linear programming
(right-hand panel).

5 Conclusions

In this paper we have outlined how to deal with the challenging issues associated with storing and
manipulating large, sparse tables in the context of statistical disclosure limitation. Dissemination systems
and software implementing these techniques are described in [6, 9]. To the extent that they exploit sparsity,
these techniques exhibit strong scalability properties. For instance, the fundamental data structures and
methods for calculating marginal sub-tables seem able to handle almost any table that is likely to arise in
practice. By contrast, the generalized shuttle algorithm of Section 4, in its current form, entails computations
for every cell in the underlying table, and consequently does not scale well. Deriving a scalable version is
just one of many research challenges that remain.
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