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Abstract

We construct a decision-theoretic formulation of data swapping in which quantitative mea-
sures of disclosure risk and data utility are employed to select one release from a possibly large
set of candidates. The decision variables are the swap rate, swap attribute(s) and possibly, con-
straints on the unswapped attributes. Risk–utility frontiers, consisting of those candidates not
dominated in (risk, utility) space by any other candidate, are a principal tool for reducing the
scale of the decision problem. Multiple measures of disclosure risk and data utility, including
utility measures based directly on use of the swapped data for statistical inference, are intro-
duced. Their behavior and resulting insights into the decision problem are illustrated using
data from the Current Population Survey, the well-studied “Czech auto worker data” and data
on schools and administrators generated by the National Center for Education Statistics.

1 Introduction

Data swapping (Gomatam and Karr, 2003; Willenborg and de Waal, 1996, 2001) is a technique for
statistical disclosure limitation that works at the microdata (individual data record) level. Confi-
dentiality protection is achieved by selectively modifying a fraction of the records in the database
by exchanging a subset of attributes between selected pairs of records. Data swapping makes it
impossible for an intruder to be certain of having identified an individual or entity in the database,
because no record is certain to be unaltered.

Data swapping is of course, not new. The seminal papers on the subject is Dalenius and Reiss
(1982) and Reiss (1984), and recent references include Fienberg and McIntyre (2004). A formal
definition (Willenborg and de Waal, 2001) uses elementary swaps. Anelementary swapis a selec-
tion of two records from the microdata and an interchange of the values of attributes being swapped
for these two records. When the candidates for each swap pair are picked at random we will refer to
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the resulting swaps asrandom swaps. We assume that elements of a swap pair are picked without
replacement, so that no record appears in more than one swap pair. We also allow onlytrue swaps,
in the sense that both the swap attribute and at least one unswapped attribute must differ.1 For
multiple swap attributes,all attributes are swapped simultaneously, and all swap attributes must
differ. The algorithm to perform the swapping is described in Appendix A and Sanil et al. (2003).

In the past, implementation of data swapping by statistical agencies has been a matter of judge-
ment. The US Census Bureau is a leading user of data swapping, especially when the “swap
attribute” (see below) is geography; this special case is sometimes termed “switching” (Cox and
Zayatz, 1993). Agency behavior is typically conservative, erring on the side of too much protec-
tion of confidentiality rather than risking too little. Moreover, compared to immense attention to
the effects of data swapping on confidentiality, much less attention has been paid to the effects of
data swapping on the usefulness of the released data. Clearly data swapping distorts the data: joint
distributions involving both swapped and unswapped attributes change. This decreases the value
of the data for purposes such as statistical inference. Confidentiality protection and data utility
must be traded off: they are, in economic terminology,substitutes—more of one entails less of the
other.

In this paper, we formulate implementation of data swapping as a decision problem with ex-
plicit tradeoff of quantified measures of disclosure risk and data utility. In its simplest form,
this problem entails selection of one or more swap attributes and theswap rate, the fraction of
records for which swapping occurs. More complex versions of the problem allow constraints on
unswapped attributes. For example, an unswapped attribute may be forced to remain unchanged—
preventing swapping across geographical boundaries, for example—or forced to change.

Our formulation of data swapping as a decision problem appears in §2, together with two com-
plementary approaches to solving the problem. In §3 and 4 we introduce particular measures of
disclosure risk and data utility, the latter conceptualized in part as lack of data distortion. These are
illustrated using example data from the Current Population Survey (CPS) (Census Bureau, 2002).
In §5 we describe risk–utility tradeoffs for three databases—CPS data, data on school administra-
tors from the National Center for Education Statistics (NCES), and the Czech automobile worker
database (Edwards and Havraneek, 1985); §6 contains a concluding discussion.

2 Problem Formulation

In this section, we formulate data swapping as a decision problem: what must be decided (§2.1)
and how quantified measures of disclosure risk and data utility (§2.2) facilitate solution of the
problem (§2.3).

A number of model-based frameworks for trading off risk and utility have been proposed (Dun-
can et al., 2004, 2001; Trottini, 2001, 2003; Zaslavsky and Horton, 1998). The terminology “R–U

1In some early versions of our software (Sanil et al., 2003), a looser definition of “true swap” was employed, which
required that each record change, but not that the database change. For example, with Age with swap attribute, (Age
= ≥ 50, Sex = Male)↔ (Age < 50, Sex = Male) would have been a true swap under the earlier formulation, but no
longer is one.
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confidentiality map” for this tradeoff is employed in Duncan et al. (2004) in the context of top-
coding and in Kim and Winkler (1995) to denote a simulation experiment for perturbed, by addition
of noise, multivariate data. A Bayesian approach to contrasting risk and utility for cell suppression
is studied in Zaslavsky and Horton (1998). A risk–utility approach statistical disclosure limitation
for tabular data, in which releases are marginal subtables of a large contingency table, appears in
Dobra et al. (2002), Dobra et al. (2003) and Karr et al. (2003). We do not build specifically on any
of these, but our approach is clearly in the same spirit.

2.1 Structure of the Decision Problem

Consider a databaseD consisting of a single table of data records having only categorical at-
tributes. Much of the formulation in this paper but fewer of the specifics such as measures of
disclosure risk and data distortion, generalizes to “continuous” attributes.

The decision problem for data swapping involves three principal stages.2

The first stage is to decide whether to use data swapping at all, and whether to use data swap-
ping alone or in conjunction with other strategies for statistical disclosure limitation. This choice
lies largely outside the realm of this paper, and may be dictated by agency practice, political issues
or scientific considerations. In general, data swapping is used in situations where the release of
altered microdata is preferred to that of (possibly exact) summaries or analyses of the data.

Extensions of our risk–utility paradigm may allow quantification of tradeoffs among multiple
statistical disclosure limitation strategies, although clearly additional research is required before
this becomes a reality.

Second, if data swappingis employed, disclosure risk and data utility measures must be se-
lected, which are used as shown in §2.3 to perform the third stage of the decision process. Exam-
ples of such measures appear in §3 and 4.

Third, the release must be selected from some setRcandof candidate releases, which ordinarily
entails choosing the

Swap rate, the fraction of records in the databaseD for which swapping will occur.

Swap attributes, those attributes whose values are exchanged between randomly selected pairs
of records inD .

Constraints on the unswapped attributes, which are optional. Such constraints may require or
forbid equality of unswapped attributes.

More specifically, as in §2.2, candidate releases are parameterized by a swap rate, the swap at-
tributes and constraints, and constructed by actually performing the swap. Then, values of dis-
closure risk and data utility are computed for each candidate release, and used to select which
candidate to release.

2In effect, one decision precedes all of these: to release microdata at all, as opposed to summaries or statistical
analyses of the data. As more external databases become available and record linkage technologies improve, any
useful release of microdata may be too threatening to confidentiality. An initial look at a “world without microdata”
appears in Gomatam et al. (2004).
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Although in principle the risk–utility paradigm in §2.2–2.3 can be used to select all three of
these, we envision that it will be used frequently to select swap attributes, less frequently to select
the swap rate, and only rarely to select the constraints. Ordinarily, constraints would be imposed
exogenously on the basis of domain knowledge. For example, it may be declared that swapping
may not occur across state lines, because doing so would lead to released microdata that are in-
consistent with state-level totals available elsewhere. Similarly, constraints may be necessary to
prevent physically infeasible (and hence detectable) swapped records, such as males who have un-
dergone hysterectomies. Even in such cases, however, our methods can still be used to evaluate the
impact of the constraints on disclosure risk and data utility.

2.2 Mathematical Representation

Let d be the number of (categorical) attributes in thepre-swapdatabaseDpre. The mathematical
abstraction of the decision problem laid out in §2.1 entails specification of candidate releases, a
disclosure risk measure and a data utility measure.

Releases.We parameterize candidate releases as

R = (r, AS1, . . . , ASd), (1)

wherer is the swap rate, and for each attributei , the attribute specification

ASi ∈ {S, F, C, U} (2)

determines whether attributei is swapped (S), must remain fixed (F), must change (C), or is neither
swapped nor constrained (U).

Release Space.Because in practice only finitely many swap rates are consider, therelease
spaceR is finite, but may be very large. Even for a fixed swap rate, there are on the order of
4d−1/2 possible releases, corresponding to all possible combinations of S, F, C and U in (2) other
than(C, . . . , C), (F, . . . , F), (S, . . . , S) and(U, . . . ,U ) and accounting for complementarity—
swapping one set of attributes is equivalent to swapping its complement.

Candidate Release Space.In many settings, therefore, it is convenient or necessary to consider
a smaller setRcand of candidate releases. For example, in §5.1, whered = 8, there are 108
candidate releases corresponding to three swap rates, all possible one- and two-attribute swaps,
and no constraints.

Note that candidate releases correspond to parameterized rather than actual releases. For each
releaseR ∈ Rcand we construct an actual release—a post-swap databaseDpost(R), using the
algorithm in Appendix A. Define the actual candidate release space

Ract
cand=

{
Dpost(R) : R ∈ Rcand

}
, (3)

one of whose elements will be released. The selection problem is to choosewhich one. Its solution,
which we describe in §2.3, requires quantified measures of disclosure risk and data utility; specific
examples for data swapping are presented in §3–4.
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Because the data swapping algorithm in Appendix A entails randomization, there is ambiguity
in (3): different choices of the randomization seed yield different post-swap databases, even for the
same parameterized releaseR in (1). It is even possible to include the randomization seed in the
choice problem, but for simplicity we do not. In fact, when there is little possibility of confusion,
we treatR ∈ RcandandDpost(R) ∈ Ract

candas synonymous.

Disclosure Risk. The disclosure risk measureis a functionDR : R → R with the inter-
pretation thatDR(R) is the disclosure risk associated with the releaseR.3 If Rcand is immutable,
then of courseDR, as well as the data utility measureDU, need only be defined on it, and not
necessarily on all ofR. The disclosure risk function need not have any particular properties other
than sensibly abstracting disclosure risk. However, in settings such as tabular data, in which the
release space is partially ordered, the disclosure risk measure must be monotone with respect to
the partial order.

Data Utility. Thedata utility measureis a functionDU : R → R with the interpretation that
DU(R) is the utility of the releaseR.

2.3 Solution of the Decision Problem

Given disclosure risk and data utility measures, the data swapping decision problem can be solved
in two distinct ways.

Utility Maximization. In this case, the optimal releaseR∗ is chosen that maximizes data utility
subject to an upper bound constraint on disclosure risk:

R∗
= arg maxR∈Rcand

DU(R)

s.t. DR(R) ≤ α,
(4)

whereα is the bound on disclosure risk, which must be specified by the decision maker.

Risk–Utility Frontiers. Especially but not only ifRcand is small, then it may be more insight-
ful simply to compare releasesR in terms of risk and utility simultaneously, using the partial order
�RU defined by

R1 �RU R2 ⇔ DR(R2) ≤ DR(R1) and DU(R2) ≥ DU(R1). (5)

If R1 �RU R2, then clearlyR2 is preferred toR1 because it has both lower disclosure risk and
higher greater utility. Only elements ofRcand on therisk–utility frontier ∂Rcand consisting of
the maximal elements ofRcand with respect to the partial order (5) need be considered further.
Ordinarily, as illustrated schematically in Figure 1 and for real data in Figures 3 and 4, the frontier
is much smaller thanRcand. Calculation of the frontier can be done using existing algorithms
for finding the maxima in a set of vectors (Kung et al., 75). These algorithms have a worst case
complexity of O(N log N), whereN = #{Rcand}. However, the average case complexity is O(N)

3This is an example of the simplification from the preceding paragraph. Strictly speaking, disclosure risk is a
function ofDpost(R) rather thanR, and indeed, the examples in §3 show this.
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Figure 1: Conceptual risk-utility frontier and optimal release for a linear tradeoff between risk and
utility.

for a large class of distributions of the data (Bentley et al., 1978). In any event, computation of the
frontier only comprises a small part of the overall computational effort.

Selection of a release on the risk–utility frontier can be done by assessing the risk–utility bal-
ance subjectively or quantitatively, by means of an objective function that relates risk and utility.
To illustrate, the dashed line in Figure 1 corresponds to a linear risk-utility relationship of the form

DR = a × DU + c,

and the figure identifies the release on∂Rcand that is optimal for a particular value ofa. Simi-
lar approaches have been used in economics to maximize consumer utility for the purchase of a
combination of two commodities.

Risk–utility frontiers also facilitate solution of the utility maximization problem (4), because
the optimal releaseR∗ must lie on the frontier.

3 Disclosure Risk Measures

Here we describe two disclosure risk measures that are both derived from the concept that re-
identification of data subjects is the primary threat to confidentiality.

3.1 Small Cell Counts

Especially for census data, population uniques or near uniques are potentially riskier than other
elements. For categorical data, these elements are contained in small count cells in the contingency
table created by using all attributes in the data.

Then-rule, which is widely used in statistical disclosure limitation (Willenborg and de Waal,
2000), considers records that fall in cells with count (strictly) less thann (typically n = 3) to be at
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risk. Reflecting this, we define risk as the proportion of unswapped records in small count cells in
the table created from the post-swap data:

DR(R) =

∑
C1,C2

Number of unswapped records inDpost(R)

Total number of unswapped records inDpost(R)
, (6)

whereC1 andC2 are the cells in the full data table associated withDpost(R) with counts of 1 and
2 respectively. For survey data such measures are well-known to be extremely conservative.

Unlike the data distortion measures in §4, which are stated for categorical data but generalize
readily to continuous data, the disclosure measure of (6) makes sense only for categorical data.

3.2 Record Linkage

A number of authors (Cox, 1979; Domingo-Ferrer et al., May, 2001; Lambert, 1993; Spruill, 1982;
Winkler, 1998; Willenborg and de Waal, 2001; Yancey et al., 2002) have considered disclosure risk
measures based on re-identification through record linkage.

For example, letDext be an external database containing attributes in common withD (and
the same attributes in common with anyDpost(R)), and for each recordr ∈ Dpost(R) let n(r ) =

n(R; r ) be the number of records inDext that agree withr on the common attributes. These
are candidates for linkage tor . For purposes of statistical disclosure limitation, larger values of
n(r ) are better, because they make record linkage more uncertain. A disclosure risk measure that
captures this is

DR′(R) =
Number of records inDpost(R) with n(r ) ≤ β

Total number of records inDpost(R)
, (7)

whereβ is a threshold.

4 Data Utility Measures

Let Dpre denote the database prior to swapping, and letDpost(R) denote the post-swap database for
candidate releaseR. In this section, we describe two classes of data utility measures that capture
the extent to whichDpost(R) differs fromDpre. The first of these (§4.1) measures explicitly the
distortion introduced by data swapping. Distortion is datadisutility, so that ifDD is a measure of
data distortion, thenDU = −DD is the associated measure of data utility.

Direct measures of distortion are general but blunt. They are disconnected from specific uses
of the data, such as statistical inference. In §4.2 we present data utility measures that quantify the
extent to which inferences (in our case, using log-linear models) based onDpost(R) differ from
those based onDpre.

4.1 Data Distortion

Recall that the data are categorical. Our data distortion measures are based on viewingDpre and
Dpost(R) as contingency tables, and thus (when normalized) as distributions on the spaceI that
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indexes cells in these tables. Mathematically,I is the Cartesian product of the sets of category
values for each attribute. We letDpre(c) be the cell count associated with cellc ∈ I.

The distortion measures all have the form

DD(R) = d(Dpre, Dpost(R)), (8)

whered is a metric on an appropriate space of distributions. Recall also that data swapping changes
only joint distributions of the attributes that involve both swap attributes and unswapped attributes.
Distortion measures of the form (8) involveall attributes.

Hellinger distance(Le Cam and Yang, 1990) is given by

HD(Dpre, Dpost(R)) =
1

√
2

√√√√∑
c∈I

(√
Dpre(c) −

√
Dpost(R, c)

)2
. (9)

Note that the same absolute difference betweenDpre(c) andDpost(R, c) affects the Hellinger dis-
tance to a greater extent when the value ofDpre(c) is small. Hellinger distance also corresponds to
Cressie–Read divergence (Cressie and Read, 1988) withλ = −0.5.

Total variation distance is given by

TV(Dpre, Dpost(R)) =
1

2

∑
c∈I

∣∣Dpre(c) − Dpost(R, c)
∣∣ . (10)

Entropy change is based on Shannon entropy, which forDpre is given by

h(Dpre) = −

∑
c∈I

Dpre(c) log
[
Dpre(c)

]
,

and is conventionally interpreted at the amount of uncertainty inDpre. Entropy change, then,
constitutes another measure of data distortion:

1h(Dpre, Dpost(R)) = h(Dpost(R)) − h(Dpre). (11)

Positive values of1h(Dpre, Dpost(R)) indicate that swapping has increased the uncertainty in the
data. Related distortion measures involving conditional entropy have also been employed (Willen-
borg and de Waal, 2001).

We illustrate these measures using an 8-attribute database CPS-8D extracted from the 1993
CPS. The attributes, abbreviations we use for them and category values appear in Table 1. There
are 48,842 data records; the associated full table contains 2880 cells, of which 1695 are non-zero.
In reality, the fact that we have survey rather than census data would represent additional protection
against disclosure.

Figure 2 shows the values of HD(Dpre, Dpost(R)), TV(Dpre, Dpost(R)) and1h(Dpre, Dpost(R))

for the CPS-8D data for 24 candidate releases corresponding to swap rates of 1%, 5% and 10%
and all single-attribute swaps. (These and other results in this paper were produced using—in
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Attribute Name (ShortName) Abbreviation Categories

Age (in years) (Age) A <25, 25–55,>55
Employer Type (EmpTyp) W Govt., Priv., Self-Emp., Other
Education (Edu) E <HS, HS, Bach, Bach+, Coll
Marital Status (MS) M Married, Other
Race (Race) R White, Non-White
Sex (Sex) S Male, Female
Average Weekly Hours Worked (AvgHrs) H < 40, 40,> 40
Annual Salary (AnnSal) I <$50K, $50K+

Table 1: Attributes and attribute categories for the CPS-8D data. The short names are used only in
Figure 2
and the text, including Appendix B. The abbreviations appear in Figure 4.

this case a prototype of—the NISS Data Swapping Toolkit (National Institute of Statistical Sci-
ences, 2003a).) As expected, distortion increases as the swap rate increases, approximately lin-
early. Figure 2 shows rather dramatically that swapping some attributes induces more distortion
than swapping others, an issue that we discuss at greater length in §5. In general, though, the three
distortion measures track each other very closely, and in particular, total variation distance and
entropy change result in almost the same ordering of swap variables. Hellinger distance shows a
somewhat different ordering, to whichAgeandAvgHrsappear to contribute the most.

Additional data distortion measures that are restricted to two-attribute databases (or more gen-
erally, if only distortion of bivariate distributions is of interest), appear in Appendix B.

4.2 Inference-Based Measures of Utility

As noted in the lead-in to this section, data distortion is a blunt measure of data utility because it
does not address directly inferences that are drawn from the post-swap data. There is, of course,
indirect information, because nearly all inference procedures are in some sense “continuous” with
respect to the data, so that low distortion implies nearly correct inference. Here, by contrast, we
describe data utility measures that account explicitly for inference in the form of log-linear models
(Bishop et al., 1975) of the data.

Let M∗
= M∗(Dpre) be the “optimal” log-linear model of the pre-swap databaseDpre, accord-

ing to some criterion, for example, the Akaike information criterion (AIC) (Akaike, 1973) or Bayes
information criterion (BIC) (Schwarz, 1978). Concretely,M∗ can be thought of in terms of its min-
imal sufficient statistics, that is, the set of marginal subtables of the contingency table associated
with Dpre representing the highest-order interactions present. LetLM∗(·) be the log-likelihood
function associated withM∗. Then as measure of data utility we employ the log-likelihood ratio

DUllm(R) = LM∗(Dpost(R)) − LM∗(Dpre); (12)

the llm subscript abbreviates “log-linear model.” Although in generalDUllm(R) < 0 in (12),
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Figure 2: Graph of Hellinger (top) and total variation (middle) distances and entropy change (bot-
tom) for 1% swap (©), 5% (4) and 10% swap rates (+).

because of the randomization in data swapping, this is not a logical necessity.
The rationale is that higher values ofDUllm(R) indicate thatM∗ remains a good model for

Dpost(R). This is not, however, completely equivalent to saying that the same inferences would be
drawn fromDpost(R) as fromDpre, since data users do not have access toM∗. A more complex
inference-based measure of utility might, for example, compareM∗ to a similarly optimal model
M∗(Dpost(R)) of the post-swap data. Precisely how to do so, however, requires further research.
One example would be whetherM∗(Dpre) andM∗(Dpost(R)) have the same minimal sufficient
statistics, but this measure is highly discontinuous.

In fact, Fienberg et al. (1998) illustrate a systematic procedure of perturbation (swapping) of
contingency table entries so that the margins corresponding to the minimal sufficient statistics of
M? are preserved. Their procedure entails the computationally intensive task of computing “Gröb-
ner bases” corresponding to the marginals and it does not scale well to higher dimensional tables.
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B no yes
F E D C A no yes no yes

neg < 3 < 140 no 44 40 112 67
yes 129 145 12 23

≥ 140 no 35 12 80 33
yes 109 67 7 9

≥ 3 < 140 no 23 32 70 66
yes 50 80 7 13

≥ 140 no 24 25 73 57
yes 51 63 7 16

pos < 3 < 140 no 5 7 21 9
yes 9 17 1 4

≥ 140 no 4 3 11 8
yes 14 17 5 2

≥ 3 < 140 no 7 3 14 14
yes 9 16 2 3

≥ 140 no 4 0 13 11
yes 5 14 4 4

Table 2: The Czech automobile worker database (Edwards and Havraneek, 1985). High-risk cells
are shown by boxes.

Also, the case when the optimal set of marginals is itself too risky to release is still unresolved.
However, the Fienberget al. strategy is a complementary approach with similar goals which, when
computationally feasible, does provide superior information for inference to sophisticated users—
those capable of running extensive Markov chain Monte Carlo simulations using the Gröbner bases
employed to carry out the swapping.

In §5.2 we illustrateDUllm for the “Czech auto worker data,” an intensively studied (Edwards
and Havraneek, 1985; Dobra et al., 2002), 6-attribute database containing risk factors for coronary
thrombosis for 1841 Czechoslovakian automobile factory workers who took part in a prospective
epidemiological study. The associated contingency table, which contains 26

= 64 cells and is
not sparse, appears in Table 2. The six dichotomous attributes are defined as follows: A indicates
whether the worker “smokes,” B corresponds to “strenuous mental work,” C corresponds to “stren-
uous physical work,” D corresponds to “systolic blood pressure,” E corresponds to “ratio ofβ and
α lipoproteins,” and F represents “family anamnesis of coronary heart disease.” There are three
high risk cells, one with count 1 and two with count two.

5 Risk–Utility Tradeoffs

In this section, we illustrate risk–utility tradeoffs for a variety of databases and utility measures:
the CPS-8D database (§5.1), school administrator data from the NCES (§5.3) and the Czech auto-
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mobile worker database of Table 2 (§5.2). Rather than a “full factorial” design of all risk measures
and all utility measures on each database, we report selected results that illuminate our risk–utility
methodology.

5.1 CPS-8D Data

Here we illustrate risk–utility tradeoffs for the CPS-8D data for a candidate release spaceRcand

containing 108 cases corresponding to candidate releases comprising all (8) single-attribute swaps
and all (28) two-attribute swaps together with swap rates of 1%, 2% and 10% of the data. The
disclosure risk measure is given by (6) and data utility is derived from Hellinger distance-measured
distortion:

DU(R) = −DD(R) = −HD
(
Dpre, Dpost(R)

)
.

The results, which were obtained using the NISS Data Swapping Toolkit, are shown separately
for each of the three swap rates in Figure 3, with the swap attributes identified, and with all three
rates on one plot in Figure 4. SinceDU = −DD, these plots are reversed left–to–right as compared
to Figure 1, and∂Rcand is now the “southwest boundary.”

In Figure 3, lines connect the cases on the frontier∂Rcand. A user who has already decided
on a rate need only look at the plot corresponding to that rate and make a decision as to which
candidate release on the frontier best captures the relevant risk and utility tolerances. For example,
and restricting attention to the 2% rate, if the optimization criterion of (4) were employed, which
in this case translates to

R∗
= arg minR∈Rcand

DD(R)

s.t. DR(R) ≤ α,
(13)

and ifα = .014, then the optimal release corresponds to swap attributesSexandEmpTyp, which is
labeled by “WS” in the middle panel of Figure 3.

Alternatively, a user who is undecided about the swap rate would select from the combined
frontier∂Rcandgenerated by putting together all swaps for the rates of interest, as in Figure 4. The
frontier for the combined plot is a strict subset of the union of the three individual frontiers. For
example, the 10% swap ofEduc, which was on the frontier for the 10% swap rate, is dominated by
many 1% and 2% swaps.

Figure 4 also clearly illustrates how distortion increases and risk decreases with increasing
swap rate. Single-attribute swaps tend to be riskier than two-attribute swaps but show less mean
distortion than two-attribute swaps. As swap rate increases, variability in both risk and Hellinger
distance increases.

5.2 Czech Automobile Worker Data

The log-linear model based data utility measureDUllm(R) in (12) was calculated for the Czech
automobile worker data in Table 2 for 21 releases corresponding to all one- and two-attribute
swaps, with a single swap rate of 10%, with the “batch swap” capability (National Institute of
Statistical Sciences, 2003b) of the NISS Data Swapping Toolkit used to perform the swapping. The
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optimal modelM∗
= M∗(Dpre) under either AIC or BIC has as sufficient statistics the marginal

subtables {
[ ABC D], [ ADE], [FB]

}
. (14)

This model is also well-recognized as the “best” model on the basis of domain knowledge (Edwards
and Havraneek, 1985; Whittaker, 1990).

Figure 5 shows the associated risk–utility plot, with risk given by (6). Points there are labeled
by swap attributes, withA, . . ., F the single-attribute swaps andfe, . . ., ba the two-attribute swaps.
Since this is a risk–utility (not risk–distortion) plot, it is comparable to Figure 1. The frontier is the
southeast boundary of the set of candidate releases:

∂Rcand=

{
b, ed, fe, ec, fa, fd

}
.

In Figure 5, the pointsfc andfb are clearly anomalous: they have extremely low utility. One, but
only one, of these corresponds to a marginal in (14).

One obvious question is whether the inference-based utility measureDUllm actually “picks
up” some sort of signal that is obscured by the (general but as we termed it “blunt”) Hellinger
distance data distortion measure of (9). Figure 6 plots(DUllm(R), HD) pairs for the same 21 cases
appearing in Figure 5. The relationship is ambiguous at best, which we interpret as meaning that
DUllm(R) and HD are indeed different. Indeed, ignoring the anomalous pointsfc and fb, there
seems to be little apparent relationship betweenDUllm(R) and HD.

5.3 NCES Data

Here we illustrate insights produced by our decision-theoretic formulation of data swapping, using
data from the NCES. Specifically, we use eight categorical attributes extracted from the 1993
Common Core of Data (CCD) Public Elementary/Secondary School Universe Survey data file and
the 1993–94 Schools and Staffing Survey (SASS) Public and Private Administrator data file. The
attribute names and category values appear in Table 3.

Figure 7 shows the results of 800 swaps of the NCES data, corresponding to 100 realizations
each of the eight one-attribute swaps. The realizations differ only by the initial seed of the random
number generator used to perform the choices of swap pairs (see Appendix A). The swap rate
in all cases is 10%. In each panel of Figure 7, the 100 cases involving a particular attribute are
highlighted.

“Administrator Experience” is highlighted in the upper left panel, giving first a visual expres-
sion of the “random variability” inherent in the swapping algorithm, which we interpret as non-
trivial but not dramatic. Perhaps more important, this panel demonstrates quite clearly that swaps
involving “Administrator Experience” are high-risk, low-distortion swaps. Similarly, the bottom
left panel in Figure 7 identifies swaps involving “Race” as having low risk but high distortion, while
the upper right panel shows that swaps involving “Sex” are moderate with respect to both risk and
distortion. Collectively, these three cases comprise most of the risk–distortion frontier, and so “Ad-
ministrator Experience”, “Race” and “Sex” are plausible candidates for a single-attribute swap.
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School Attributes
Attribute Name Categories

Enrollment 0–250, 250–500, 500–1000, 1000–5000
FTE Classroom Teachers 0–200, 200–400, 400–600, 600–1500
Locale Central city, Mid-size central city, Urban fringe of large city,

Urban fringe of mid-size city, Large town, Small town, Rural
Region Northeast, Midwest, South, West

Administrator Attributes
Attribute Name Categories

Years Experience 0–2, 2–5, 5–35
Annual Salary $0–50,000, $50,000–75,000, $75,000–120,000
Sex M, F
Race Non-white, White

Table 3: Attributes and attributes categories for the NCES data.

The bottom left panel in Figure 7, by contrast, shows a poor choice of swap attribute—“School
Enrollment:” swaps involving it are characterized by both high riskandhigh distortion.

6 Discussion

The risk–utility formulation for data swapping is a powerful device for informed selection of an
actual swapped data release corresponding to a particular choice of swap rate, swap attributes and
constraints. Moreover, use of risk–utility frontiers reduces significantly the scale of the associated
decision problems.

A number of issues remain unaddressed, however. One of the most important is how to incorpo-
rate domain knowledge in a principled manner into disclosure risk and data utility measurements,
or into the overall risk–utility formulation of data swapping. For example, what measures of data
distortion can incorporate the domain knowledge that it is more important to avoid distorting one
attribute in the database than another? How can disclosure risk measures such as (7) reflect the
domain knowledge of how easy it is to linkDpost(R) andDext?

A second issue is to broaden the decision problem to allow data swapping to be used in con-
junction with other strategies for statistical disclosure limitation. For example, can data swapping
and category aggregation be used in conjunction in a way that is superior to either alone, and if so,
how? NISS is initiating research on this issue.
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A The Swapping Algorithm

Let n be the number of records in the pre-swap databaseDpre. Then the Data Swapping Toolkit
swapping algorithm operates in the following manner:

1. Initially, mark all records as unswapped and setR, the number of swapped records, to zero.

2. Ther be the user-specified swap rate, and let RTS= br × nc be the number of records to be
swapped.

3. Select a recordR1 at random from the current set of unswapped and “not unswappable”
records.

4. Select a second recordR2 at random from the current set ofall unmarked (as either swapped
or unswappable) records.

5. Determine whether the swap is atrueswap:R1 andR2 must differ on both the swap attribute
and as least one unswapped attribute. If not, return to Step 4.

6. Determine whether equality and inequality swapping constraints are satisfied. If not, return
to Step 4.

7. If no feasible candidateR2 can be found, go to Step 10.

8. Otherwise, interchange the swapped attribute(s) betweenR1 andR2, markbothas swapped,
and setR = R + 2.

9. If R < RTS, return to Step 3. Otherwise, the swapping is complete. For Batch Swaps, label
the swap a “success.”

10. Mark R1 as unswappable (no other unswapped record in the database can be swapped with
it). If any records remain that are both unswapped and “not unswappable,” return to Step 3.
Otherwise, terminate the algorithm and label the swap a “failure.”

Note that this algorithm does not take into account any “weights” Takemura (2002) in selection
of swap pairs. The risk-utility formulation is this paper extends immediately, as long as the method
of calculating weights is not a decision variable.

B Two-Dimensional Measures of Data Distortion

In some cases, attention might focus on two-way relationships between attributes. Two approaches
are possible. The first simply restricts the Hellinger distance, total variation distance and entropy
change to two-dimensional marginals ofDpre andDpost(R). Alternatively, measures of distortion
specific to two attributes, which are sometimes termed measures of association, can be employed.
Two such measures have been investigated.

Cramer’s V , which is based on theχ2 statistic for am × n contingency table:

V =

√
χ2

N min(m − 1, n − 1)
,
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whereχ2 is the usualχ2 statistic to test for independence. Its values lie between 0 and 1—a
value of 0 indicates no association, whereas a value of 1 indicates perfect association. It is more
difficult to interpret values between the extremes. Cramer’s V has been used in the context of data
swapping to assess the effects of swapping within geographically defined subsets of the population
(Boyd and Vickers, 1999). To measure data distortion, one can employ

CVi j (Dpre, Dpost(R)) = Vi j (Dpre) − Vi j (Dpost(R)), (15)

wherei and j represent attributes. Positive values of CVi j (Dpre, Dpost(R)) indicate that swapping
has weakened the association between attributesi and j .

Contingency coefficients.Pearson’s contingency coefficient C also measures association:

C =

√
χ2

χ2 + N
,

whereχ2 is again the usualχ2 defined for the test of independence. Values ofC lie between 0
and 1, but the upper limit depends onm andn, so it is difficult to compare tables of different sizes.
Like Cramer’s V,C also suffers from the difficulty of interpretation for intermediate values. We
then define

CCi j (Dpre, Dpost(R)) = Ci j (Dpre) − Ci j (Dpost(R)). (16)

Positive values of CCi j (Dpre, Dpost(R)) indicate that swapping has weakened the association be-
tweeni and j .

Tables containing the numerical values of these five distortions for the CPS-8D data appear
in Gomatam and Karr (2003). Overall there is significant consistency in the conclusions drawn
from the different measures.AgeandIncomeare the preponderant maximizers for both Hellinger
distance and entropy change;MSalso plays a significant role for total variation distance.Raceand
Edu are the primary minimizers for all three of these measures. The behavior of CV and CC is
primarily like that of 2-way Hellinger distance:Incomeis most likely to be a maximizer andEdu
is most likely to be a minimizer. However,MSplays a stronger role thanAgein maximizing CV
and CC.
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Figure 3: Risk–distortion scatterplots for 108 candidate releases from the CPS-8D database. Swap
attributes for each case are identified using the abbreviations in Table 1.Top: swap rate = 1%.
Middle: swap rate = 2%.Bottom: swap rate = 10%. Each scatterplot contains 36 candidate
releases representing all choices of one or two swap attributes.
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Figure 4: Risk–distortion scatterplots for 108 candidate releases from the CPS-8D database. Three
swap rates (1%–circles, 2%—triangles and 10%—plus signs) are shown, and for each, there are
36 candidate releases representing all choices of one or two swap attributes.

Figure 5: Risk–utility plot for the Czech automobile worker database of Table 2, using the
inference-based utilityDUllm(R) of (12) and the small cell count risk measure in (6). Points are
labeled by swap attributes—A, . . ., F for single-attribute swaps andfe, . . ., ba for two-attribute
swaps.
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Figure 6: Relationship between inference-based utilityDUllm(R) from (12) and Hellinger distance-
based data distortion from (9) for the Czech automobile worker database of Table 2. Points are
labeled as in Figure 5
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Figure 7: Scatterplot of (distortion, risk) values for 800 swaps of the NCES data.Upper left:
swaps involving “Administrator Experience” highlighted.Upper right: swaps involving “Sex”
highlighted. Bottom left: swaps involving “Race” highlighted.Bottom right: swaps involving
“School Enrollment” highlighted.
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