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1 Introduction

A continuing need in the contexts of homeland security, national defense and counterterrorism is for sta-
tistical analyses that “integrate” data stored in multiple, distributed databases. There is some belief, for
example, that integration of data from flight schools, airlines, credit card issuers, immigration records and
other sources might have prevented the terrorist attacks of September 11, 2001, or might be able to prevent
recurrences.

In addition to significant technical obstacles, not the least of which is poor data quality [32, 31], propos-
als for large-scale integration of multiple databases have engendered significant public opposition. Indeed,
the outcry has been so strong that some plans have been modified or even abandoned. The political opposi-
tion to “mining” distributed databases centers on deep, if not entirely precise, concerns about the privacy of
database subjects and, to a lesser extent, database owners. The latter is an issue, for example, for databases
of credit card transactions or airline ticket purchases. Integrating the data without protecting ownership
could be problematic for all parties: the companies would be revealing who their customers are, and where
a person is a customer would also be revealed.

For many analyses, however, it is not necessary actually to integrate the data. Instead, as we show in this
paper, using techniques from computer science known generically as secure multi-party computation, the
database holders can share analysis-specific sufficient statistics anonymously, but in a way that the desired
analysis can be performed in a principled manner. If the sole concern is protecting the source rather than the
content of data elements, it is even possible to share the data themselves, in which caseanyanalysis can be
performed.

The same need arises in non-security settings as well, especially scientific and policy investigations. For
example, a regression analysis on integrated state databases about factors influencing student performance
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would be more insightful than individual analyses, or complementary to them. Yet another setting is pro-
prietary data: pharmaceutical companies might all benefit, for example, from a statistical analysis of their
combined chemical libraries, but do not wish to reveal which chemicals are in the libraries [25].

The barriers to integrating databases are numerous. One is confidentiality: the database holders—we
term them “agencies”—almost always wish to protect the identities of their data subjects. Another is reg-
ulation: agencies such as the Census Bureau (Census) and Bureau of Labor Statistics (BLS) are largely
forbidden by law to share their data, even with each other, let alone with a trusted third party. A third is
scale: despite advances in networking technology, there are few ways to move a terabyte of data from point
A today to point B tomorrow.

In this paper we focus on linear regression and related analyses. The regression setting is important be-
cause of its prediction aspect; for example, vulnerable critical infrastructure components might be identified
using a regression model. We begin in §2 with background on data confidentiality and on secure multi-party
computation. Linear regression is treated for “horizontally partitioned data” in §3 and for “vertically parti-
tioned data” in §4. Two methods for secure data integration and an application to secure contingency tables
appear in §5, and a concluding discussion in §6.

Various assumptions are possible about the participating parties, for example, whether they use “correct”
values in the computations, follow computational protocols or collude against one another. The setting in
this paper is that of agencies wishing to cooperate but to preserve the privacy of their individual databases.
While each agency can “subtract” its own contribution from integrated computations, it should not be able
to identify the other agencies’ contributions. Thus, for example, if data are pooled, an agency can of course
recognize data elements that are not its own, but should not be able to determine which other agency owns
them. In addition, we assume that the agencies are “semi-honest:” each follows the agreed-on computational
protocols, but may retain the results of intermediate computations.

2 Background

In this section we present background from statistics (§2.1) and computer science (§2.2).

2.1 Data Confidentiality

From a statistical perspective, the problem we treat lies historically in the domain of data confidentiality or,
in the context of official statistics, statistical disclosure limitation [12, 43, 44]. The fundamental dilemma is
that government statistical agencies are charged with the inherently conflicting missions of both protecting
the confidentiality of their data subjects and disseminating useful information derived from their data—to
Congress, other federal agencies, the public and researchers.

In broad terms, two kinds of disclosures are possible from a database of records containing attributes
of individuals or establishments. An “identity disclosure” occurs when a record in the database can be
associated with the individual or establishment that it describes even if the record does not contain explicit
identifiers. An “attribute disclosure” occurs if the value of a sensitive attribute, such as income or health
status, is disclosed. This may be an issue even without identity disclosure; for instance, if a doctor is known
to specialize in treating AIDS, then attribute disclosure (AIDS) may occur for his or her patients. Attribute
disclosure is often inferential in nature, and may not be entirely certain. It is also highly domain-dependent.

To prevent identity disclosures, agencies remove explicit identifiers such as name and address or social
security number, as well as implicit identifiers, such as “Occupation = Mayor of New York.” Often, however,
this is not enough. Technology poses new threats, through the proliferation of databases and software to
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Figure 1: Pictorial representation of record linkage. The upper record, in the purported protected database is
linked to a record in the external database that has the same values of attributes A1, A2, A3 and A5, but also
contains an identifier. If only one record in the external database matches, then the value of A6 is known for
the subject of that record. In practice, surprisingly few attributes are needed.

link records across databases. Record linkage, which is shown pictorially in Figure 1, produces identity
disclosures by matching a record in the database to a record in another database containing some of the
same attributes as well as identifiers. In one well-known example [41], only three attributes—date of birth,
5-digit ZIP code of residence and gender—produced identity disclosures from a medical records database
by linkage to public voter registration data.

Identity disclosure can also occur by means of rare or extreme attribute values. For example, female
Korean dentists in North Dakota are rare, and an intruder—the generic term for a person attempting to
break confidentiality—could recognize such a record, or a family member may recognize another family
member from household characteristics, or an employer could recognize an employee from salary, tenure
and geography. Establishments (typically, corporations and other organizations) are especially vulnerable in
data at high geographical resolution. The largest employer in a county is almost always widely known, so
that county-level reporting of both numbers of employees and health benefits expenditures does not protect
the latter.

There is a wealth of techniques [9, 16, 24, 43, 44] for “preventing” disclosure. In general, these
techniques preserve low-dimensional statistical characteristics of the data, but distort disclosure-inducing
high-dimensional characteristics.Aggregation—especially geographical aggregation [27, 33]—is a princi-
pal strategy to reduce identity disclosures. The Census and several other federal agencies do not release data
at aggregations less than 100,000. Another istop-coding: for example, all incomes exceeding $10,000,000
could be lumped into a single category.Cell suppressionis the outright refusal to release risky—usually,
small count—entries in tabular data.Data swappinginterchanges the values of one or more attributes, such
as geography, between data records.Jittering adds random noise to values of attributes such as income.
Microaggregationgroups numerical data records into small clusters and replace all elements of each cluster
by their (component-wise) average [5, 6]. Even entirelysynthetic databasesmay be created, which preserve
some characteristics of the original data, but whose records simply do not correspond to real individuals
or establishments [13, 35, 36]. Analysis servers [19], which disseminate analyses of data rather than data
themselves, are another alternative, as is the approach described in this paper.

Much current research focuses on explicit disclosure risk–data utility formulations for statistical disclo-
sure limitation problems [7, 8, 14, 15, 20, 26, 42]. These enable agencies to make explicit tradeoffs between
risk and utility.
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2.2 Secure Multi-Party Computation

The generic secure multi-party computation problem [17, 18, 45] concerns agencies 1, . . . , K with values
v1, . . . , vK that wish to compute a known functionf (v1, . . . , vK ) in such a manner that no agencyj learns
no more about the other agencies’ values than can be determined fromv j and f (v1, . . . , vK ). In prac-
tice, absolute security may not be possible, so some techniques for secure multi-party computation rely on
heuristics [11] or randomization.

The simplest secure multi-party computation, and the one used in §3 for secure regression, is to sum
valuesv j held by the agencies:f (v1, . . . , vK ) =

∑K
j=1 v j . Let v denote the sum. The secure summation

protocol [2], which is depicted graphically in Figure 2, is straightforward in principle, although a “production
quality” implementation presents many challenges. Number the agencies 1, . . . , K . Agency 1 generates a
very large random integerR, addsR to its valuev1, and sends the sum to agency 2. SinceR is random,
Agency 2 learns effectively nothing aboutv1. Agency 2 adds its valuev2 to R+ v1, sends the result to
agency 3, and so on. Finally, agency 1 receivesR+ v1 + . . . + vK = R+ v from agencyK , subtractsR,
and shares the resultv with the other agencies. Here is cooperation matters: agency 1 is obliged to sharev

with the other agencies.
Figure 2 contains an extra layer of protection. Suppose thatv is known to lie in the range [0, m), where

m is a very large number, say 2100, that is known to all the agencies. ThenR can be chosen randomly from
{0, . . . , m− 1} and all computations performed modulom.

To illustrate, suppose that the agencies have income data and wish to compute the global average income.
Let n j be the number of records in agencyj ’s database andI j be the sum of their incomes. The quantity to
be computed is

Ī =

∑
j I j∑
j n j

,

whose numerator can be computed using secure summation on theI j ’s, and whose denominator can be
computed using secure summation on then j ’s.

This method for secure summation faces an obvious problem if, contrary to our assumption, some agen-
cies were to collude. For example, agenciesj − 1 and j + 1 can together compare the values they send
and receive to determine the exact value ofv j . Secure summation can be extended to work for an honest
majority: each agency dividesv j into shares, and secure summation is used to calculate the sum for each
share individually. However, the path used is altered for each share so that no agency has the same neighbor
twice. To computev j , the neighbors of agencyj from every iteration would have to collude.

3 Horizontally Partitioned Data

As the name connotes, this is the case where the agencies have the same attributes on disjoint sets of data
subjects [28, 30]. Examples include state-level drivers license databases and data on individuals held by
their countries of citizenship.

3.1 The Computations

We assume that there areK > 2 agencies, each with the same numerical data on its ownn j data subjects—p
predictorsX j and a responsey j , and that the agencies wish to fit the usual linear model

y = Xβ + ε, (1)

4



Figure 2: Values computed at each agency during secure computation of a sum initiated by Agency 1. Here
v1 = 29,v2 = 5, v3 = 152 andv = 187. All arithmetic is modulom= 1024.

to the “global” data

X =

 X1

...

XK

 and y =

 y1

...

yK

 . (2)

Figure 3 shows such horizontal partitioning forK = 3 agencies. EachX j is n j × p.
We embed the constant term of the regression in the first predictor:X j

1 ≡ 1 for all j . To illustrate the
subtleties associated with distributed data, the usual strategy of centering the predictors and response at their
means does not work directly, at least not without another round of secure computation. The means needed
are the global—not the local—means, which are not available.1

Under the condition that
Cov(ε) = σ 2I , (3)

the least squares estimator forβ is of course

β̂ = (XT X)−1XT y. (4)

To computeβ̂ without data integration, it is necessary to computeXT X andXT y. Because of the horizontal
partitioning of the data in (2),

XT X =
K∑

j=1

(X j )T X j . (5)

Therefore, agencyj simply computes its own(X j )T X j , a local sufficient statistic that has dimensions
p × p, wherep is the number of predictors, and these are combined entrywise using secure summation.
This computation is illustrated withK = 3 in Figure 3. Of course, because of symmetry, only

(p
2

)
+ p

1They could, of course, be computed using secure summation, as in the average income example in §2.2.
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secure summations are needed. Similarly,XT y can be computed by secure, entry-wise summation of the
(X j )T y j .

Finally, each agency can calculateβ̂ from the shared values ofXT X and XT y. Note that no agency
learns any other agency’s(X j )T X j or (X j )T y j , but only the sum of these over all the other agencies.

The least squares estimatorS2 of σ 2 in (3) also can be computed securely. Since

S2
=

(y− Xβ̂)T (y− Xβ̂)

n− p
, (6)

and XT X and β̂ have been computed securely, the only thing left is to computen and yT y using secure
summation.

With this method for secure regression, each agencyj learns the globalXT X andXT y. This creates a
unilateral incentive to “cheat:” ifj contributes a false(X j )T X j and(X j )T y j but every other agency uses
its real data, thenj can recover ∑

i 6= j

(Xi )T Xi

and ∑
i 6= j

(Xi )T yi ,

and thereby the regression for the other agencies, correctly. Every other, agency, by contrast, ends up with
an incorrect regression. Research on means of preventing this is under way at the National Institute of
Statistical Sciences (NISS). Exactly what about an agency’s database is learned from one regression—and
whether that regression compromises individual data elements—requires additional research.

Virtually the same technique can be applied to any model for which “sufficient statistics” are additive
over the agencies. One such example is generalized linear models of the form (1), but with6 = Cov(ε) not
a diagonal matrix. The least squares estimator forβ in the GLM is

β∗ = (XT6−1X)−1XT6−1y,

which can be computed using secure summation, provided that6 is known to all the agencies. Exactly how
6 would be known to all the agencies is less clear.

Another example is linear discriminant analysis [22]; extension to other classification techniques also
remains a topic for future research.

3.2 Example

We illustrate the secure regression protocol of §3.1 using the “Boston housing data” [21]. There are 506
data cases, representing towns around Boston, which we partitioned, purely for illustrative purposes, among
K = 3 agencies representing, for example, regional governmental authorities. An alternative, and more
complicated partition of chemical databases occurs in Karr,et al. [25].

The database sizes are comparable:n1 = 172, n2 = 182 andn3 = 152. The responsey is median
housing value, and three predictors were selected:X1 = CRIME per capita,X2 = IND[USTRIALIZATION],
the proportion of non-retail business acres, andX3 = DIST[ANCE], a weighted sum of distances to five
Boston employment centers.
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Figure 3: Pictorial representation of the secure regression protocol for horizontally partitioned data. The
dimensions of various matrices are shown. The visual metaphor is thatXT X (white) is the sum of red, green
and blue components.

Figure 4 shows the results of the computations of their respective(X j )T X j and(X j )T y j performed by
the three agencies. The agencies then use the secure regression protocol to produce the global values

XT X = (X1)T X1
+ (X2)T X2

+ (X3)T X3

=


506.00 1828.44 5635.21 1920.29
1828.44 43970.34 32479.10 3466.28
5635.21 32479.10 86525.63 16220.67
1920.29 3466.28 16220.67 9526.77


and

XT y = (X1)T y1
+ (X2)T y2

+ (X3)T y3

=


11401.60
25687.10
111564.08
45713.87

 .

These global objects are shared among the three agencies, each of which can then calculate the estimated
values of the regression coefficients.

Figure 5 contains these estimators, as well as the estimators for the three agency-specific local regres-
sions. The intercept iŝβCONST, the coefficient corresponding to the constant predictorX1. Each agencyj
ends up knowing both—but only—the global coefficients and its own local coefficients. To the extent that
these differ, it can infer some information about the other agencies’ regressions collectively, but not individ-
ually. In this example, agency 2 can detect that its regression differs from the global one, but is not able to
determine that agency 1 is the primary cause for the difference. Agency 3 is unaware that the regressions of
both agency 1 and agency 2 differ from the global regression.

3.3 Model Diagnostics

In the absence of model diagnostics, secure regression loses appeal to statisticians. We describe briefly two
strategies for producing informative diagnostics. The first is to use quantities that can be computed using
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Agency j n j (X j )T X j (X j )T y j

1 172


172.00 49.03 1581.19 781.52
49.03 40.42 556.29 180.95

1581.19 556.29 23448.60 5631.35
781.52 180.95 5631.35 4186.07




4057.90
909.24

32227.19
18996.12



2 182


182.00 94.47 1563.50 746.12
94.47 160.90 1433.20 231.87

1563.50 1433.20 18970.98 5224.19
746.12 231.87 5224.19 3882.02




4691.10
2299.13
37949.83
19193.18



3 152


152.00 1684.95 2490.52 392.64
1684.95 43769.02 30489.61 3053.46
2490.52 30489.61 44106.05 5365.14
392.64 3053.46 5365.14 1458.68




2652.60
22478.73
41387.06
7524.57


Figure 4: Illustration of the secure regression protocol for horizontally partitioned data using the “Boston
housing data” [21]. As discussed in the text, there are three agencies, each of which computes its local
(X j )T X j and(X j )T y j . These are combined entrywise using secure summation to produce shared global
valuesXT X andXT y, from which each agency calculates the global regression coefficients.

secure summation from corresponding local statistics. The second uses secure data integration protocols
from §5 to share synthetic residuals.

A number of diagnostics are computable by secure summation. These include:

1. The coefficient of determinationR2;

2. The least squares estimateS2 of the error varianceσ 2, which was noted in (6);

3. Correlations between predictors and residuals;

4. The hat matrixH = X(XT X)−1XT , which can be used to identifyX-outliers.

For diagnosing some types of assumption violations, only patterns in relationships among the residuals
and predictors suggestive of model mis-specification are needed, rather than exact values of the residuals

Regression β̂CONST β̂CRIME β̂IND β̂DIST

Global 35.505 -0.273 -0.730 -1.016

Agency 1 39.362 -8.792 -0.720 -1.462
Agency 2 35.611 2.587 -0.896 -0.849
Agency 3 34.028 -0.241 -0.708 -0.893

Figure 5: Estimated global and agency-specific regression coefficients for the partitioned Boston housing
data. The intercept iŝβCONST.
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and predictors. Such diagnostics can be produced for the global database using secure data integration
protocols (§5) to share synthetic diagnostics. The synthetic diagnostics are generated in three steps [37].
First, each agency simulates values of its predictors. Second, using the global regression coefficients, each
agency simulates residuals associated with these synthetic predictors in a way—and this is the hard part—
that mimics the relationships between the predictors and residuals in its own data. Finally, the agencies
share their synthetic predictors and residuals using secure data integration.

4 Vertically Partitioned Data

Vertically partitioneddatabases contain different sets of attributes for the same data subjects. For example,
one government agency might have employment information, another health data, and a third information
about education, but all for the same individuals.

In this section, we show to perform regression analyses on vertically partitioned data. One approach
(§4.1) assumes that the database owners are willing to share sample means and covariances, which allows
them to perform much richer sets of analyses than mere coefficient estimation, including inference for
the coefficients, model diagnostics and model selection. The second approach (§4.2) solves directly the
quadratic optimization problem associated with computation of least squares estimators. It entails less
sharing of information, but requires that all agencies have access to the response attribute.

Two assumptions underlie this section. First, we assume that the agencies know that they have data
on the same subjects, or that there is a secure method for determining which subjects are common to all
their databases. The second, and stronger, assumption is that agencies can link records without error. Op-
erationally, this requires in effect that the databases have a common primary key, such as social security
number. How realistic this assumption varies by context. For administrative and financial records, it may be
sensible, but it becomes problematic in situations where error-prone keys such as name or address must be
used.

For the remainder of the section, we assume that the agencies have aligned their common data subjects
in the same order.

4.1 Secure Matrix Products

This method [29], which is in the spirit of Du, Han and Chan [10], computes the off-diagonal blocks of the
full data covariance matrix securely.

Since each such block involves only two agencies, we restrict attention to two database owners labeled
agencyA and agencyB, that possess disjoint sets of attributes for the samen data subjects. Let agency
A possessn p-dimensional data elementsXA

1 , . . . , XA
n , and let agencyB possessn q-dimensional data

elementsXB
1 , . . . , XB

n , so that the full data matrix is

[XA XB] =

 XA
11 · · · XA

1p XB
11 · · · XB

1q
...

...
...

...

XA
n1 · · · XA

np XB
n1 · · · XB

nq

 . (7)

We assume the two data matrices are of full rank; if not, the agencies remove linearly dependent columns.
The agencies wish to compute securely and share thep× q-dimensional matrix(XA)T XB. Assuming

that they also share “diagonal blocks” of the covariance matrix; as we describe below, once they have done
so, each possesses the “full data” covariance matrix, and may perform a variety of statistical analyses of the
integrated data.
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4.1.1 Computation of Secure Matrix Products

An optimal computational protocol ensures that neither agency learns more about the other’s data by using
the protocol than it would learn if an omniscient third party were to tell it the result. From the perspective
of fairness, the protocol should be symmetric in the amount of information exchanged. A protocol that
achieves both of these goals, at least approximately, is:

1. AgencyA generates a set ofg = b (n − p)/2c orthonormal vectorsZ1, Z2, . . . , Zg ∈ Rn such that
ZT

i XA
j = 0 for all i and j , and sends the matrixZ = [Z1Z2 · · · Zg] to agencyB.

2. AgencyB computes
W = (I − Z ZT )XB,

whereI is an identity matrix, and sendsW to agencyA.

3. AgencyA calculates, and shares with agency B,

(XA)T W = (XA)T (I − Z ZT )XB
= (XA)T XB.

The latter equality holds since(XA
j )T Zi = 0 for all i and j .

A method for generatingZ is presented in Sanil,et al. [29].
It might appear that agencyB’s data can be learned exactly since agencyA knows bothW and Z.

However,W has rank(n− g) = (n− 2p)/2, so that agencyA cannot invert it to obtainXB.
To assess the degree of protection afforded by this protocol, we note that for any matrix product protocol

where(XA)T XB is learned by both agencies, including protocols that involve trusted third parties, at a
minimum each agency knowspq constraints on the other’s data, one for each element of(XA)T XB. In
realistic settings, the number of data subjects is much greater than the number of terms in the cross-product
matrix: n � pq. Thus, the knowledge of agencyA about XB consists ofpq constraints implied by
(XA)T XB, and that theXB

i lie in theg ≈ n/2-dimensional subspace given byW = (I − Z ZT )XB. Thus,
agencyA has a total ofg+ pq constraints onXB. Assumingn� pq, we can say that agencyA knows the
approximatelyn/2-dimensional subspace that theXB

i lie in. For largen, agencyB’s data may be considered
safe.

Correspondingly, agencyB knowspq constraints onXA implied by(XA)T XB, and that theXi lie in the
(n− g) ≈ n/2-dimensional subspace orthogonal toZ. Thus, agencyB has a total ofn− g+ pq constraints
on XA. Assumingn � pq and thatg ≈ n/2, we can say that agencyB knows the approximatelyn/2-
dimensional subspace that theXA

i lie in. For largen, agencyA’s data may be considered safe.
Since agencyA and agencyB can each place the other’s data in an approximatelyn/2-dimensional

subspace, the protocol is symmetric in the information exchanged. At higher levels, though, symmetry can
break down. For example, if agencyA holds the response, but none of its other attributes is a good predictor,
whereas the attributes held by agencyB are good predictors, then arguablyA learns more aboutB’s data
thanvice versa.

The protocol is not optimal in the sense of each agency’s learning as little as possible about the other’s
data. From(XA)T XB alone, agencyA has onlypq constraints onXB, rather than the approximatelyn/2
constraints described above. The symmetry, however, implies a minimax form of optimality: the total
amount of information that must be exchanged isn (Consider the extreme case that agencyA transmits its
data to agencyB, which computes(XA)T XB and returns the result toA.), and so each agency’s transmitting
n/2 constraints on its data minimizes the maximum information transferred.
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Nor is the protocol immune to breaches of confidentiality if the agencies do not use their real data. More-
over, disclosures might be generated because of the values of the attributes themselves. A related problem
occurs if one agency has attributes that are nearly linear combinations of the other agency’s attributes. When
this happens, accurate predictions of the data subjects’ values can be obtained from linear regressions built
from the securely computed matrix products.

4.1.2 Application to Secure Regression

Application of the secure matrix product protocol to perform secure linear regression analyses is straight-
forward. Altering notation for simplicity, let the matrix of all variables in the possession of the agencies be
D = [D1, . . . , Dp], with

Di =

 di 1
...

din

 , 1≤ i ≤ p . (8)

The data matrixD is distributed among agenciesA1, A2, . . . , AK . Each agencyA j possesses its ownp j

columns ofD, where
∑K

j=1 p j = p.
A regression model of some response attribute, sayDi ∈ D, on a collection of the other attributes, say

D0
⊆ D \ {Di }, is of the form

Di = D0β + ε (9)

whereε ∼ N(0, σ 2). As in §3, an intercept term is achieved by including a column of ones inD0, which
without loss of generality, we assume is owned by agencyA1.

The goal is to regress anyDi on some arbitrary subsetD0 using secure computation. For simplicity,
we suppress dependence ofβ, ε andσ 2 on D0. The maximum likelihood estimates ofβ andσ 2, as well as
the standard errors of the estimated coefficients, can be obtained from the sample covariance matrix ofD,
using for example the sweep algorithm [1, 40]. Hence, the agencies need only the elements of the sample
covariance matrix ofD to perform the regression. Each agency computes and shares the on-diagonal blocks
of the matrix corresponding to its variables, and the agencies use secure matrix computations as described
above to compute the off-diagonal blocks.

The types of diagnostic measures available in vertically partitioned data settings depend on the amount
of information the agencies are willing to share. Diagnostics based on residuals require the predicted values,
D0β̂. These can be obtained using the secure matrix product protocol, since

D0β̂ = D0
[
(D0)T D0

]−1
(D0)T Di .

Alternatively, once thêβ is shared, each agency could compute the portion ofD0β̂ based on the attributes
in its possession, and these vectors can be summed across agencies using secure summation.

Once the predicted values are known, the agency with the responseDi can calculate the residualsE0 =

Di − D0β̂. If that agency is willing to share the residuals with the other agencies, each agency can plot
residuals versus its predictors and report the nature of any lack of fit to the other agencies. SharingE0 also
enables all agencies to obtain Cook’s distance measures, since these are functions ofE0 and the diagonal
elements ofH = D0[(D0)T D0]−1(D0)T , which can be computed securely, as noted in §3.

The agency withDi may be unwilling to shareE0 with the other agencies, since sharing could reveal the
values ofDi itself. In this case, one option is to compute the correlations of the residuals with the indepen-
dent variables using the secure matrix product protocol. When the model fits poorly, these correlations will
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be far from zero, suggesting model mis-specification. Additionally, the agency withDi can make a plot of
E0 versusD0β̂, and a normal quantile plot ofE0, and report any evidence of model violations to the other
agencies. The number of residuals exceeding certain thresholds, i.e., outliers, also can be reported.

Variations of linear regression can be performed using the secure matrix product protocol. For example,
to perform weighted least squares regression, the agencies first securely pre-multiply their variables byT1/2,
whereT is the matrix of weights, and then apply the secure matrix protocol to the transformed variables.
To run semi-automatic model selection procedures such as stepwise regression, the agencies can calculate
the covariance matrix securely, then select models based on criteria that are functions of it, such as the
F-statistic or the Akaike Information Criterion.

It is also possible to perform ridge regression [23] securely. Ridge regression shrinks the estimated
regression coefficients away from the maximum likelihood estimates by imposing a penalty on their magni-
tude. Written in matrix form, ridge regression seeks theβ̂ that minimizes

Ridge(λ) = (Di − D0β)T (Di − D0β)+ λβTβ, (10)

whereλ is a specified constant. The ridge regression estimate of the coefficients is

β̂R =
[
(D0)T D0

+ λI
]−1

(D0)T Di . (11)

Since (D0)T D0 can be computed using the secure matrix product protocol, [(D0)T D0
+ λI ]−1 can be

obtained and shared among the agencies. The agencies also can share(D0)T Di securely, which enables
calculation of the estimated ridge regression coefficients.

4.2 Secure Least Squares

A second approach to vertically partitioned data entails less sharing of information than for the secure matrix
product protocol of §4.1, but requires that all agencies possess the response attributey. If this were not the
case, the agency holdingy would be required to share it with the others, which poses obvious disclosure
risks.

We assume the model of (1), and that (3) holds. The least squares estimatesβ̂ of (4) are, by definition,
the solution of the quadratic optimization problem

β̂ = arg min
β

(y− Xβ)T (y− Xβ). (12)

Denote byI j the predictors held by agencyA j , and assume that theI j are disjoint. If there were overlaps,
the agencies would decide in advance which one “owns” shared attribute. For a vectoru, we writeuI j for
{ui }i∈I j . The total number of attributes—predictors and response—remainsp.

As in other protocols for secure multi-party computation, one agency must assume a lead role in initi-
ating and coordinating the process. This is a purely administrative role and does not imply any information
advantage or disadvantage. We assume that agency 1 is the designated leader.

4.2.1 Powell’s Algorithm

The basis of the computational protocol isPowell’s method[34] for solution of quadratic optimization
problems with calculating—which in practice means approximating numerically—derivatives. We will use
it to calculateβ̂ in (12) directly.
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Powell’s method is a derivative-free numerical minimization method that solves the multidimensional
minimization problem by solving a series of one-dimensional (“line search”) minimization problems. A
high-level description of the algorithm is as follows:

1. Start with a set of suitably chosen set ofp vectors inRp that serve as “search directions.”

2. Start at an arbitrary starting point inRp and determine the step sizeδ along the first search direction
s(1) that minimizes the objective function.

3. Move distanceδ alongs(1).

4. Move an optimal step in the second search directions(2), and so on until all the search directions are
exhausted.

5. Make appropriate updates to the set of search directions, and continue until the minimum is obtained.

Specifically, the procedure for finding the minimizer of the functionf (β) consists of an initialization
step and an iteration block as described below.

Initialization: Select an arbitrary2 orthogonal basiss(1), . . . , s(p) for Rp. Also, pick an arbitrary starting
point β̃ ∈ Rp.

Iteration: Repeat the following block of stepsp times.

• Setβ ← β̃.

• For i = 1, . . . , p, find δ that minimizesf (β + δs(i )), and then setβ ← β + δs(i ).

• For i = 1, . . . , (p− 1), sets(i )
← s(i+1).

• Sets(p)
← β − β̃.

• Find δ that minimizesf (β + δs(p)), and setβ̃ ← β + δs(p).

Note that each iteration of the iteration block involves solving(p+ 1) one-dimensional minimization prob-
lems, to determine theδ’s.

Powell [34] established the remarkable result that iff is a quadratic function, thenp iterations of the
iteration block yield theexact minimizerof f ! That is, solvingp(p + 1) one-dimensional minimization
produces the minimizer of a quadratic function.

4.2.2 Application to Secure Regression

The gist of our approach [39] is to apply Powell’s method to

f (β) = (y− Xβ)T (y− Xβ)

in order to solve (12). The complication, of course, is that no agency possesses all of the data. The details
are as follows.

1. Lets(1), . . . , s(p)
∈ Rp be p-dimensional vectors that will serve as a set of search directions inRp, to

be used for finding the optimal estimateβ̂. Thes(r ) will be initially chosen and later updated in such
a manner that agencyA j knows only thes(r )

I j
components of eachs(r ).

2Powell’s original algorithm used the coordinate axis vectors as the basis, but any orthogonal basis also suffices [4].
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2. Initially, s(r ) are chosen as follows. EachA j picks an orthogonal basis{v(r )
}r∈I j for Rd j . Then for

r ∈ I j let s(r )
I j
= v(r ), ands(r )

l = 0 for l 6∈ I j . Each agency should pick its basis at random so that the
other agencies cannot guess it.

3. Let β̃ =
(
β̃I1, . . . , β̃Ik

)
∈ Rp be the initial starting value ofβ obtained by eachA j ’s picking β̃I j

arbitrarily.

4. Perform theBasic Iteration Block below p times. The final value of̃β will be the least squares
estimatorsβ̂.

TheBasic Iteration Block is:

1. EachA j setsβI j ← β̃I j .

2. Forr = 1, . . . , p:

(a) EachA j computesX I j βI j andX I j s
(r )
I j

.

(b) The agencies use secure summation to compute

z= y− Xβ = y−
K∑

j=1

X I j βI j

and

w = Xs(r )
=

K∑
j=1

X I j s
(r )
I j

.

In (only) the first iteration of this block, for a givenr , X I j s
(r )
I j

is non-zero only for the agency
that ownsxr . Revealing this to all agencies would too risky, so only that particular agency, say
Ar , will computew, but not reveal it to the others.

(c) All agencies compute
δ = zTw/wTw.

In the first iteration,Ar computes this and announces it to the other agencies.

(d) EachA j updatesβI j ← βI j + δ · s(r )
I j

.

3. Forr = 1, . . . , (p− 1), eachA j updatess(r )
I j
← s(r+1)

I j
.

4. EachA j updatess(p)

I j
← βI j − β̃I j .

5. z, w andδ are computed as before, and eachA j updatesβI j ← βI j + δ · s(p)

I j
.

After the regression coefficients are calculated and shared, the agencies learn at least three useful quan-
tities. The first of these, of course, is the global coefficientsβ̂, enabling each agency to assess the effect
of its variables on the response variable after accounting for the effects of the other agencies’ variables.
Agencies can also assess the size of effects of the other agencies’ variables. If an agency obtains a complete
record for some individual, the global regression equation can also be used for prediction of the response
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value. A comparison of the globally obtained coefficients with the coefficients of the local regression (i.e.,
the regression ofy on X I j ) could also be informative.

Agencies also learn the vector of residualse = y − Xβ̂, which is equal to the finalz in our iterative
procedure. The residuals permit agencies to perform diagnostic tests to determine if the linear regression
model is appropriate. The agencies can perform formal statistical tests or use simple visual diagnostics [39].
Finally, agencies can compute the coefficient of determination

R2
=

yT y− eTe

yT y
. (13)

To assess what is revealed by this protocol, consider any one step of the iteration: the only information
exchanged by the agencies are thez andw vectors. The actual risk to the datax is less since there is some
masking with components of thes vectors. Specifically, the vulnerability is highest in the first step of the
iteration since—because of the way we have chosen the initials—only one agency contributes to the sum
w at each round of the basic iteration block. We can reduce risk of disclosure by having the contributing
agency computeδ privately and announce it to the others. If we assume that the agencies select their initial
bases randomly, so that it is impossible for the others to guess them, and if the summation is performed
using the secure summation protocol, then no private information is revealed if onlyz andw are common
knowledge.

If iterations were independent, then clearly the procedure would be secure. However, the values that
each agency contributes to the sum are functionally related from one iteration to the next. The relationship
is complex and difficult to express, however, so that this complexity combined with the nature of the secure
sum protocol will make it impossible in practice for malicious agencies to exploit the iteration-to-iteration
dependency of the values to compromise data privacy.

Whether the approach is feasible computationally has not been established.

5 Secure Data Integration

The procedures described in §3 and 4 are tailored to regressions, or more generally to statistical analyses for
which there exist sufficient statistics that are additive over the agencies. This makes the protocols efficient,
but obviously every time a new kind of analysis is needed, so are new algorithms.

If the agencies are concerned primarily with protecting which one holds which data elements, then it is
possible to construct an integrated database that can be shared among the agencies, and on which any kind
of analysis is possible. There are, however, at least two problematic aspects of this. First, it requires sharing
individual data values, with attendant disclosure risks to the data subjects. Second, secure data integration
does not work in situations when data values themselves are informative about their source. For instance, it
would not work with state-held databases containing ZIP codes. Nor would it work when, for example, for
hospital databases containing income when the patient populations have drastically different incomes.

ConsiderK > 2 agencies wishing to share the integrated data among themselves without revealing the
origin of any record, and without use of mechanisms such as a trusted third party. We present two algorithms
for doing this, neither of which provides any confidentiality protection for data subjects beyond what may
already have been imposed by the agencies.
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5.1 Algorithm 1

Algorithm 1 passes a continually growing integrated database among the agencies in a known round-robin
order, and in this sense is similar to secure summation, although multiple rounds are required. To protect the
sources of individual records, agencies are allowed or required to insert both real and “synthetic” records.
The synthetic data may be produced by procedures similar to those for construction of synthetic residuals
(see §3.3), by drawing from predictive distributions fit to the data [30], or by some other means. Once all
real data have been placed in the integrated database, each agency recognizes and removes its synthetic data,
leaving the integrated database.

The steps in Algorithm 1 are:

1. Initialization: Order the agencies by number 1 throughK .

2. Round 1: Agency 1 initiates the integrated database by addingonly synthetic data. Every other
agency puts in a mixture of at least 5% of its real data and—optionally—synthetic data, and then
randomly permutes the current set of records. The value of 5% is arbitrary, and serves to ensure that
the process terminates in at most 21 rounds. Permutation thwarts attempts to identify the source of
records from their position in the database.

3. Rounds2, . . . , 20: Each agency puts in at least 5% of its real data or all real data that it has left, and
then randomly permutes the current set of records.

4. Round 21: the Agency 1, if it has data left, adds them, and removes its synthetic records. In turn,
each other agency 2, . . . , K removes its synthetic data.

5. Sharing: The integrated data are shared after all synthetic data have been removed.

The role of synthetic data is analogous to that of the random numberR in secure summation: without
it, agency 2 would receive only real data from agency 1 in round 1. However, synthetic data do not protect
the agencies completely. In round 1, agency 3 receives a combination of synthetic data from agency 1 and
a mixture of synthetic and real data from agency 2. By retaining this intermediate version of the integrated
database, which semi-honesty allows, and comparing it with the final version, which contains only real
data, agency 2 can determine which records are synthetic—they are absent from the final version—and thus
identify agency 2 as the source of some real records. The problem propagates, but with decreasing severity.
For example, what agency 4 receives in round 1 is a mixture of synthetic data from agency 1, synthetic and
real data from agency 2, and synthetic and real data from agency 3. Byex post factoremoval of the synthetic
data, agency 4 is left with real data that it knows to have come from either agency 2 or agency 3, although it
does not know which. There are also corresponding vulnerabilities in the last round.

Algorithm 1 is rather clearly vulnerable to poorly synthesized data. For example, if the synthetic data
produced by agencies 1 and 2 are readily detectable, then even without retaining intermediate versions of
the database, agency 3 can identify the real data received from agency 2 in round 1. There is no guaranteed
way to eliminate risks associated with retained intermediate computations in Algorithm 1, other than the
agencies’ agreeing not to retain intermediate versions of the integrated database. Alternatively, the agencies
may simply accept the risks, since only a controllably small fraction of the data is compromised. Given the
“at least 5% of real data” requirement in Algorithm 1, agency 2 would be revealing 5% of its data to agency
3, agencies 2 and 3 would reveal collectively 5% of their data to agency 4, and so on. Reducing 5% to a
smaller value would reduce this risk, but at the expense of requiring more rounds.
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5.2 Algorithm 2

Algorithm 2 is more secure than Algorithm 1, but it is also much more complex. In particular, while
the algorithm will terminate in a finite number of stages, there is no fixed upper bound on this number.
By randomizing the order in which agencies add data not only are the risks reduced but also the need
for synthetic data is almost obviated. In addition to a growing integrated database, Algorithm 2 requires
transmission of a binary vectord = (d1, . . . , dK ), in which d j = 1 indicates that agencyj has not yet
contributed all of its data andd j = 0 indicates that it has.

Steps in Algorithm 2 are:

1. Initialization: A randomly chosen agency is designated as thestage 1 agency a1.

2. Stage 1: The stage 1 agencya1 initializes the integrated database with some synthetic data and at
least one real data record, and permutes the order of the records. Ifa1 has exhausted its data, it sets
da1 = 0. Then,a1 picks astage 2 agency a2 randomly from the set of agenciesj , other than itself, for
whichd j = 1, and sends the integrated database and the vectord to a2.

3. Intermediate stages2, . . .: As long as more than two agencies have data left, the stage` agencya`

adds at least one real data record and, optionally, as many synthetic data records as it wishes, to the
integrated database, and then permutes the order of the records. If its own data are exhausted, it sets
da`
= 0. It then selects the stage` + 1 agencya`+1 randomly from the set of agenciesj , other than

itself, for whichd j = 1 and sends the integrated database and the vectord to a`+1.

4. Final round: Each agency removes its synthetic data.

The attractive feature of Algorithm 2 is that because of the randomization of the “next stage agency,” no
agency can be sure which other agencies other than possibly the agency from which it received the current
integrated database has contributed real data to it. The number and order of previous contributors to the
growing integrated database cannot be determined. Nor—it if comes from the stage 1 agency—is there even
certainty that the database contains real data.

In fact, to a significant extent, Algorithm 2 does not even need synthetic data. The one possible exception
is stage 1. If only real data were used, an agency that receives data from the stage 1 agency knows that with
probability 1/(K − 1) that it is the stage 2 agency, and would, even with this low probability, be able to
associate them with the stage 1 agency, which is presumed to be known to all agencies. The variant of
Algorithm 2 that uses synthetic data at stage 1 and only real data thereafter seems completely workable.

5.3 Application: Secure Contingency Tables

The algorithms for secure data integration have both direct uses—to do data integration—and indirect appli-
cations. Here we illustrate the latter, using secure data integration to construct contingency tables containing
counts.

Let D be a database containing only categorical variablesV1, . . . , VJ . The associated contingency table
is theJ-dimensional arrayT defined by

T(v1, . . . , vJ) = #{r ∈ D : r1 = v1, . . . , r J = vJ}, (14)

where eachvi is a possible value of the categorical variableVi
3, #{·} denotes “cardinality of·” and r i is the

i th attribute of recordi . TheJ-tuple(v1, . . . , vJ) is called the cell coordinates. More generally, contingency

3For example, ifV1 is gender, then possible values ofv1 are “female” and “male.”
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tables may contain sums of numerical variables rather than counts; in fact the procedure described below
works in either case. The tableT is a near-universal sufficient statistic, for example for fitting log-linear
models [3].

While (14) defines a table as an array, this is not a feasible data structure for large tables—with many
cells, which are invariably sparse—with relatively few cells having non-zero counts. For example, the table
associated with the Census “long form,” which contains 52 questions, has more than 1015 cells (1 gigabyte =
109) but at most approximately 108 (the number of households in the US) of these are non-zero. Thesparse
representationof a table is the data structure of (cell coordinate, cell count) pairs(

v1, . . . , vJ, T(v1, . . . , vJ)

)
for only those cells for whichT(v1, . . . , vJ) 6= 0. Algorithms that use the sparse representation data struc-
ture have been developed for virtually all important table operations.

Consider now the problem of securely building a contingency table from agency databasesD1, . . . ,DK

containing the same categorical attributes for disjoint sets of data subjects. Given the tools described in §3,
5.1 and 5.2, this process is straightforward. The steps:

1. List of Non-Zero Cells: Use secure data integration (either protocol) to build the listL of cells with
non-zero counts. The “databases” being integrated in this case are the agencies’ individual lists of
cells with non-zero counts. The protocols in §5.1 and 5.2 allow each agency not to reveal in which
cells it has data in.

2. Non-Zero Cell Counts: For each cell inL, use secure summation to determine the associated count
(or sum).

6 Discussion

In this paper we have presented a framework for secure linear regression and other statistical analyses in a
cooperative environment, under various forms of data partitioning.

A huge number of variations is possible. For example, in the case of horizontally partitioned data, in
order to give the agencies flexibility, it may be important to allow them to withdraw from the computation
when the perceived risk becomes too great. Ideally, this should be possible without first performing the
regression. To illustrate, agencyj may wish to withdraw if its sample sizen j is too large relative to the
global sample sizen =

∑K
i=1 ni , which is the classicalp-rule in the statistical disclosure limitation literature

[44]. But,n can be computed using secure summation, and so agencies may “opt out” according to whatever
criteria they wish to employ, prior to any other computations. It is even possible, under a scenario that the
process does not proceed if any one of the agencies opts out, to allow the opting out itself to be anonymous.
Opting out in the case of vertically partitioned data does not make sense, however.

There are also more complex partitioning schemes. For example, initial approaches for databases that
combine features of the horizontally and vertically partitioned cases are outlined in Reiter,et al. [38]. Both
data subjects and attributes may be spread among agencies, and there may be many missing data elements,
necessitating EM-algorithm-like methods. Additional issues arise, however, that require both new abstrac-
tions and new methods. For example, is there a way to protect the knowledge of which agencies hold which
attributes on which data subjects? This information may be very important in the context of counterterrorism
if it would compromise sources of information or reveal that data subjects are survey respondents.
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Perhaps the most important issue is that the techniques discussed in this paper protect database holders,
but not necessarily database subjects. Even when only data summaries are shared, there may be substantial
disclosure risks. Consequently, privacy concerns about data mining in the name of counterterrorism might
be attenuated, but would not be eliminated, by use of the techniques described here. Indeed, while it seems
almost self-evident that disclosure risk is reduced by our techniques, this is not guaranteed, especially for
vertically partitioned data. Nor is there any clear way to assess disclosure risk without actually performing
the analyses, at which point it is arguably “too late.” Research on techniques such as those in §3–5 from this
“traditional” statistical disclosure limitation perspective is currently underway at NISS.
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