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Abstract: We consider the setting where multiple
parties with different variables and units seek to com-
bine their data to fit regressions but are not willing or
not allowed to share their data values. We present a
general strategy to tackle such problems by treating
them as missing data problems, and we estimate re-
gression coefficients using secure EM algorithms. We
present secure EM algorithms for linear and log-linear
regressions, based on the multivariate normal and
multinomial distributions. The parties compute and
share the sufficient statistics required for the EM al-
gorithms via secure matrix product protocols, which
avoid sharing individual data values.
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1 Introduction

When multiple parties collect data on different but
related variables, they may seek to combine their in-
formation to fit regression models. The parties’ com-
bined data can be described as vertically partitioned
and partially overlapping: not all parties have the
same variables, and some records are common to mul-
tiple parties. Horizontally partitioned data, i.e. all
parties have the same variables but different records,
has been considered by Karr et al. (2004b). Purely
vertically partitioned data, i.e. all parties have the
same units but different variables, has been consid-
ered by Sanil et al. (2004); Karr et al. (2004a). The
vertically partitioned, partially overlapping setting
includes these other two settings as special cases.
The vertically partitioned, partially overlapping
data setting can be conceived as a missing data prob-
lem. That is, conceptually the data from the multiple
parties could be concatenated to form a rectangular
data set with missing values for those records not
common to all parties. If a common model is rea-
sonable for all units, i.e. if they can be considered
exchangeable, regression inferences from this incom-
plete data can be obtained using missing data meth-
ods, for example the EM algorithm or Bayesian pos-

terior simulation.

Standard missing data methods require that the
parties share their data values; however, the parties
may be unwilling, or not allowed legally, to do so be-
cause of concerns over data confidentiality. In this
article, we describe EM algorithms that do not re-
quire the sharing of data values and hence may satisfy
disclosure limitation constraints. These algorithms
assume the data, suitably transformed, can be rea-
sonably described by either a multivariate normal or
multinomial distribution. These assumptions allow
us to capitalize on the fact that, for exponential fam-
ilies, the EM algorithm requires sharing only suffi-
cient statistics, which for the multivariate normal are
sums and inner-products of the observed data values
and for the multinomial model are counts in relevant
tables. These quantities can then be shared using
secure summation and secure inner-product proto-
cols, which allow parties to compute sums and inner-
products without sharing data values.

The remainder of the paper is organized as fol-
lows. Section 2 reviews the EM algorithm for in-
complete, multivariate normal and multinomial data.
Section 3 describes secure EM algorithms for the ver-
tically partitioned, partially overlapping setting for
these data types. Section 4 describes the confiden-
tiality protection and data utility of these algorithms.
Section 5 concludes with a discussion of extensions to
the approach.

2 EM algorithm for incomplete
data

2.1 Multivariate normal data

Let Y be an n x p matrix of n independent and identi-
cally distributed draws from a p-variate normal distri-
bution with mean vector p and covariance matrix .
Following the notation of Little and Rubin (2002), we
write Y = (Yobs, Yinis), where Y, represents all ob-
served values and Y;,;s represents all missing values.
We further write Yops = (yobs,la Yobs,25 -« - 7yobs,n)7
where yops,; represents the variables observed for unit
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i, fori =1,...,n. It is assumed the data are missing
at random (Rubin, 1976).

The coefficients and standard errors of any re-
gression involving Y can be obtained from functions
of the maximum likelihood estimates (MLEs) of u
and X, given Y,s. Unfortunately, the MLE equa-
tions for p and ¥ do not have closed form solutions
when the data are incomplete. Instead the MLEs are
found using iterative algorithms, such as the Newton-
Raphson algorithm or the EM algorithm (Dempster
et al., 1977). The EM algorithm has desirable prop-
erties: it is relatively simple to code and debug; it is
guaranteed to converge to a mode in the likelihood
function of u and X, given Y,ps; and, unlike Newton-
Raphson algorithms, it does not require inverting ma-
trices of second derivatives (Schafer, 2000; Little and
Rubin, 2002). Convergence of the EM algorithm is
linear in the amount of missing information.

Let u® and ©® be the parameter estimates at it-
eration ¢t. Reasonable starting values for (") and 2(1)
are the sample moments for records with all variables
observed. Generally, it is wise to run EM multiple
times using different starting values. This explores
the likelihood function for multiple modes. The al-
gorithm is judged to converge when the changes in
parameter values from iteration (t) to iteration (t+1)
do not exceed small tolerance values.

The EM algorithm cycles between two steps, the
E-step and the M-step. The E-step of the algorithm
involves calculating the following expectations:

E(Z Yii [ Yobs, 0, 50, 5 =1,...,p,
i=1

E(Z Yiiyin[Yors, 0,20, Gk =1,...,p

=1

2)

For any j, the expectation in (1) can be written as
S yf;), where

vy = (3)
(4)

) %®). To calculate 7;;, we

yi; when y;; observed
= g;; when y;; missing

and yU = E(y7,_7|Y;)b57

require the following notation. Let u§t) be the ele-

(®

ment of u(*) for variable j, and let p y; be the vector

of elements of u for all variables in yops,;. Let Egtgl

be the elements of () corresponding to the covari-
ances between variable j and all variables in Yops ;-

Let Eg;Bi be the elements of X(*) corresponding to
the covariance matrix of all variables in yps ;. Then,
the g;; is obtained from

Gij = 18+ SV (09 ) T Wobssi — 1. (5)

which is the predicted value in the regression of y;;
on Yyg;.
For any j, k, the expectation in (2) can be written

as
(t) (t)

Zyz ) z( ]kz’ (6)

where C(Q = 0 when y;; or y;; is observed, and

§k1 Cov(Yij, Yik|Yobs, 1P, ) when y;; and yix

are missing. To calculate the covariance in (6), we

(®)

need the following notation. Let X ik correspond to

the covariance submatrix of ©(*) for variables j and
k. Let Eg? 1; be the submatrix of £(*) corresponding
to the covariances between (y;;, yix) and the variables
in yobs,;- The covariance in (6) is the off-diagonal el-
ement in the 2 x 2 matrix:

lz(t)

(t)
)y jk,Bi*

t t
5% = 25 (i)

ik

(7)

After obtaining the E-steps for all variables &, the
algorithm proceeds to the M-step. The M-step in-
volves maximizing the likelihood after completing the
data with the expectations from the E-step, which
means finding updated iterates p(*t1) and 2+ ag
follows for each j, k:

M;tJrl) = (1/n)zy§;) (8)
=1

oW = () Y - @ - )
=1

3o ©)

=1

Estimates of the regression coeflicients and resid-
ual variance involving any subset of Y can be ob-
tained from the relevant entries in the MLEs of ;1 and
Y. The result in (5) provides the relevant intercept
and slope coefficients, and the result in (9) provides
the relevant residual variance. Standard errors for
the regression coefficients can be approximated using
the approach of Beale and Little (1975) and Little
(1979). Or, they can be determined using the sup-
plemented EM approach of (Meng and Rubin, 1991).
Both approaches are described in Little and Rubin
(2002, p. 240).

2.2 Multinomial data

Let Y = (Y3,...,Y,) be an n X p matrix of categori-
cal data, where each Y; has d; categories. As before,



let Y = (Yops, Yimis). We assume the agencies seek
to estimate the parameters of a saturated log-linear
model. This corresponds to estimating cell probabil-
ities in the full contingency table with D = H§:1 d;
cells, some of which may be structural zeros.

For any cell ¢ in the full table, let x. be the to-
tal number of sampled units in that cell, and let 6,
be the probability of sampling a unit belonging to
cell e. If Y = Y., the table has a multinomial
distribution with index n = > z. and parameter
6 = (01,02,...,0p). The MLE of # for this table is
the cell percentages, and the z. are sufficient statis-
tics for . When Y # Y, it is not possible to com-
pute the z. directly, since we observe lower dimen-
sional tables of marginal counts. These sub-tables
are used in the EM algorithm to find the MLE of 6.

Each observation can be classified into some miss-
ing data pattern, which we index by superscript
m=1,...,M. Let ag" =z} .+ x5, . be the count
in cell ¢ for those units with missing data pattern
m, where 7} . is the observed contribution to that
count and x%;s,c is the unobserved contribution to
that count (due to missing data). Let z* be the
count of units whose pattern of missing data m qual-
ifies them to be potentially in cell c.

Let gm(®) =3~ 09 where the summation is over
all cells ¢ that the units with missing data pattern
m are qualified to belong to. The E-step of the EM
algorithm for any cell ¢ is then

M
E(@e|Yobs, 80) = 3 E(@|Yops, 69)
m=1

M
=D alh.+ 200 /5. (10)
m=1

Once the E-steps are completed for all cells ¢, ) is
updated with a new value 8¢t1) given by

00D = B(2.|Yops,00) /0 (11)
for all ¢ € C. The algorithm is iterated until conver-
gence of 0 to a mode.

3 Secure EM algorithms

Regression with vertically partitioned, partially over-
lapping data is essentially a missing data problem. In
this section, we describe how secure matrix product
protocols can be used to perform secure EM.

We make several simplifying assumptions. First,
we assume that the parties share the unique identi-
fiers of the units in their data sets. This is needed to
allow parties to identify the units that are common

to multiple parties’ data sets. Second, we assume
that matching on these unique identifiers can be done
without errors. Third, we assume that each party has
distinct variables except for the unique identifiers, i.e.
there are no overlapping variables. We describe how
to relax some of these assumptions in Section 4.
Our strategy for performing secure EM follows
three steps. First, the parties must cooperatively
group units by patterns of missing data and share
these groupings. Second, the parties securely share
the observed-data sufficient statistics needed for the
E-steps using a secure inner-product protocol (Karr
et al., 2004a). Third, each party independently runs
EM based on the shared sufficient statistics. Only the
sufficient statistics are shared, not the actual data
values. Parties pass around information only once,
i.e. the initial sharing of the summary statistics. We
now discuss these steps in more detail for the multi-
variate normal model and the multinomial model.

3.1 Multivariate normal data

When the data are multivariate normal, the parties
may want to run the EM algorithm of Section 2.1
to determine inferences for a particular regression.
However, restrictions on data sharing would make it

impossible for any party to compute the yz(;) for miss-
ing y;;. A version of EM is needed that gets around
this difficulty.

In the first step, the parties group units by pat-
terns of incomplete data, which is possible since the
parties share unique identifiers. For i = 1,...,n, let
Ymis,i represent the variables missing for unit ¢, and
let Ys; be the data for all units with the same pat-
tern of missing values as ymis,;. All parties know the
records’ missing data patterns, although parties only
know the values of the ¥y, for their own data. Let
M be the number of patterns of missing data.

In the second step, the parties calculate and share
two tables of summary statistics that are used in the
EM. The first table has dimension M x p, with M
rows corresponding to the missing data patterns and
p columns corresponding to the variables in the data
set. The entry in the table for row m and column j is
the sum of the observed y;; for those units with the
missing data pattern of row m. Because we assume
no overlapping variables, each sum is computed by
only one party.

The second table has dimension M x p(p +1)/2,
with M rows corresponding to the missing data pat-
terns and p(p + 1)/2 columns corresponding to the
inner-products of all p variables in the data set, in-
cluding the Y, /; ¥7;- The entry in the table for row
m and the column associated with variables (j, k) is



the > vy for those units with the missing data
pattern of row m. Because we assume no overlap-
ping variables, each entry in the table is derived
from a single inner-product between two parties. The
table has many structural zeros, because there are
no inner-products between the missing and observed
data. The parties compute the inner-products using
a secure inner-product protocol (Karr et al., 2004a),
which allows parties to perform inner-products with-
out sharing values of the variables.

In the third step, each party runs EM indepen-
dently using the two tables of summary statistics. Let
p® and ©®) be the parameter estimates at iteration
t, and let yl(;) be defined as in (3) and (4). For the
E-step for variable j in (1), we require the sum of
the observed y;; and the sum of the predicted values,

> gjf;), from the appropriate regressions. This lat-
ter sum can be written as a sum over the patterns of
missing data. From (5), this is

>3y
Mi ieMi

=23

Mi i€ M1

+Z Z Ea Mz Mz M'L) lyobs,i

Mi i€ Mi

n®

7y MZ(ES\);[)i,Mi)_l i )

M1

NM'L

— ZNMlaM” +> 0N BM” Z yii). (12)

Mi jeMqi

The first sum in (12) is a function of x®, £ and
the number of records in each pattern of incomplete
data, N,;;. The second sum in (12) is a function
of u®, ©®  and the shared sums of other variables.
Hence, it is easy to calculate these quantities from
the tables of summary statistics.

For the E-step in (2) for any pair of variables
(4, k), the expectation of their cross-product, i.e. the
sum in (6), can be split into three parts. For the units
with both y;; and y;, observed, parties use the inner-
product from the shared summary statistics. For the
units with exactly one of y;; or y;; missing, the se-
cure inner-product takes several steps. Without loss
of generality, assume that y;; is missing and y;; is
observed. Thus, for these particular units, we need
to compute

PIDBATEDIDS

Mi i€ Mi Mi i€ Mi

<aMz + Z ﬁM; u:‘hu) Yik

ueMi

where the M7 includes only the patterns of observa-
tions where y;; is missing and y;, is observed. For any
particular pattern M7, the needed sums and inner-

products can be pulled from the shared summary
statistics.
For the units with both yi; and yzk missing7 we

+>. QZ(; ylk The first

component depends only on X(*). Let 55\2 and "y(t)
be the intercept and vector of regression slopes from
the regression of y; on yeps,i. The second component
is

need to compute the El sz

(t) <(t
Z]\/I)za)

23 i =D N

Mi i€ Mi
SIS Y (z )
Mi i€Mi

veEMi
M u€M¢ i€Mi
Mi u,veMsi i€Mi

where the M7 include only those units with both y;;
and y;; missing. This can be determined using the
shared summary statistics.

Once a party has completed its E-steps, it per-
forms the M-step. This is straightforward. For any
,ug-tﬂ), the party simply feeds the sums obtained
from (12) into (10). For any a(k Y the party takes
the quantity (1/n)E(>"", yzgysz/ObS; p®,5®) cal-
culated from the E-step, and subtracts ;L;Hl)u,(fﬂ).
Once new parameter estimates are obtained, the
party uses the values of x(**1) and X+ for the next
iteration, continuing until convergence.

Given the MLEs of u and ¥, the party can find
the regression coefficients for any regression involv-
ing Y, as described in Section 2.1. Standard errors
can be determined by the SEM algorithm, which re-
quires running the E-steps more times as described
by Meng and Rubin (1991). No modifications to the
SEM algorithm are needed to run it securely, as it
relies solely on the MLEs and the shared summary
statistics. Standard errors also can be determined
from the MLEs and shared summary statistics using
the approximations of Beale and Little (1975).

3.2 Multinomial data

To perform the EM algorithm of Section 2.2 securely,
all relevant counts must be shared without sharing
individual units’ data. This is accomplished as fol-
lows. First, the agencies determine the missing data
patterns for the units in their combined data, done
by sharing identifiers. Then, each agency transforms



all of its Y; into d; vectors of indicators,

1 ifY; =
IY; =y) = { 0 othérwizs/e }
where the values of y correspond to the values of Y;.
Hence, there are a total of D = Hé’:l d; columns of
indicators among the agencies.

The secure inner-product protocol (Karr et al.,
2004a) can be used to obtain counts for any marginal
subtable. Hence, it is possible to obtain the z* for all
missing data patterns m and cells c¢. After also shar-
ing the 7, ., the agencies have all sufficient statistics
needed to run the EM algorithm individually.

4 Implementation issues

In this section, we discuss the confidentiality and util-
ity of these approaches, as well as ways to relax some
of the assumptions used in the previous section.

4.1 Confidentiality

Secure integration of vertically partitioned data faces
some non-standard confidentiality issues. The parties
need to determine the sets of overlapping units, which
implies revealing that certain records are in (or not
in) various databases. They also need to share the
names of the attributes in their respective data sets,
which parties may be reluctant to do.

Because the parties share summary statistics and
cell counts, but not individual data values, secure
EM has the potential to allow parties to combine in-
formation without revealing sensitive attribute val-
ues. Clearly, however, the secure EM presented here
does not protect identities, since unique identifiers
are shared to enable matching. It may be possible
to protect identities of non-overlapping units through
secure matching techniques or by sharing constructed
identification codes, for example numerical values
assigned to combinations of key variables. Parties
would match on these values instead of the unique
identifiers. Such matching could introduce error into
the matching process, which neither version of secure
EM accounts for.

Secure EM may be subject to attribute disclosures
in certain data settings or when parties are dishon-
est. The algorithms are only as safe as the summa-
tions and secure inner-product algorithms used in the
initial sharing of sufficient statistics. For examples,
the shared summations for a missing data pattern
with only one record equal that record’s values; and,
an inner-product between a sensitive attribute and a
vector containing (1,0,0,0,0,0) reveals the sensitive

attribute of the first record. Additionally, the sum of
known records’ sensitive attributes provides an up-
per bound for those records’ individual values, which
may be enough information to be considered a disclo-
sure. Dishonest parties can create false missing data
patterns with one or a few records, or provide bogus
vectors for inner-products, that reveal values from
the shared summations and inner-products. There is
no way to protect against such deception. The agen-

cies need to cooperate in a semi-honest manner (Karr
et al., 2004b).

In the multivariate normal setting, for any miss-
ing data pattern with ¢ variables there are ¢ + q(q +
1)/2 equations involving the records in that pattern.
When the number of records in that pattern is less
than or equal to g + ¢(q + 1)/2, the parties can find
solutions for the data values in that pattern. To pro-
tect confidentiality the parties may have to exclude
missing data patterns with small numbers of records
from the EM, although this could bias parameter es-
timates. An alternative is for one party to impute
sensible values for enough of the missing data, based
on relationships from the cases with all data observed,
so that those records fall into a missing data pattern
with sufficient numbers of records.

4.2 Utility

If no missing data patterns are excluded or merged
into other categories, the secure EM yields the MLEs
given the observed data. Hence, its inferential utility
is equivalent to concatenating the data and applying
EM. We note there is no utility loss typical of disclo-
sure limitation strategies like global recoding, data
swapping, or adding random noise.

Practically, given the summary statistics, the se-
cure EM is easy to code and, given a sufficiently reg-
ular distribution, is guaranteed to converge to the
MLE when it exists. Each party can run the secure
EM on its own; the iterations do not require exchang-
ing any information other than the summary statis-
tics at the initial stage. Secure EM requires care-
ful bookkeeping. The missing data patterns must be
cataloged and stored, although this is fairly routine
programming. Summary statistics and lower dimen-
sional tables must be securely computed and shared.
When there are many missing data patterns, this step
will require software to manage inputs to the secure
inner-product operations.

For multinomial data, it is possible to extend the
secure EM to log-linear models that are not satu-
rated, since iterative proportional fitting algorithms
again only need counts.



The most serious limitation of the secure EM algo-
rithms presented here are the “sight-unseen” specifi-
cation of distributions. Because parties are not shar-
ing data values, it is difficult for them to determine
whether multivariate normality, or any other distri-
butional assumption, is reasonable for the data. Par-
ties may be able to transform some variables to ap-
proximate normal, marginal distributions, but this
of course does not guarantee multivariate normality.
Fortunately, for obtaining regression inferences, the
EM is more robust to the normality assumption than
it may appear. Only the distribution of the errors in
the regression need be normally distributed.

A related limitation is the assumption that the
non-overlapping units’ incomplete data are missing at
random. The reasons for missing data may depend
on variables used in the parties’ sampling designs.
For example, the parties may have sampled business
establishments with probability proportional to num-
ber of employees. For the data to be missing at ran-
dom in this example, the regression models must in-
clude functions of size. The parties may need to rely
on external knowledge for specifying these functions.
To make the missing at random assumption plausi-
ble, the parties should include as many variables as
possible in the regression model, and hence in the EM
algorithm.

4.3 Model diagnostics for linear re-
gression

Because some data are missing and observed data are
not shared, the usual residual analyses are compli-
cated. One approach is to perform diagnostics only
using the cases with complete information. This re-
quires the party with the dependent variable to com-
pute residuals for the complete cases. To do so, the
parties use a secure summation protocol to deter-
mine the predicted values for each record (Karr et al.,
2004a). The party with the dependent variable then
can examine the residuals of the complete-cases to
look for outliers or non-normally distributed residu-
als. Additionally, the party with the dependent vari-
able can use secure inner-products with other par-
ties to calculate the correlations between the resid-
uals and the independent variables for the complete
cases. When these correlations are not close to zero,
it suggests the regression assumptions are violated.
It is possible to use synthetic diagnostics (Reiter,
2003b) to generate plots of residuals versus predictors
for the complete-cases. The party with the residuals
for the complete-cases first standardizes the residuals
by dividing them by the residual standard deviation
of the regression, then adds random noise to the stan-

dardized residuals to limit potential disclosures from
the residual values. When using standardized resid-
uals, noise generated from a standard normal distri-
bution should be sufficient for many settings (Reiter,
2003b). It may be necessary to top-code outlying
standardized residuals, e.g. report then as “greater
than 4,” rather than report their exact values. Each
party can plot the synthetic residuals against its in-
dependent variables for the complete cases to check
for non-random patterns. The parties can share the
conclusions from their investigations, and if necessary
make adjustments to the models.

4.4 Overlapping variables

Sometimes more than one party has units with partic-
ular missing data patterns. For example, suppose two
parties collect the same variables on non-overlapping
records, while a third party collects different vari-
ables on records that overlap partially with the other
two parties’ variables. The summary statistics for
overlapping variables are computed by each party
for their records using summations and secure inner-
products. Then, the parties add their quantities to
the appropriate cells of the summary statistics tables.
This addition could be done by secure summation if
protecting each party’s sum is required.

4.5 Handling data missing not by de-
sign

When no party has a value of a particular datum
(e.g., the survey respondent didn’t give an answer),
that record can be placed into an appropriate incom-
plete data pattern. This simply adds new patterns
to the secure EM; the computations do not change.
Disclosures could occur when such units’ missing data
groups with one or few records. The regression model
needs to be sufficiently detailed to make the missing
at random assumption plausible for these values.

5 Concluding Remarks

The secure EM algorithms presented here are a first
step towards methods of secure data integration.
There are technical and implementation-related is-
sues that need to be addressed before the approach
can be adopted in practice.

The underlying assumptions of the secure EM
approach suggest directions for future research. In
some data sets there may be inexact matching, so
that methods for incorporating matching errors need
to be developed. The multivariate normal assump-
tion is implausible for some data, so that methods



for non-normal data need to be developed. These
could take the form of secure EMs for other models
or secure Bayesian posterior simulation. The latter
is complicated by the restriction on sharing data val-
ues. A related approach is for parties to simulate
and share synthetic data (Raghunathan et al., 2003;
Reiter, 2003a, 2005). The synthetic data also could
serve as public-use data.
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