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Managers of database security must ensure that data access does not compromise the 

confidentiality afforded data providers, whether individuals or establishments. Recognizing that 

deidentification of data is generally inadequate to protect confidentiality against attack by a data 

snooper, managers of information organizations (IOs)—such as statistical agencies, data archives, 

and trade associations—can implement a variety of disclosure limitation (DL) techniques—such 

as topcoding, noise addition and data swapping—in developing data products. Desirably, the 

resulting restricted data have both high data utility U to data users and low disclosure risk R from 

data snoopers. IOs lack a framework for examining tradeoffs between R and U under a specific 

DL procedure. They also lack systematic ways of comparing the performance of distinct DL 

procedures. To provide this framework and facilitate comparisons, the R-U confidentiality map is 

introduced to trace the joint impact on R and U to changes in the parameters of a DL procedure. 

Implementation of an R-U confidentiality map is illustrated in the case of multivariate noise 

addition. Analysis is provided for two important multivariate estimation problems: a data user 

seeks to estimate linear combinations of means and to estimate regression coefficients. 

Implications for managers are explored. 
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(Database Security; Multivariate Additive Noise; Confidentiality Protection; Disclosure 

Limitation; R-U Confidentiality Map; Topcoding)  

1. The Information Organization’s Inferential Data Security Predicament 

Information organizations (IOs) are organizations that capture, store, integrate and 

disseminate information. Examples are statistical agencies (U.S. Bureau of the Census), data 

archives (National Data Archive for Child Abuse and Neglect at Cornell), trade associations 

(National Association of Manufacturers), credit bureaus (Experian), marketing data firms 

(Nielsen//NetRatings), and health insurance information agencies (Health Insurance Industry 

Benchmarking Association). IOs gather data from entities—individuals, households, and 

establishment—under implicit and explicit pledges to provide appropriate database security in 

giving access to legitimate users of the data (Schlörer 1981). They store these data and integrate 

them with other data. Importantly, they supply researchers and analysts with suitable data 

products. Overall, this can be described as the CSID (Capture Storage Integration Dissemination) 

data process (Duncan 2003). Managers of an IO need to assure inferential security in this CSID 

database system. These managers often are deterred from providing certain useful data products 

to their clients because they cannot ensure the security of a data product to an inference attack by 

a data snooper (Garfinkel, Gopal and Goes 2002). In that case the confidentiality of the data 

would be compromised, and the reputation of the IO as an honest broker damaged. 

Confidentiality protection may be required by law or regulation, as it is for the U.S. Census 

Bureau under Title 13 of the U.S. Code, or for health care organizations under the HIPAA 

Privacy Rule. Confidentiality may also be pledged—explicitly or implicitly—to a data provider, 

as it is for most surveys. A data product for which confidentiality could reasonably be 

compromised by data snooper attack has high disclosure risk.  

Traditionally, the data products at most risk have been highly disaggregated tables with 

multiple attributes and fine resolution on each attribute scale. The cell entries would represent 

characteristics of just a few entities. For example, suppose Forrester Research contemplated 
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releasing to clients a two-way table of total corporate R & D expenditures, cross-classified so 

rows would give geography to the county level and columns would give product to a fairly 

detailed level. The cell in this table corresponding to (“King County, WA”, “ERP Software”) 

would likely include several firms but be dominated by Microsoft’s expenditures, and hence 

provide sensitive information to competitors about their strategic commitment to ERP software. 

We would call this an attribute disclosure, as information has been disclosed about an attribute of 

an entity (Duncan and Lambert 1989). 

Increasingly, analysts want the even richer data products represented by microdata, which 

involve compilations of individual records. For example, the BlueCross BlueShield Association 

might like access to microdata on healthcare utilization of individual HMO subscribers together 

with their demographic attributes; the HMO through its corporate structure, co-payment 

requirements, etc.; and subscriber’s employer through its nature of business, size, and health 

insurance alternatives made available to employees. Because of the obvious richness of such a 

record, deidentification—stripping apparent identifiers such as name, SSN, email address, etc—

would not prevent reidentification through linkage with a variety of external databases that 

included identifiers, notably marketing databases. With such reidentification, the data snooper 

would have successfully attacked the database and there would have been an inferential 

disclosure that compromised confidentiality. Specifically, we call this an identity disclosure 

(Duncan and Lambert 1989), since a specific identity is linked to a record in the purportedly 

protected database.  

With the popularity of the web, data users want IOs to provide flexible, online access to 

data resources. To some extent, IOs have been responsive to this demand, as the U. S. Census 

Bureau now provides some access to user-specified tables through American FactFinder. But 

concerns about confidentiality disclosure risk continue to inhibit the growth of this access mode. 

 IOs face what computer scientists call the Inference Problem, which is the deduction of 

confidential data from nonsensitive data objects (Keller-McNulty and Unger 1993). The IO’s 
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predicament is that, with an inappropriate choice of DL procedure or parameter value of a DL 

procedure, the utility of their data product may suffer unduly or disclosure risk may yet remain 

too high.  Present practice by IOs in assessing tradeoffs between disclosure risk and data utility is 

largely heuristic, and so would benefit from an appropriate theoretical framework. Indeed, 

Recommendation 6.2 of the National Academy of Sciences Panel on Confidentiality and Data 

Access (Duncan, Jabine and de Wolf 1993) urges the development of foundations for the analysis 

of tradeoffs between disclosure risk and data utility  

Here is an example of the concern by an information organization for disclosure 

limitation:  

The Health and Retirement Study, conducted by the University of Michigan under 

funding from the National Institute on Aging, promises, “All answers are treated as 

strictly confidential.”  Record linkage of the survey results with earnings and benefits 

data from the Social Security Administration (SSA) adds much to the data’s utility but 

increases disclosure risk. For a discussion of this concept, see Duncan and Lambert 

(1989), Lambert (1993), and Elliot and Dale (1999). A variety of methods, including 

removing geographic information, rounding, and top-coding, were used to lower risk of 

disclosure (http://micda.psc.isr.umich.edu/enclave/DisclosureReview.pdf) 

In all such examples, the key question is whether the disclosure limitation methods used 

are adequate, but not excessive.  Could less severe distortion or obscuring of the data still keep 

low the risk from data snoopers, while allowing better data utility? What explicitly is the tradeoff 

between disclosure risk and data utility? Would a different DL method lower disclosure risk 

while maintaining data utility?  

In this article, we explain in Section 2 how the R-U confidentiality map helps managers 

determine the form in which access can be provided to their data. We show in Section 3 that the 

R-U map can be computed in useful microdata cases, illustrated by the DL technique of 

multivariate noise addition. We assume throughout that the snooper strategy is identification of 
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the target record index through matching to an external file. In Section 4, we derive expressions 

for R and U for three multivariate estimation problems: (1) linear combination of means of 

masked variables, (2) regression coefficients for a simple linear regression of an unmasked 

variable on a masked one; and (3) regression coefficients for simple linear regression of a masked 

variable on an unmasked one. In Section 5, we show how these analytic expressions can be used 

for making managerial decisions about how to protect the IO’s data. In Section 6 we draw 

conclusions, specify some of the advantages of the R-U confidentiality map for managerial 

practice, and identify promising extensions. 

 

 

2. A Managerial Analysis: The R-U Confidentiality Map 

An R-U confidentiality map provides a useful analytical framework for managers of IOs to assess 

tradeoffs between the benefits of providing data products and the risks involved in doing so. An 

IO brokers information from data providers to data users. The data users are legitimate clients of 

the IO; they follow the rules and pose no harm to the promises the IO has made to data providers. 

A data snooper, on the other hand, does seek information about individual data providers that 

could compromise those promises. The manager’s job is to develop and maintain policies to 

ensure that valuable data flows to the clients while stymieing any efforts by the data snooper to 

compromise the confidentiality of the database. As with most security problems there are 

tradeoffs in trying to achieve these two goals. We can protect something valuable by locking it 

away, but then it has no use. We can make it freely available for use, but then it is vulnerable. A 

decision-theoretic framework for modeling a data snooper’s behavior is given by Duncan and 

Lambert (1986). A comprehensive framework for the IO manager’s problem is given by Trottini 

(2001, 2003). With the R-U confidentiality map, the IO manager has an analytic tool for 

systematically examining tradeoffs between value to a client, data utility, and vulnerability to a 

data snooper, disclosure risk. A beginning on this task in the form of a very basic R-U 
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confidentiality map is presented in Duncan and Fienberg (1999) in the context of tabular data. A 

further development, again in the context of tabular data, is given in Duncan et al (2001). An 

application in the healthcare context is provided by Boyens, Krishnan and Padman (2004). 

A measure of statistical disclosure risk, R, is a numerical assessment of the risk of unintended 

disclosures to a data snooper from dissemination of the data product. A measure of data utility, U, 

is a numerical assessment of the usefulness of the released data to legitimate users. When this 

utility U is based on the discrepancy between the masked data and the original data, it is called a 

distortion measure (Gomatam and Karr 2003).  

An IO can lower the disclosure risk of a data product by applying a disclosure limitation (DL) 

procedure to mask the data (Agrawal and Aggarwal 2001; Duncan 2002; Keller-McNulty and 

Unger 1993; Muralidhar, Batrah and Kirs 1995; Muralidhar, Parsa and Sarathy 1999; Muralidhar 

and Sarathy 1999; Tendick and Matloff 1994). Disclosure limitation involves stochastic or 

deterministic transformations of the original data or the generation of synthetic data using a 

model constructed on the basis of the original data (Raghunathan, Reiter and Rubin 2003). DL 

transformations are designed to hamper a data snooper in reidentifying a record or learning 

sensitive information about a particular individual or enterprise. For a general exploration of 

confidentiality and data access issues, see Duncan, Jabine and de Wolf (1993). The literature in 

disclosure limitation includes Adam and Wortman (1989), Duncan and Pearson (1991), Fienberg 

(1994), Gopal, Goes, Garfinkel (2002), Jabine (1993), Kooiman, Nobel and Willenborg (1999), 

Marsh et al (1991), Mackie and Bradburn (2000), and Willenborg and de Waal (1996). Because 

this masking, while intended to lower disclosure risk, will typically also lower data utility, it is 

crucial that IOs assess the tradeoff.   

The R-U confidentiality map traces the joint impact on R and U of changes in parameter 

values of the DL procedure, thereby enabling comparison of DL procedures and tradeoffs 

between disclosure risk and data utility. In the next section, we illustrate how an R-U 
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confidentiality map can be constructed for an important class of DL procedures—multivariate 

additive noise. 

 

3.  Constructing an R-U Confidentiality Map: Multivariate Additive Noise 

In this section, we outline how to construct and use R-U confidentiality maps for a 

particular disclosure limitation method—multivariate additive noise. Additive noise has been 

proposed and examined as a disclosure limitation device by several authors. These include, in the 

univariate case, Brand (2002), Spruill (1983), Paass (1988), and Duncan and Mukherjee (2000), 

and in the multivariate case, Sullivan and Fuller (1989). We follow an implementation discussed 

by Kim (1986), and explored by Kim and Winkler (1995). It has been implemented by the U.S. 

Census Bureau (Moore 1996). As noted in Zayatz, Moore and Evans (1996), “To employ it 

effectively, the user must exhibit some expertise in the setting of various parameters.” We 

demonstrate how the R-U confidentiality map provides an effective decision aid for this task. 

Our structure and notation is as follows: The original data is = [X ] = [ , , ]ijn p×
′1 nX  X X…  

where . The first p),(~ ΣµXi
iid

1 variables in the database are deemed sensitive and the remaining 

p2 variables are deemed non-sensitive, with p = p1 + p2. The covariance matrix  is partitioned 

according to the sensitivity of the fields, as 

Σ

.⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211
ΣΣ
ΣΣ

Σ  

Sensitive variables are masked by additive noise, independent of , that has the same correlation 

structure as the original data. That is, writing the data after masking as Y, we have  

X

εXY +=      (3.1) 
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where  with  and a )ε,ε(ε 21 ′′=′ ),(~ 2

11
111 Σ0ε λ

×p
2ε 12 ×p  vector of 0’s.  The DL parameter 

2λ  adjusts the extent of masking. The advantage of this approach over addition of independent 

noise to each sensitive variable is that the correlation structure among the 1p  masked sensitive 

variables is the same as that of the original sensitive variables. The correlation structure among 

the 2p  unmasked non-sensitive variables is, of course, also unchanged. The correlation between 

a masked sensitive variable and an unmasked non-sensitive variable will be attenuated by a factor 

of 
2

1 .
1 λ+

 

Data users are interested in statistical inference about parameters of the distribution of X. 

To be specific in our discussion, we consider a prototypical data user interested in estimating 

some parameter θ of the distribution of X who uses the same estimator of θ as if he had access to 

X, but will actually compute from the released data Y.  We denote the estimator that would be 

computed from the unmasked data as  and the estimator the data user computes from the 

masked data as .  For this illustration, we take the data utility U to be the reciprocal of the data 

user's mean squared error; that is,  

xθ̂

yθ̂

12 ])ˆ([ −−= θθ yEU  .     (3.2) 

 In contrast to the data user’s statistical interest in θ, the data snooper has a confidentiality-

compromising interest in the value τ of one of the sensitive variables for an individual entity.  The 

snooper predicts that value from the released data. This prediction is denoted byτ̂ .  We assume 

that the data snooper uses record linkage to match the released database to an outside source of 

data using some unmasked key variables, and then takes τ̂  to be the value of the sensitive 

variable in the matching record for the targeted individual.  If the sensitive variable has been 
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masked, τ̂ may differ from τ, even if the match is accurate.  We take the disclosure risk R to be 

the reciprocal of the data snooper’s target mean squared error, that is 

12 ])ˆ([ −−= ττER  .    (3.3) 

 In practice, the form of R and U should be tailored to the particular situation at hand. For 

example, if management’s concern was identity disclosure rather than attribute disclosure, risk 

could be defined as the expected proportion of records in the (masked) file correctly identified by 

the data snooper. If the masking process was deterministic (e.g., topcoding, in which all values 

above some threshold are replaced by a single value), then τ̂  will not be random, and R would 

not be defined as the expectation over all possible masked datasets as in (3.3), but instead could 

be defined as .  12 ])ˆ[( −−= ττR

 For any specific data user, parameter θ, and snooper strategy, the disclosure risk R and 

data utility U are functions of the parameter(s) of the disclosure limitation method. In the case of 

noise addition, both are functions of the noise multiple .  The R-U confidentiality map is then 

constructed by plotting the pairs (U, R) for the range of values of  under consideration. 

2λ

2λ

 In Section 4, we derive these functions for several types of parameters θ: (1) linear 

combination of means of masked variables 1µc′=θ ; (2) regression coefficients for a simple 

linear regression of an unmasked variable on a masked one; and (3) regression coefficients for a 

simple linear regression of a masked variable on an unmasked one. We assume throughout that 

the snooper strategy is identification of the target record index through matching to an external 

file. In Section 5, we show how these analytic expressions can be used for making managerial 

decisions about how to protect the IO’s data. 

 

4.  R and U for Multivariate Estimation 
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 As specified in Equations 3.2 and 3.3, respectively, U and R can be written as functions 

of under model (3.1). They will take different forms depending upon what parameters are of 

interest to the data user and what strategies the snooper employs for predicting the target attribute 

value. In this section we examine special cases that are multivariate and of practical importance. 

2λ

 In Case 1 we take the data user’s purpose to be estimation of a linear combination of the 

means of the sensitive variables, so 1µc′=θ . These variables have been masked in the released 

file and the user computes 1Yc′=yθ̂  as an estimator of θ, where 1Y   is the sample mean vector 

of the masked variables. If the database is a simple random sample of size n from the population 

of interest, then  and  1µc′== θθ )ˆ( yE =)ˆ( yVar θ n
))(1( 2 cΣc 11′+λ

.  Then from (3.2) we have 

the data utility as  

))(1( 2 cΣc 11′+
=′

λ
µ

nUc .     (4.1) 

 Next we take the data user’s goal to be estimation of the slope coefficient β  of the simple 

linear regression model  

eXX rr ++=′ βα ,      (4.2) 

 where .  In Case 1 where both the independent and dependent variables in model (4.2) 

are masked using model (3.1), we now demonstrate that estimation of the regression coefficient is 

unaffected.  We then examine Cases 2 and 3 where masking is only on the independent variable or 

dependent variable. 

),0(~ 2
eNe σ

Case 1. We show that the mean and variance of the least squares simple linear regression slope 

coefficient is unchanged when both original independent and dependent variables, ' and r rX X  

are masked with noise having the same covariance structure as 'and r rX X . Beyond model (4.2), 
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we take ),Normal(~ 2
rrrX σµ , so that the vector ),( rr XX ′  has a bivariate normal 

distribution. Specifically, ~),( ′′rr XX   where  )BivNorm( Σµ,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=
′ rr

r
βµαµ

µ
µ and . Now we mask both ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+=

=
=

′

′
22222

2
,

2

errr

rrrr

σσβσβσ

βσσσ
Σ rX  and  

rX ′  as rrr XY ε+=  and rrr XY ′′′ += ε , where  

~),( ′′rr εε  BivNorm     (4.3) ))((0,0 2Σλ,′

and independent of ).,( rr XX ′  Then  ~),( ′′rr YY  . Note that the 

correlation between  

))1(,(BivNorm 2 Σµ λ+

rY  and rY ′  is the same as that between 'and r rX X , and 

that )(1 22222
ere σσβσρ +=− . Now suppose we estimate the regression model (4.2) using 

the masked data. Then the least squares estimator of the regression parameter vector ),( βα=′γ  

is , where  is the usual design matrix for a simple linear 

regression, where  is the vector of masked independent variables and  is the vector of 

masked dependent variables. This estimator is still unbiased, since 

 To calculate the variance, observe that 

 =  

. The second term is 0 since the conditional expectation of does not depend upon Y

r
1 YZZ)Z(γ ′

− ′′=ˆ ]Y[1,Z r=

rY rY ′

.)ˆˆ γE(γ)Y|γEE()γE( r ===

)]Y|γVar[E()]Y|γE[Var(γVar rr ˆˆ)ˆ( += ]1
rr

1 Z)Z)Z(Y|Var(YZZ)ZE[( −
′

− ′′′

)(γVar+ γ̂ r. 

To calculate the first term, note that  , 

yielding .  We are interested in the variance of the slope 

estimator, so we write the (2,2)

I)Y|Var(Y rr
222 )1)(1( r ′′ +−= σλρ I22)1( eσλ+=

1Z)ZE()γVar( −′+= 22 )1(ˆ eσλ

th term of  as 1Z)ZE( −′ [ ]
⎭
⎬
⎫

⎩
⎨
⎧ −

−
∑

12)( rri YYE  
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[ 122)1)(3(
−

+−= ]rn σλ since the random variable in curly brackets has (a multiple of) an inverse 

chi-square distribution with n-1 degrees of freedom. Thus  

.
)3()1)(3(

)1(
)ˆ( 2

2

22

22

r

e

r

e

nn
Var

σ

σ

σλ

σλ
β

−
=

+−

+
=  

This is the same expression for the variance had the estimator used the unmasked data. Inference 

problems occur, however, when only one of the two variables involved in the regression model 

(4.2) is masked. We consider these two situations next. In each case, we again suppose the data 

user computes the usual least squares estimator from the released data in the usual way.    

Case 2. The independent variable rX  is a masked variable and the dependent variable rX ′  is 

not (Case 3 is vice versa.)  Case 2 is well-studied in the measurement error literature. When the 

independent variable is noisy, the estimator of the slope in a simple linear regression is biased 

toward 0, or attenuated. Specifically, assuming the regression model (4.2), the model for the 

masking variable (4.3), and normality of the independent variable Xr, the 

estimator ∑ ∑′ −−−= i i rrirririr YYYYXX 2
2 )(/))((β̂ has mean 

2
2

ˆ( ) (1 )E β β λ= +      (4.4) 

  and variance 

.
)1()3(

)1(
)ˆ( 22

2
1

122

2
2

λσ

σσβ
β λ

+−

+−
= +

r

er

n
Var      (4.5) 

 (See Fuller (1987), Equations (1.1.6) and (1.1.11), respectively.)   From (3.2), (4.4), and (4.5), 

we compute utility to be 

 
1

)1)(3(
2

)1(
ˆ 22

2

22

22

2 3
1

−

+−+ ⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ +

−
=

r

e
nn

U
σλ

σ

λ
λβ

β λ     
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1

2

2
2

)1(2

2 1
3

1
3

1
)1( 2

2
−

+ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

+⎟
⎠
⎞

⎜
⎝
⎛ +

−+
=

R
R

nn
λ

λ
β

λ
λ   (4.6)   

where  

222

2

2

2
2 11

er

e

r

eR
σσβ

σ

σ

σ

+
−=−=

′

.    (4.7) 

Note that the utility is an increasing function of sample size (n) and a decreasing function of  λ2 , 

as we would expect. The shape of the utility curve depends on β only indirectly through R2, a 

measure of the strength of the linear relationship between rX  and rX ′ . 

 Case 3. The masked variable is the dependent rather than the independent variable. Again 

the data user estimates the slope coefficient β in model (4.2), but now uses the estimator 

.)())((ˆ 2
3 ∑∑ ′′ −−−= i rrii rririr XXXXYYβ  

When the error is in the dependent variable, there is no attenuation of the slope estimator, but its 

variance is increased. Under the model described above, the variance of this estimator is  

2

22222
3

)3(

)(
)ˆ(

r

eer

n
Var

σ

σσσβλ
β

−

++
= . 

(See Fuller (1987), Eq. (1.1.11).)  This yields a utility of  

  
1

2

22
2

ˆ
)3(

)1(
3

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−+
=

Rn
RU λββ

,    (4.8) 

where, R2 is defined in (4.7).  Note that this utility, too, is increasing in n, decreasing in λ2, and 

has shape determined by β only through  R2. 

 Now we consider how to calculate disclosure risk R. In order to do so, we must model the 

snooper’s strategy for gaining access to the database information. In this paper, we assume that 

the snooper has gained index knowledge. By this, we mean that the snooper can actually identify 

the record within the database that pertains to his target.  The most likely method that the snooper 
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could use to obtain index knowledge is by matching the released data to identified external data 

on the basis of key variables, usually demographic ones, which are not masked. Such identified 

databases are now readily available. For example, the Republican National Committee has Voter 

Vault and the Democratic National Committee has DataMart, with names, addresses, voting 

histories, income ranges, ages, ethnicities, marital statuses and more on some 168 million 

registered voters in the U.S.  With such record linkage capability, the snooper can take the value 

of his target variable to be that associated with the identified record. We denote the target value 

by X. If this variable has been masked with additive noise, then the disclosure risk from this 

snooper attack can be calculated from (3.3) as   

222
1

)(
1

σλ
=

−
=

YXE
R ,     (4.8) 

where = Var(X). If the snooper’s linking capabilities are less than perfect, then the risk will be 

reduced. So we can consider the expression above to be a conservative assessment of disclosure 

risk.  

2σ

5.  Manager’s use of the R-U Confidentiality Map 

How can a manager use the R-U confidentiality map for making decisions about how to 

release microdata products?  Specifically, suppose that a manager wants to release demographic 

microdata from a survey of teachers. The survey data include salary and household income. Both 

of these income variables are to be masked by multivariate noise addition as described in Section 

3. The manager knows that users will be interested in estimating the mean of each variable, as 

well as the difference in the two. Because the database also contains numerous unmasked 

demographic variables, such as zip code and race, the manager reasonably anticipates that a data 

snooper could learn the identity (i.e., have index knowledge) thus the value of the protected 

variables for some respondents. Suppose that the manager would like to select the amount of 

noise to be added (λ2) so that the snooper’s expected error for the salary variable is at least $5K.  
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This translates into a maximum tolerable risk (from (3.3)) of = ($5000)maxR -1.  Suppose that the 

estimated variance-covariance matrix  for the pair of variables X11Σ 1 = household income and X2 

= salary (in units of a thousand dollars) is  

2 2

2 2

17.5 8.3
8.3 13.3

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

and the survey data contains n = 1000 records. Then the data utility for the parameters of interest 

to the data users are, from (4.1), 
2 2 2

1000
(1 )(13.3)

Uµ λ
=

+
 and 

1 2 2

1000
(1 )(18.6)

Uµ µ λ− =
+ 2 .  The risk 

of disclosure for the salary attribute to a snooper with index knowledge is, from (4.8),  

2 2

1 .
(13.3)

R
λ

=  

Figure 1 shows an R-U confidentiality map that would inform the manager about the appropriate 

magnitude of masking. The left-hand curve shows the trade-off between risk and utility for µ2, the 

mean salary. The right-hand curve shows the trade-off between risk and utility for µ1 – µ2,, the 

mean additional (extra-salary) household income.  The horizontal dashed line is at the maximum 

tolerable risk Rmax as set by the manager. The vertical dashed lines show the utility for µ2 and µ1  

– µ2 if the data were not masked at all.  The manager’s requirement for adequate masking can be 

achieved for λ2 approximately 0.15. Figure 1 shows that the loss in utility for this level of 

disclosure limitation has very little effect on the utility of the data for µ2, but slightly more for µ1 

– µ2.  The value of λ2 could be increased still further before a rapid decrease in utility for µ2 

occurs, but the same is not true for  µ1 – µ2.   
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Figure 1. R-U Confidentiality Map for Salary and Extra-Salary Household Income
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 For our second example, the manager at an organization which provides secondary 

medical data is preparing to release microdata containing variables such as the extent of alcohol 

consumption and dollars spent on psychiatric drugs.  Variables viewed as sensitive are to be 

masked using multivariate noise, but others deemed not to be sensitive will not be masked. The 

manager knows that users of their microdata commonly examine relationships among the 

variables, so would like to investigate the utility for their data users who plan estimation of slope 

coefficients in simple regressions. Multivariate noise addition was chosen as the masking method 

in this case because it has the property that neither bias nor variance of estimated regression 

coefficients are affected when both independent and dependent variables in a simple regression 

are masked. However, if only the independent variable is masked, then user goals may be 

seriously affected by bias.  Typically, the masking procedures details, such as the additive noise 

variance multiplier, λ2, are not released to avoid providing any more information than necessary. 

In this case, however, the manager is considering releasing its value so that sophisticated data 
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users can make attenuation adjustments. The decision will be based upon size of the resulting 

increase in U when λ2 is large enough to protect the identity of those possessing extreme values. 

 The utility for the estimator of the slope coefficient β in model (4.2) is shown in (4.6).  If 

the user knows the value of λ2, however, the bias in  can be eliminated by using the adjusted 

estimator .  The utility for this estimator is 

2β̂

2
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     (5.1) 

from (4.5).  Note that this expression is identical to that for the utility for the adjusted estimator 

when only the dependent variable is masked, shown in (4.8). 

 To examine how much advantage the data user gains from knowing λ2 , the manager 

prepares R-U confidentiality maps comparing  (from (4.6)) and  (from (5.1)).  Figure 2 

shows such a map for a sample of n = 200, two values of R

2β̂U *β̂U

2: 0.3 (solid lines) and 0.5 (dashed 

lines), and for risk calculated from (4.8). Without loss of generality, the values of β  (in (4.6) and 

(5.1)) and σ (in (4.8)) were set to 1, since the comparison is unaffected by their values. The 

lighter (left-most) line in each pair shows , the analysts utility
2β̂U  for ; the darker (right-

most) line shows  the utility for the slope estimator corrected for attenuation. It is clear from 

the figure that the gain in utility from knowledge of λ

2β̂

*β̂U

2 is large for even moderately strong 

relationships. For example, with R2 = .3, data utility would be approximately doubled if λ2 =.15, 

shown as the dotted line on the figure.  As the strength of the relationship increases, the loss in 
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data utility becomes even greater.  Because of this large gain, the manager may decide it will be 

worthwhile to change policies to release of 2.λ  

Figure 2. R-U map to Investigate Value of Data User's Knowledge of λ2
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 6.  Conclusions 

This article develops the R-U confidentiality map as a tool t

information organizations make better decisions about how to use di

methods. They can then better fulfill their dual mandate of providing

maintaining an adequate level of database confidentiality. We showe

for the important DL method of multivariate noise addition and anal

combinations of means and regression coefficients.  

An advantage to the IO of the process of developing an R-U

own data and DL method is that it requires explicit formulations of R

the needs of their communities of respondents (in thinking about R)
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encouraged to monitor more closely, for example, what analyses are most frequently 

implemented on their data, or what estimated parameters are considered to be most important to 

their users, in order to more realistically model data utility. Information of this sort may become 

more easily available by monitoring queries to data websites with built-in analysis tools, as they 

are now becoming available. Information for modeling of risk can come from gathering data 

about perceived risks from disclosure that are of concern to their respondents. A data snooper 

attack could be simulated, say using administrative records (see Paass 1988). 

There are several further avenues for development of the R-U confidentiality map that 

would be useful. First, we find value in developing analytical R-U maps for some more complex 

DL methods, such as data swapping (Dalenius and Reiss 1982) and the generation of synthetic or 

virtual data (Rubin 1993, Abowd and Woodcock 2001). The R-U confidentiality map itself could 

be generalized to address more complex decisions about a DL choice. For example, it might be 

useful to combine R-U maps for those cases where the utility of a variety of different parameter 

estimates must be considered, for example by plotting a weighted average or maximum of a small 

set of R and U values.  Another example of an adaptation of the concept of an R-U confidentiality 

map would be one that allows exploration of the risk and utility tradeoff for a DL procedure 

indexed by two or more parameters, which is suggested by disclosure limitation through 

microaggegation and binning (Domingo-Ferrer and Torra 2001). 

Overall, the R-U confidentiality map provides an appropriate conceptual framework for 

the information management task of protecting database security against snooper attack. It 

identifies the key elements of disclosure risk R and data utility U, provides an analysis of 

tradeoffs between R and U, and allows comparisons of different disclosure limitation (DL) 

methods. 
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