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Abstract
We present several methods for performing linear regression on the union of distributed

databases that preserve, to varying degrees, confidentiality of those databases. Such methods
can be used by federal or state statistical agencies to share information from their individual
databases, or to make such information available to others.Secure data integration, which
provides the lowest level of protection, actually integrates the databases, but in a manner that
no database owner can determine the origin of any records other than its own. Regression,
associated diagnostics or any other analysis then can be performed on the integrated data.
Secure multi-party computationbased on shared local statistics effects computations necessary
to compute least squares estimators of regression coefficients and error variances by means
of analogous local computations that are combined additively using the secure summation
protocol. We also provide two approaches to model diagnostics in this setting, one using
shared residual statistics and the other using secure integration of synthetic residuals.
Key words: Data confidentiality, data integration, secure multi-party computation, regression,
diagnostics

1 Introduction

In numerous contexts immense utility can arise from statistical analyses that “integrate” multiple,
distributed databases. For example, a regression analysis on integrated state databases of student
performance would be more informative and powerful than, or at least complementary to, individ-
ual analyses. The results of such analyses may be either used by the database owners themselves
or disseminated more widely.
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At the same time, concerns about data confidentiality pose strong legal, regulatory or even
physical barriers to literally integrating the databases. These concerns are present even if the
database “owners” are cooperating: they wish to perform the analysis, and none of them is specif-
ically interested in breaking the confidentiality of any of the others’ data.

In this paper, we show how to perform secure linear regression for horizontally partitioned data:
the participating agencies have databases that contain the same numerical attributes for disjoint sets
of data subjects. The student performance example in the initial paragraph fits this model. We term
the participants “agencies” even though in some settings they might be corporations or other data
holders. The problem of vertically partitioned data, in which agencies hold different attributes for
the same set of data subjects—for example, one has employment information, another health data,
and a third information about education—is treated in Du et al. (2004) and Sanil et al. (2004a,b).

We present a range of solutions that respond to differing levels of concern about data confiden-
tiality, which are laid out pictorially in Figure 1. One approach, displayed in the left-hand branch
in the tree in Figure 1, issecure data integration:the agencies can build an integrated database,
which they share, in such a manner that no agency can determine the source of any data records
other than its own. This approach protects only data sources, not data values. In the student perfor-
mance example, this would preclude analyses of state effects, because no record would be linked
to a particular state. Two algorithms for secure data integration are presented in §3. Once the inte-
grated database is built, each agency can perform regression analyses and associated diagnostics,
including those described in §5.

The right-hand branch of the tree in Figure 1 represents strategies with stronger confidentiality
protection. These strategies are based on use of the secure summation protocol (§2.4), a form ofse-
cure multi-party computation, to compute the familiar least squares estimatorsβ̂ = (XT X)−1XT y.
Each agency calculates components of this computation on its own database, and the results are
combined in a secure manner (§4) to produce the objects needed to computeβ̂. However, in this
case assessing the fit of the model, at least beyond the information contained inR2, which can
be computed using secure summation, is more challenging. Other global statistics associated with
the regression that can be calculated locally, some of which are useful for diagnostic purposes, are
described in §5.1. Alternative strategies, including use of the secure data integration protocol to
build an integrated database of synthetic residuals, are described in §5.2.

A concluding discussion appears in §6.

2 Background

Here we present background on data confidentiality and secure computation from both statistics
(§2.1) and computer science (§2.2–2.4).

2.1 Data Confidentiality

From a statistical perspective, the problem we treat lies in the general area known as data confi-
dentiality or, in the context of official statistics, as statistical disclosure limitation (Duncan et al.,
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Figure 1: Conceptual view of the secure regression problem for multiple, distributed databases.
The left-hand branch—secure data integration—is described in §3 and §4.1. The right-hand
branch, which is more secure because it shares only locally computed statistics, is described in
§4.2, with associated issues of diagnostics discussed in §5.

1993; Willenborg and de Waal, 1996, 2001). The fundamental problem is that federal statistical
agencies such as the Bureau of Labor Statistics (BLS), Census Bureau (Census), National Agri-
cultural Statistics Service (NASS), National Center for Education Statistics (NCES) and National
Center for Health Statistics (NCHS) are charged with the inherently conflicting missions of both
protecting the confidentiality of their data subjects and disseminating—to Congress, other federal
agencies, the public and researchers—useful information derived from their data. Similar concerns
arise in social science and health research, including clinical trials and medical records, the latter
sharpened by the recent Health Insurance Privacy and Accountability Act (HIPAA).

In broad terms, two kinds of disclosures are possible from a database of records containing
attributes of individuals or establishments. An “identity disclosure” occurs when a record in the
database can be associated with the individual or establishment that it describes. An “attribute
disclosure” occurs, even without identity disclosure, if the value of a sensitive attribute, such as
income or health status, is disclosed.

The first step in preventing identity disclosures is to remove explicit identifiers such as name
and address or social security number, as well as implicit identifiers, such as “Occupation = Mayor
of New York.” Often, however, this is not enough. Technology poses new threats, through the
proliferation of databases and software to do record linkage across databases. Record linkage
produces identity disclosures by matching a record in the database to a record in another database
containing some of the same attributes as well as identifiers. In one well-known example, date of
birth, 5-digit ZIP code of residence and gender alone produced identity disclosures from a medical
records database by linkage to public voter registration data (Sweeney, 1997). Identity disclosure
can also occur by means of rare or extreme attribute values, such as very high incomes.

Aggregation—geographical (Karr et al., 2001; Lee et al., 2001) or otherwise—is a principal
strategy to reduce identity disclosures. The Census Bureau does not release data at aggregations
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less than 100,000. Another istop-coding:to prevent disclosing identities by means of high income,
all incomes exceeding $10,000,000 could be lumped into a single category.

Attribute disclosure is often inferential in nature, and may not be entirely certain. For exam-
ple, AIDS status, a most sensitive attribute, can be inferred with high certainty from prescription
records, but with less certainty from physician identity if some physicians are known to specialize
in treating AIDS. Dominance can lead to attribute disclosure. The University of North Carolina at
Chapel Hill is the dominant employer in Orange County, NC, so that the rate of workplace injuries
for the county is, in effect, that for UNC.

There is a wealth of techniques (Doyle et al., 2001; Federal Committee on Statistical Methodol-
ogy, 1994; Journal of Official Statistics, 1998; Willenborg and de Waal, 1996, 2001) for “prevent-
ing” disclosure, which preserve low-dimensional statistical characteristics of the data, but distort
disclosure-inducing high-dimensional characteristics.Cell suppressionis the outright refusal to re-
lease risky entries in tabular data.Data swappinginterchanges the values of one or more attributes,
such as geography, between different data records.Jittering changes the values of attributes such
as income, by adding random noise. Even entirely synthetic databases may be created, which pre-
serve some characteristics of the original data, but whose records simply do not correspond to real
individuals or establishments (Duncan and Keller–McNulty, 2001; Reiter, 2003a; Raghunathan
et al., 2003). Analysis servers (Gomatam et al., 2004), which disseminate analyses of data rather
than data themselves, are another alternative.

With support from the Digital Government program at the National Science Foundation (NSF)
and multiple federal statistical agencies, the National Institute of Statistical Sciences (NISS) is
conducting a large-scale research program on data confidentiality, as well as associated issues of
data integration and data quality (National Institute of Statistical Sciences, 2003, 2004). Much of
this research focuses on explicit disclosure risk–data utility formulations for statistical disclosure
limitation problems (Duncan et al., 2001; Duncan and Stokes, 2004; Gomatam et al., 2003; Dobra
et al., 2002, 2003).

2.2 Secure Multi-Party Computation

Secure multi-party computation (Goldreich et al., 1987; Goldwasser, 1997; Yao, 1982) is con-
cerned in general with performing computations in which multiple parties hold “pieces” of the
computation. They wish to obtain the final result but at the same time disclose as little information
as possible. To illustrate, a generic two-party secure multi-party computation (SMPC) problem is
to computef (A, B) when Party 1 holdsA, Party 2 holdsB and f is known to both. Disclosing
“as little information as possible” means that Party 1 learns nothing aboutB other than what can
be extracted fromA and f (A, B), and symmetrically for Party 2. In practice, absolute security
may not be possible, so some techniques for SMPC rely on heuristics (Du and Zhan, 2002) or
randomization. Secure summation (§2.4) is an example of the latter.

Various assumptions are possible about the participating parties, for example, whether they
use “correct” values in the computations, follow computational protocols or collude against one
another. The setting in this paper is that of agencies wishing both to cooperate and to preserve the
privacy of their individual databases. While each agency can “subtract” its own contribution from
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integrated computations, it should not be able to distinguish the other agencies’ contributions.
Thus, for example, if data are pooled, an agency can recognize which data are not its own, but
should not be able to determine which other agency provided them. In addition, we assume that
the agencies are “semi-honest:” each follows the agreed-on computational protocols properly, but
may retain the results of intermediate computations.

2.3 Privacy-Preserving Data Mining

In the computer science literature, statistical analyses performed on distributed databases that at-
tempt to preserve privacy are referred to asprivacy-preserving data mining. These techniques are
directed principally at preserving the privacy of the database holders, but also can protect database
subjects from identity or attribute disclosure (§2.1).

General approaches include building blocks from SMPC (Lindell and Pinkas, 2000) and adding
noise to data—jittering in §2.1 (Agrawal and Srikant, 2000). Other problems that have been treated
include association rules (Vaidya and Clifton, 2002; Evfimievski et al., 2002; Kantarcioglu and
Clifton, 2002), classification (Du et al., 2004), clustering (Vaidya and Clifton, 2003; Lin et al.,
2004), and linear regression for vertically partitioned data (Du et al., 2004; Sanil et al., 2004b).
Many of these techniques focus on computation of the “final result” to the exclusion of supporting
information seen by statisticians as essential. For example, least squares regression estimators may
be calculated, but not standard errors orR2, let alone more sophisticated items such as diagnostics.

2.4 Secure Summation

ConsiderK > 2 cooperating, semi-honest agencies, such that Agencyj has a valuev j , and
suppose that the agencies wish to calculatev =

∑K
j =1 v j in such a manner that each Agency

j can learn only the minimum possible about the other agencies’ values, namely, the value of
v(− j ) =

∑
` 6= j v`. The secure summation protocol (Benaloh, 1987), which is shown pictorially in

Figure 2, can be used to effect this computation.
Choosem to be a very large number, say 2100, which is known to all the agencies. Assume that

v is known to lie in the range [0, m). One agency is designated the master agency and numbered 1.
The remaining agencies are numbered 2, . . . , K . Agency 1 generates a random numberR, chosen
uniformly from [0, m). Choosingm to be a power of 2 facilitates this randomization: ifm = 2P,
the P bits of R are randomized independently. Agency 1 addsR to its local valuev1, and sends
the sums1 = (R + v1) modm to Agency 2. Since the valueR is chosen uniformly from [0, m),
Agency 2 learns nothing about the actual value ofv1.

For the remaining agenciesj = 2, . . . , k − 1, the algorithm is as follows. Agencyj receives

sj −1 = (R +

j −1∑
s=1

vs) modm,

from which it can learn nothing about the actual values ofv1, . . . , v j −1. Agency j then computes
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Figure 2: Values computed at each agency during secure computation of a sum initiated by Agency
1. Herev1 = 29,v2 = 5, v3 = 152 andv = 187. All arithmetic is modulom = 1024.

and passes on to Agencyj + 1

sj = (sj −1 + v j ) modm = (R +

j∑
s=1

vs) modm.

Finally, agencyK addsvK to sK−1(mod m), and sends the resultsK to agency 1. Agency 1,
which knowsR, then calculatesv by subtraction:

v = (sK − R) modm

and shares this value with the other agencies.
For cooperating, semi-honest agencies, the use of arithmetic modm may be superfluous. It

does, however, provide one layer of additional protection: without it, a large value ofs2 would be
informative to Agency 2 about the value ofR.

This method for secure summation faces an obvious problem if, contrary to our assumption,
some agencies collude. For example, agenciesj − 1 and j + 1 can together compare the values
they send and receive to determine the exact value forv j . Secure summation can be extended
to work for an honest majority. Each agency dividesv j into shares. The sum for each share is
computed individually. However, the path used is altered for each share so that no agency has the
same neighbor twice. To computev j , the neighbors of agencyj from every iteration would have
to collude.
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3 Secure Data Integration

The problem treated here is that ofK > 2 agencies wishing to share the integrated data among
themselves without revealing the origin of any record, and without use of mechanisms such as a
trusted third party. The following algorithm describes such a procedure.

Algorithm 1 passes a continually growing integrated database among the agencies in a known
round-robin order. In this sense it is similar to secure summation. To protect the sources of indi-
vidual records, agencies are allowed, and in one case required, to insert both real and “synthetic”
records. The synthetic data may be produced by procedures similar to those described in §5.2 for
construction of synthetic residuals, by drawing from predictive distributions fit to the data, or by
some other means. Once all real data have been included in the integrated database, each agency
recognizes and removes its synthetic data, leaving the real integrated database.

Algorithm 1 Initial algorithm for secure data integration.
Order the agencies by number 1 throughK .

Round 1:Agency 1 initiates the integrated database by addingonly synthetic data, and every
other agency puts in a mixture of at least 5% of its real data and—optionally—some synthetic
data, and then randomly permutes the current set of records. The value of 5% is arbitrary, and
serves to ensure that the process terminates in at most 21 rounds. Permutation thwarts attempts
to identify the source of records from their position in the database.

while More than two agencies have data leftdo
Intermediate Rounds:Each agency puts in at least 5% of its real data or all real data that it
has left, and then randomly permutes the current set of records.

end while

Final Round:the Agency 1, if it has data left, adds them, and removes its synthetic records. In
turn, each other agency 2, . . . , K removes its synthetic data, which it can recognize.

Sharing:The integrated data are shared after all synthetic data are removed.

The necessity for synthetic data in Algorithm 1 is clear: without it, what Agency 2 receives
from Agency 1 in Round 1 would be real data with a known source. Thus, the role of synthetic
data in Algorithm 1 is analogous to that of the random numberR in secure summation.

However, even synthetic data do not protect the agencies completely. In Round 1, Agency 3
receives a combination of synthetic data from Agency 1 and a mixture of synthetic and real data
from Agency 2. By retaining this intermediate version of the integrated database, which semi-
honesty allows, and comparing it with the final version, which contains only real data, Agency 2
can determine which records are synthetic—they are missing in the final version—and thus identify
Agency 2 as the source of some real records. The problem propagates, but with decreasing severity.
For example, what Agency 4 receives in Round 1 is a mixture of synthetic data from Agency 1,
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synthetic and real data from Agency 2, and synthetic and real data from Agency 3. Byex post facto
removal of the synthesized data, Agency 4 is left with real data that it knows to have come from
either Agency 2 or Agency 3, although it does not know which.

Algorithm 1 is also vulnerable to poorly synthesized data. For example, if the synthetic data
produced by Agencies 1 and 2 are readily detectable, then even without retaining intermediate
versions of the database, Agency 3 can identify the real data received from Agency 2 in Round 1.
At the same time, and almost paradoxically, Algorithm 1 is also vulnerable to synthetic data that
are too good. If Agency 1 is concerned about protecting predictor–response relationships in its
own database and the synthetic data that it provides to Agency 2 in Round 1 are “too good,” then
it reveals such relationships to Agency 2.

There is no guaranteed way to eliminate the risks associated with retained intermediate com-
putations in Algorithm 1. One strategy is for the agencies to agree not to retain the results of
intermediate computations—in this case, intermediate versions of the integrated database. In the
terminology of §2.2, the agencies must be more than semi-honest. In this case, Algorithm 1 is
secure. However, the promise not to retain intermediate versions may not be credible.

Alternatively, the agencies may simply accept the risks, since only a controllably small frac-
tion of the data is compromised. Given the “at least 5% of real data” requirement in Algorithm 1,
Agency 2 would be revealing 5% of its data to Agency 3, Agencies 2 and 3 would reveal collec-
tively 5% of their data to Agency 4, and so on. Reducing 5% to a smaller value would reduce this
risk at the expense of requiring more rounds.

Finally, by randomizing the order in which agencies add data, which we formalize in Algorithm
2 below, not only are the risks reduced but also the need for synthetic data is almost obviated. In
addition to a growing integrated database, Algorithm 2 requires transmission of a binary vector
d = (d1, . . . , dK ), in whichd j = 1 indicates that Agencyj has not yet contributed all of its data
andd j = 0 indicates that it has.

The attractive feature of Algorithm 2 is that because of the randomization of the “next stage
agency,” no agency can be sure which other agencies other than possibly the agency from which it
received the in-progress integrated database has contributed real data to it. The number and order
of previous contributors to the growing integrated database cannot be determined. Nor—it if comes
from the Stage 1 agency—is there even certainty that the database contains real data. Perhaps more
important, to a significant extent Algorithm 2 does not even need synthetic data. The one possible
exception is Stage 1. If only real data were used, an agency that receives data from the Stage 1
agency knows that with probability 1/(k − 1) that it is the Stage 2 agency, and would, even with
this low probability, be able to associate them with the Stage 1 agency, which is presumed to be
known to all agencies. The variant of Algorithm 2 that uses synthetic data at Stage 1 and only real
data thereafter seems completely workable.

By comparison with Algorithm 1, Algorithm 2, while more secure, is also much more complex.
In particular, while the algorithm will terminate in a finite number of stages, there is no finite upper
bound on this number.

Finally, we note that neither Algorithm 1 nor Algorithm 2 provides any confidentiality protec-
tion for data beyond what may have already been imposed by the agencies. For example, records
subject to identity disclosure because of extreme attribute values in the original databases remain
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Algorithm 2 Secure data integration with randomized ordering.
A randomly chosen agency is designated as theStage 1 agency a1.

Stage 1:(1) The Stage 1 agencya1 initializes the integrated database with some—there is no
option—synthetic data and at least one real data record, and permutes the order of the records.
If a1 has exhausted its data, it setsda1 = 0. Then,a1 picks aStage 2 agency a2 randomly from
the set of agenciesj , other than itself, for whichd j = 1, and sends the integrated database and
the vectord to a2.

while More than two agencies have data leftdo

Stages2, . . .: The Stagè agencya` adds at least one real data record and, optionally, as many
synthetic data records as it wishes to the integrated database, and then permutes the order of
the records. If its own data are exhausted, it setsda`

= 0. It then selects a Stage` + 1 agency
a`+1 randomly from the set of agenciesj , other than itself, for whichd j = 1 and sends the
integrated database and the vectord to a`+1.

end while

Last round:Each agency removes its synthetic data.

Sharing:The integrated data are shared after all synthetic data are removed.

so in the integrated database, although the risk may be attenuated. Nor does secure data integra-
tion protect records whose source can be identified from the data attributes alone. For instance, if
income is an attribute and only databasej contains subjects with high incomes, then secure data
integration cannot protect againstj being identified as the source of high income records in the
integrated database.

4 Secure Linear Regression

We assume the usual linear regression model

y = Xβ + ε, (1)

where

X =

 1 x11 . . . x1p−1
...

...
. . .

...

1 xn1 . . . xn p−1

 , y =

 y1
...

yn

 , (2)
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and

β =

 β0
...

βp−1

 , ε =

 ε1
...

εn

 . (3)

Under the condition that
Cov(ε) = σ 2I , (4)

the least squares estimate forβ is of course

β̂ = (XT X)−1XT y. (5)

When the data are horizontally partitioned acrossK agencies, each agencyj has its own share
of data

X j
=


x j

11 . . . x j
1p

...
. . .

...

x j
n j 1

. . . x j
n j p

 , y j
=

 y j
1
...

y j
n j

 . (6)

Heren j denotes the number of data records for agencyj .
In the remainder of this section, we introduce two procedures for secure linear regression. The

first (§4.1), which corresponds to the left-hand branch in the tree in Figure 1, uses the shared data
integration protocol of §3 to construct an integrated database. The second (§4.2), which provides
a higher level of protection, uses secure summation to compute the statistics necessary to calculate
the least squares estimatorsβ̂ in (5) and the corresponding estimator of the varianceσ 2 in (4).

4.1 Secure Regression via Secure Data Integration

When the agencies performing joint linear regression are concerned only with protecting the ori-
gins of their data records, the secure data integration procedure of §3 can be used to construct the
integrated database. After the data from the agencies are integrated and shared, every agency can
perform linear regression, as well as a full set of diagnostics, on the integrated data at its own site.
The choice between Algorithms 1 and 2 to perform the data integration may be dictated by the
extent to which agencies “distrust” one another, or other considerations.

4.2 Secure Regression via Securely Shared Local Statistics

In cases where the values of the data items are sensitive information that should not be disclosed,
secure data integration cannot be used. However, statistics of the integrated database necessary
to perform the regression, in particular to calculate the least squares estimates in (5) and related
quantities, can be calculated locally and combined using secure summation. This approach has the
additional advantage of being resistant to source identification via attribute values, as discussed at
the end of §3. Only data summaries, not data values, are shared.
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Using (6) and altering indices as appropriate, we can rewrite (2) in partitioned form as

X =

 X1

...

XK

 y =

 y1

...

yK

 (7)

and (3) as

β =

 β0
...

βp−1

 ε =

 ε1

...

εK

 . (8)

Note thatβ does not change.
To computeβ̂, it is necessary to computeXT X and XT y. Because of the partitioning in (7),

this can be done locally and the results combined entry-wise using secure summation. Specifically,
as illustrated pictorially withk = 3 in Figure 3,

XT X =

K∑
j =1

(X j )T X j . (9)

Each agencyj can compute its own(X j )T X j , which has dimensionp × p (recall thatp is the
number of data attributes) locally, and the results can be added entry-wise using secure summation
to yield XT X, which then can be shared among all the agencies. Similarly, since

XT y =

K∑
j =1

(X j )T y j ,

XT y can be computed by local computation of the(X j )T y j and secure summation. Finally, each
agency can calculatêβ using (5).

The least squares estimate ofσ 2 in (4) also can be computed securely. Since

S2
=

(y − Xβ̂)T (y − Xβ̂)

n − p
, (10)

andXT X andβ̂ have been computed securely, the only thing left is to computen andyT y, again
using secure summation.

Virtually the same technique can be applied to the generalized linear model model

y = Xβ + ε, (11)

where Cov(ε) = 6, with 6 not a diagonal matrix. The least squares estimate forβ in (11) is

β∗
= (XT6−1X)−1XT6−1y,
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Figure 3: Pictorial representation of the secure regression computation in §4.2. The dimensions of
various matrices are shown.

which can be computed using secure summation, provided that6 is known to all the agencies.
While the secure regression via secure data integration approach in §4.1 makes available to

all agencies a full array of diagnostics, the “secure regression via securely shared local statistics”
approach precludes this. Sharing of actual residuals, even if effected by means of secure data
integration, is equivalent to having used secure regression via secure data integration. In §5, we
describe how to perform diagnostics in the setting of this subsection.

4.3 Example

We illustrate the secure regression protocol using the “Boston housing data” (Harrison and Ru-
binfeld, 1978). There are 506 data cases, representing towns around Boston, which we partitioned
amongK = 3 agencies representing, for example, regional governmental authorities. The database
sizes aren1 = 172,n2 = 182 andn3 = 152. The responsey is median housing value, and three
predictors were selected:X1 = CRIME per capita,X2 = INDUSTRIALIZATION, the proportion
of non-retail business acres, andX3 = DISTANCE, a weighted sum of distances to five Boston
employment centers.

Figure 4 contains the global estimators computed using the method in §4.2, as well as the
estimators for the three agency-specific local regressions. The intercept isβ̂CONST, the coefficient
corresponding to a constant predictorX1. Each agencyj ends up knowing both—but only—the
global coefficients and its own local coefficients. To the extent that these differ, it can infer some
information about the other agencies’ regressions collectively, but not individually. For example,
agency 2 can detect that its regression differs from the global one, but is not able to determine that
agency 1 rather than agency 3 is the primary cause for the difference.
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Regression β̂CONST β̂CRIME β̂IND β̂DIST

Global 35.505 -0.273 -0.730 -1.016

Agency 1 39.362 -8.792 -0.720 -1.462
Agency 2 35.611 2.587 -0.896 -0.849
Agency 3 34.028 -0.241 -0.708 -0.893

Figure 4: Estimated global and agency-specific regression coefficients for the partitioned Boston
housing data. The intercept iŝβCONST.

5 Model Diagnostics

In the absence of model diagnostics, the secure regression via securely shared global statistics
approach of §4.2 loses much of its appeal. This issue is common to all approaches to statistical
disclosure limitation that are based on disseminating analyses rather than data, and especially to
remote servers (Gomatam et al., 2004).

Model diagnostics for linear regression typically involve analysis of the residuals. A common
example is plots of residuals versus the predictor attributes. In this section, we present two strate-
gies. The first (§5.1) is in the spirit of §4.2: diagnostics are shared if they can be computed from
securely shared local statistics. The second (§5.2) uses secure data integration to share synthetic
residuals.

5.1 Shared Residual Statistics

Many statistics are useful in practice for model diagnosis. Secure summation can be used to com-
pute any statistic that is additive with respect to agencies. We illustrate several diagnostic measures.

Obviously, of course,R2 in (12) is the most simple measure of fit. Since

R2
=

∑n
i =1(ŷi − ȳ)2∑n
i =1(yi − ȳ)2

, (12)

whereȳ is the sample mean of the observedy, and since both the numerator and denominator of
(12) are additive over agencies,R2 can be computed through the secure summation of local values.

When the regression assumptions hold, the correlations between the residuals and each predic-
tor variable should be very close to zero. When this is not the case, the model is mis-specified.
Because correlations are simply a ratio of two sums, they can be shared using the secure summation
protocol on the numerator and denominator.

Finally, X-outliers can be examined. Using the diagonal valueshi,i of the hat matrixH =

X(XT X)−1XT , a simple rule of thumb for outlier detection is to look at those observations with
hi,i > 2h̄. Clearly, as in §4.2,H can be computed using partitioning, local computation and secure
summation.
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5.2 Shared Synthetic Residuals

For diagnosing some types of assumption violations, the exact values of the residuals and predictor
attributes are not needed. Instead, relationships among the residuals and predictors are examined
for patterns that suggest model mis-specification. Thus, it may be adequate to share such patterns
without sharing the actual residuals.

To do so, we modify the diagnostics proposed by Reiter (2003b). These were developed for
remote access computer servers, to which users submit requests for output from regression models
but are not allowed direct access to the data (Gomatam et al., 2004). The model diagnostics are
generated in three steps. First, each agency simulates values of its predictors. Second, using the
coefficients from theintegrated regression, each agency simulates residuals associated with these
synthetic predictors in a way that mimics the relationships between its own real-data predictors
and residuals. Finally, the agencies share their synthetic predictors and residuals using secure data
integration (§3). The integrated synthetic predictors and residuals then can be used for diagnostic
purposes. Details for the first two steps are in Reiter (2003b); we outline the process here. Of
course, because these diagnostics are synthetic, they may miss some model inadequacies that can
be revealed using real-data diagnostics.

Values of predictors are simulated so as to avoid purposeful release of exact values of real
data; approaches include nonparametric density estimators, such as kernel density estimators, fit to
the real data. It is convenient computationally to simulate from marginal densities, although this
reduces the utility of the diagnostics. The same synthetic values are used each time the agencies
share diagnostics. For simplicity, we assume each agency produces as many synthetic values of
each predictor as it has genuine values.

Each agency then generates synthetic, standardized residuals. Letx j
t , for t = 1, . . . , p, denote

the j th agency’s values of attributet in its database, and letx js
t denote the synthetic version ofx j

t .
Let u index synthetic values in thex js

t , and letr js
ut be the synthetic, standardized residual for the

integrated regression attached tox js
ut . Eachr js

ut is determined as follows:

r js
ut = b j

ut + v
j
ut + ej

ut. (13)

Theb j
ut placesr js

ut on a curve consistent with the relationship between the real-data residuals,r j ,
and thex j

t . Thev
j
ut moves the synthetic residual off that curve in a way that reflects the variation

in ther j in the region nearx js
ut . Theej

ut is noise added to decrease the risk of disclosing values of
the real-data residuals.

To determineb j
ut for continuous independent variables, each agency fits a smooth curve to the

relationship between theirr j andx j
t using a generalized additive model (Hastie and Tibshirani,

1990). Theb j
ut equals the value of this curve atx js

ut .
To determine thev j

ut, each agency finds the unitI in its data whose value in the real-datax j
t

is closest tox js
ut ; that is, it finds the unitI such thatI = arg mini |x js

ut − x j
i t |. When several units

satisfy the arg-min condition, unitI is obtained by sampling randomly from the qualifying units.
For continuous independent variables, thev

j
ut = r j

I −b j
I t , whereb j

I t is the value atx j
I t on the curve
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obtained from the generalized additive model. Effectively, this randomly selects a standardized
residual from the units whose value of attributet equalsx j

I t .

Eachej
ut is drawn from an independentN(0, τ2), whereτ is specified in cooperation by the

agencies. Different values ofτ can be used for different regressions. However, a singleτ is
used by all agencies for all synthetic residuals from the same regression, so as not to introduce
artificially non-constant variance in the synthetic residuals. Each agency uses a different random
seed to generate the noise, although it uses the same seed for all integrated regressions based on
the same dependent variable. Settingτ = 1 generally should provide reasonable protection for
units fitting close to the regression line, since prediction intervals for dependent variables based on
the synthetic residuals should have the same width as those based on the root mean squared error
of the regression (Reiter, 2003b). Units with larger js

ut may need to be top-coded.

6 Discussion

In this paper we have proposed a framework for secure linear regression in a cooperative environ-
ment. When protection of the source of data records is the primary concern, the various agencies’
databases can be integrated, using secure data integration protocol, and then linear regression can
be performed on the integrated data.

When both the origin and the values of the data records need to be protected, an alternative
technique based on local computation and the secure summation protocol can be applied. This
approach utilizes the additivity of the linear regression model to compute the regression coeffi-
cients. For this latter setting, two sets of secure model diagnosis techniques are proposed in our
framework. The first approach exploits additivity of several statistics used for model diagnosis:
local computation and secure summation are applied to compute these statistics. The second ap-
proach generates synthetic residuals which preserve the relationships among predictors and resid-
uals. These synthetic residuals may examined for patterns that suggest model mis-specifications.

In order to give the participating agencies flexibility, it is important to give them the option of
withdrawing from the computation when their perceived “risk” becomes too great. For instance,
an agency may wish to withdraw if its sample sizen j is too large relative to the global sample
size n =

∑K
i =1 ni . This is the classicalp-rule in the statistical disclosure limitation literature

(Willenborg and de Waal, 2001). As noted in §5.1,n can be computed using secure summation,
and agencies may then “opt out” according to whatever criteria they wish to employ. It is even
possible to allow the opting out to be anonymous, at least if the process does not proceed when any
agency opts out, as opposed to its proceeding without those who opt out.

In this paper the focus is on horizontally partitioned data. Secure linear regression on vertical
partitioned data presents an interesting direction for research, some of which is reported in Du
et al. (2004) and Sanil et al. (2004b,a). Secure cooperative procedures for other statistical analysis
models such as nonlinear regression, nonparametric models are also worth pursuing.
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