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Abstract

In this paper, we present a framework that enables computer model evaluation oriented
towards answering the question:

Does the computer model adequately represent reality?

The proposed validation framework is a six-step procedure based upon a mix of Bayesian sta-
tistical methodology and likelihood methodology. The methodology is particularly suited to
treating the major issues associated with the validation process: quantifying multiple sources
of error and uncertainty in computer models; combining multiple sources of information; and
updating validation assessments as new information is acquired. Moreover, it allows inferential
statements to be made about predictive error associated with model predictions in untested
situations.

The framework is illustrated on two test bed models (a pedagogic example and a resistance
spot weld model) that provide context for each of the six steps in the proposed validation process.

∗David Higdon and Marc Kennedy were central to the development of an earlier version of this framework.
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1 Introduction

1.1 Motivation and overview

We view the most important question in evaluation of a computer model to be

Does the computer model adequately represent reality?

An austere view expressed in Oreskes et al. (1994) is that validating a computer model cannot
be done and that the primary value of models is heuristic: models are representations, useful
for guiding further study but not susceptible to proof. This view has substantial basis in purely
scientific roles, as distinct from a models use in policy and engineering contexts. But the real
question, we contend, is not whether a model is absolutely correct or only a useful guide. Rather,
it is to assess the degree to which it is an effective surrogate for reality: does the model provide
predictions accurate enough for intended use?

The question and attitude we set is not new. It appears over and again in discussions and
comments on validation in many arenas over the years, at least as long ago as Caswell (1976). A
detailed discussion of many issues surrounding validation can be found in Berk et al. (2002). But,
incisive argument on the validity of models, seen as assessment of their utility, has been hampered
by the lack of structure in which quantitative evaluation of a models performance can be addressed.
It is our purpose here to explore structure and methodology to produce such evaluations.

In practice, the processes of computer model development and validation often occur in concert;
aspects of validation interact with and feed back to development (e.g., a shortcoming in the model
uncovered during the validation process may require change in the mathematical implementation).
In this paper, however, we address the process of computer model development only to the extent
that it interacts with the framework we envision for evaluation; the bulk of the paper focuses
on answering the basic question posed above. In particular, we do not address the issue of code
verification. General discussions of the entire Validation and Verification process can be found in
Roache (1998), Oberkampf and Trucano (2000), Cafeo and Cavendish (2001), Easterling (2001),
Pilch et al. (2001), Trucano et al. (2002), and Santner et al. (2003).

Tolerance bounds

To motivate the approach we take to model evaluation, it is useful to begin at the end, and
consider the type of conclusions that will result from the methodology. As noted above we do not
focus on answering the yes/no question “Is the model correct?” but rather on assessing accuracy
of predictions in uses of the model. This will be done by presenting tolerance bounds, such as
5.17 ± 0.44, for a model prediction 5.17, with the interpretation that there is a specified chance
(e.g., 90%) that the corresponding true process value would lie within the specified range. Such
tolerance bounds should be given whenever predictions are made, i.e., they should routinely be
included along with any predictions arising from use of the model.
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This focus on giving tolerance bounds, rather than stating a yes/no answer as to model validity,
arises for three reasons:

1. Models rarely give highly accurate predictions over the entire range of inputs of possible
interest, and it is often difficult to characterize regions of accuracy and inaccuracy.

2. The degree of accuracy that is needed can vary from one application of the computer model
to another.

3. Tolerance bounds account for model bias, the principal symptom of model inadequacy; accu-
racy of the model cannot simply be represented by a variance or standard error.

All these difficulties are obviated by the simple device of routinely presenting tolerance bounds
along with model predictions. Thus, at a different input value, the model prediction and tolerance
bound might be 6.28 ± 1.6, and it is immediately apparent that the model is considerably less
accurate at this input value than at the previous input, where the tolerance bound was ±0.44.
Either of the bounds, 0.44 or 1.6, might be acceptable or unacceptable, depending on the intended
use of the model.

Producing tolerance bounds is not easy. Here is a partial list of the hurdles one faces:

• There are uncertainties in model inputs or parameters, and these uncertainties can arise in
several ways: based on data, expert opinion, or simply a prior ‘uncertainty range.’

• When model runs are expensive, only limited model-run data may be available.

• Field data of the actual process under consideration may be limited and noisy.

• Output data may be of a variety of types, including functional data.

• Model runs may be made at input values different from those at which field data are observed.

• One may desire to ‘tune’ unknown parameters of the computer model based on field data,
and at the same time (because of sparse data) apply a validation methodology.

• There may be more tuning parameters than data.

• The computer model itself will typically be highly non-linear.

• Accounting for possible model bias is challenging.

• Validation should be viewed as an accumulation of evidence to support confidence in the
model outputs and their use, and the methodology should allow updating current conclusions
as additional information arrives.
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This paper describes an approach that deals with these hurdles and, utilizing a mix of Bayesian
and likelihood techniques, can produce usable tolerance bounds for computer model predictions,
thereby giving specific quantitative meaning to validation. Technical details of the approach are
given in Section 5 while the remainder of this section is given over to added discussion of validation
and the approach we recommend. Details addressing some of the listed hurdles are not given
because they are not needed for the testbed problems. For example, uncertainties in inputs based
on data are not addressed but can be accommodated in a straightforward way.

Bridging two philosophies

At the risk of considerable oversimplification, it is useful to categorize approaches to model evalua-
tion as being in two camps. In one, evaluation is performed primarily by comparing model output
to field data from the real process being modelled. The rationale for this predictive approach is
simple: the only way to see if a model actually works is to see if its predictions are correct.

The second camp focuses primarily on the model itself and tries to assess the accuracy or
uncertainty corresponding to each constructed element of the model. The rationale for this physical
approach is that, if all the elements of the model (including computational elements) can be shown
to be correct, then logically the model must give accurate predictions.

Our view lies in the predictive camp. Without demonstration of validity on actual field data
a modeller faces great difficulty in convincing others that all elements of the model are correctly
constructed. Insufficient field data may drive modellers to focus on the physical approach but the
lack of field data will always leave the model suspect.

Of course a Bayesian approach bridges both philosophies through informativeness of the priors.
The physical approach assumes a highly informative prior, the predictive approach (the one we
take) relying more on non-informative priors, even while taking advantage of information about
elements of the model.

Side benefits of the methodology

Implementation of the suggested methodology has these added implications:

1. The methodology allows explicit estimation of the bias of the model (together with the un-
certainty in the bias), through comparison with field data. This allows direct judgement as to
the validity of the model in various regions of the input space. In addition, the methodology
allows one to adjust the prediction by the estimated bias, and provides tolerance bounds for
this adjusted prediction. Depending on the size of the bias this can result in considerably
more accurate predictions than use of the model alone (or use of field data alone). Note,
however, that this adjustment might have limited utility in extrapolation to new situations,
unless one is willing to make strong assumptions about how the bias extrapolates.
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2. Predictions and tolerance bounds can be given for applications of the computer model to new
situations in which there are little, or no, field data, assuming information about ‘related’
scenarios is available; this can be done through hierarchical Bayesian analysis. We do not
address this in the current paper; the predictions below in the testbed examples are made
within the context of the given scenarios.

3. Fast approximations to the computer code are used (typically, needed) for the proposed
methods; these approximations have additional utility for use with complex computer codes
in other contexts – such as in optimization.

Background and Applicability

The key components of the approach outlined here are the use of Gaussian process response-surface
approximations to a computer model, following on work in Sacks et al. (1989), Currin et al. (1991),
Welch et al. (1992), and Morris et al. (1993), and introduction of Bayesian representations of
model bias and uncertainty, following on work in Kennedy and O’Hagan (2001) and Kennedy et al.
(2002). The Gaussian process approximations have proved valuable in real settings where functions
are complex and data are limited (for example, Gough and Welch (1994), Chapman et al. (1994),
Aslett et al. (1998)) and their adoption in the methodology we formulate is both natural and
convenient.

The main motivation for this paper is to outline the step-by-step process that was developed for
engineers to produce tolerance bounds that take into account the key uncertainties in the problem.
The process is illustrated in the paper on a simple pedagogical example – for which we know the
truth – and on an engineering example involving spot-welding.

The approach taken here results in a computational burden that significantly increases with
large numbers of model inputs, large numbers of unknown parameters, or a large amount of data
(model-run or field). Hence a primary concern is to focus on methods that have the potential to
significantly scale-up.

Originally, as described in the companion paper Higdon et al. (2004), a fully Bayesian approach
to the problem was developed. But this has difficulties in appropriately scaling up, and also requires
considerable expertise in MCMC computation. Hence we have focused instead on simplifications
such as ‘modularity’ (analyze components of the problem separately to the extent possible), and
use of maximum likelihood or other methods to reduce the computational burden and allow the
Bayesian part of the analysis to be stable.

Validation is intrinsically a hard statistical problem and analyses that produce tolerance bounds
for computer model predictions in complex situations can require considerable additional method-
ological development. Two such extensions of the methodology – to functional data – are considered
in Bayarri et al. (2005a) and Bayarri et al. (2005b). These extensions also consider uncertainty in
the computer model inputs, and could also be utilized for stochastic inputs.
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A related approach to Bayesian analysis of computer models is that of Craig et al. (1997),
Craig et al. (2001), Goldstein and Rougier (2003) and Goldstein and Rougier (2004), which focus
on utilization of linear Bayes methodology to address the problem. Another significant body of
work in the computer modeling area is that addressing the importance and uncertainty of input
variables and/or the corresponding output distributions (propagation of error) for example, Saltelli
et al. (2000), Oakley and O’Hagan (2002), Oakley (2004), Oakley and O’Hagan (2004). The
propagation of error issue appears, of course, in a host of scientific applications, a notable recent
one being Stainforth et al. (2005).

Overview

Section 1.2 provides an outline of the framework we adopt for computer model validation. The
pedagogical example introduced in Section 1.3 gives a simple context in which to display the
methodology and its consequences. The second testbed, also introduced in Section 1.3, is a resis-
tance spot welding model; it is succinctly described there with more details available in Bayarri
et al. (2002) and Higdon et al. (2004).

The proposed methodology for model evaluation is presented in Sections 2 to 6 with illustra-
tions on the two test bed models. Many technical details are placed in the appendices to prevent
their impeding the flow of the arguments. Our presentation is designed so that both engineers and
statisticians can follow the process we advance before technical details, notation, etc. are intro-
duced in Section 4 and Section 5. The reader who wishes to jump directly to the specifics of the
methodology may go from Section 1.2 to Section 5 or, better still, from Section 2.2 to Section 5.

1.2 Sketch of the framework

Validation can be thought of as a series of activities or steps. These are roughly ordered by the
sequence in which they are typically performed. The completion of some or all in the series of
activities will often lead to new issues and questions, requiring revision and revisiting of some or all
of the activities, even if the model is unchanged. New demands placed on the model and changes
in the model through new development make validation a continuing process. The framework must
allow for such dynamics.

Step 1. Specify model inputs and parameters with associated uncertainties or ranges
– the Input/Uncertainty (I/U) map This step requires considerable subject-matter expertise
to help set priorities among a (possibly) vast number of inputs as well as specify uncertainties, often
as prior distributions of inputs. As information is acquired through undertaking further steps of
the validation process, the I/U map is revisited, revised and updated.
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Step 2. Determine evaluation criteria The defining criteria must account for the context in
which the model is used, the feasibility of acquiring adequate computer-run and field data, and the
methodology to permit an evaluation. In turn the data collection and analyses will be critically
affected by the criteria. Moreover, initially stated criteria will typically be revisited in light of
constraints and results from later analyses.

Step 3. Data collection and design of experiments Both computer and field experiments
are part of the validation (and development) processes; multiple stages of experimentation will be
common. The need to design the computer runs along with field experiments can pose non-standard
issues. As noted above, any stage of design must interact with other parts of the framework,
especially the evaluation criteria.

Step 4. Approximation of computer model output Model approximations (fast surrogates)
are usually key for enabling the analyses carried out in Step 5.

Step 5. Analyses of model output; comparing computer model output with field
data Uncertainty in model inputs will propagate to uncertainty in model output and estimating
the resulting output distribution is often required. The related ‘sensitivity analysis’ focuses on
ascertaining which inputs most strongly affect outputs, a key tool in refining the I/U map.

Comparing model output with field data has several aspects.

– The relation of reality to the computer model (“reality = model + bias”),

– Statistical modelling of the data (computer runs and field data where “field data = reality +
measurement error”),

– Tuning/calibrating model input parameters based on the field data,

– Updating uncertainties in the parameters (given the data),

– Accuracy of prediction given the data.

The Bayesian methods (see Section 5) play a crucial role here.

Step 6. Feedback information into current validation exercise and feed-forward in-
formation into future validation activities Feedback refers to use of results from Step 5 to
improve aspects of the model, as well as to refine aspects of the validation process. Feed-forward
refers to the process of utilizing validations of current models to predict the validity of related
future models, for which field data are lacking.
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1.3 Testbeds

The testbeds provide context for implementing each step of the framework and also prompt consid-
eration of a variety of issues. Testbed 1 is a synthetic example, introduced for pedagogical reasons
to illustrate the methodology in a situation where the truth is known; the example should not
be viewed as a full model validation study. Testbed 2 is an application drawn from engineering
practice.

Testbed 1 – The Pedagogic Example This example is based on a suggestion by G. McRae
[personal communication] and it builds on the kinetics of the chemical reaction SiH4 → Si+2H2.
Letting y(t) denote the concentration of SiH4 as a function of time,

dy(t)/dt = −uy(t), y(0) = y0,

where y0 is the initial concentration and u is an unknown rate that is specific to this chemical
reaction; in our later terminology, u is an unknown calibration parameter. As a consequence,

y(t) = y0 exp(−ut) . (1.1)

Imagine that, in actual experiments, a residual concentration of c units is left unreacted, so
that the kinetics governing the actual experiment is

y(t) = (y0 − c) exp(−ut) + c . (1.2)

In our consideration of this example, we will set y0 = 5.0, assumed known to the analyst, and
c = 1.5 and u = u? = 1.7, assumed to be unknown. This, of course, is a great oversimplification
of a potentially real example; we only use these set values to display various characteristics
of the methodology we use. We will utilize the notational convention that a “?” subscript to
a parameter of a computer model indicates the true unknown value of the parameter for the
real process under consideration: here, the true chemical reaction rate. (c does not have a star
because it is a part of reality that is not even being modeled.) Thus (1.2) is the real process
(with the parameter values as indicated above), while (1.1) is to be viewed as the math model
that can provide a computer model-based estimate of the concentration of SiH4 (for any values
of t and u). Note that the discrepancy between reality and the computer model – which we will
later call the bias function – is c[1− exp(u? t)], a nonlinear function of the inputs.

In addition, assume that experiments on the real process are governed by (1.2) subject to a
normal measurement error having mean zero (i.e., the experiment is unbiased) and unknown
variance. Details concerning the data are given in Section 3.

Testbed 2 – The Spotweld Example In resistance spot welding, two metal sheets are com-
pressed by water-cooled copper electrodes, under an applied load, L. Figure 1 is a simplified
representation of the spot weld process, illustrating some of the essential features for producing
a weld. A direct current of magnitude C is supplied to the sheets via the two electrodes to cre-
ate concentrated and localized heating at the interface where the two sheets have been pressed
together by the applied load (the so-called faying surface). The heat produced by the current
flow across the faying surface leads to melting and, after cooling, a weld “nugget” is formed.
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Figure 1: Schematic representation of the spotwelding process.

The resistance offered at the faying surface is particularly critical in determining the mag-
nitude of heat generated. Because contact resistance at the faying surface, as a function of
temperature, is poorly understood a nominal function is specified and “tuned” to field data.
The effect of this tuning on the behavior of the model is the focus of the example.

The physical properties of the materials will change locally as a consequence of local increase
in temperature. Young’s modulus and the yield stress of the sheet will fall (that is, the metal
will “soften”) resulting in more deformation and increase in the size of the faying contact sur-
face, further affecting the formation of the weld. At the same time, the electrical and thermal
conductivities will decrease as the temperature rises; all of which will affect the rate of heat
generation and removal by conduction away from the faying surface.

The thermal/electrical/mechanical physics of the spot weld process is modelled by a coupling
of partial differential equations that govern heat and electrical conduction with those that gov-
ern temperature-dependent, elastic/plastic mechanical deformation (Wang and Hayden 1999).
Finite element implementations are used to provide a computer model of the electro-thermal
conceptual model. Similarly, a finite element implementation is made for the equilibrium and
constitutive equations that comprise the conceptual model of mechanical/thermal deformation.
These two computer models are implemented using a commercial code (ANSYS).

Key inputs of the model are summarized in Table 1; interesting outputs are discussed in
Section 2.2

2 Understanding the Model and Its Uses (Steps 1 and 2)

Understanding the uncertainties associated with the computer model and how the model is used
are initial steps in the validation process.
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2.1 Step 1. Specify model inputs and parameters with associated uncertainties

or ranges – the Input/Uncertainty (I/U) Map

A convenient way to organize information about inputs and their uncertainties is through what we
call the Input/Uncertainty map. (This is related to the idea of a PIRT – see Pilch et al. 2001.)
The map has four attributes:

a) A list of model features or inputs of potential importance,

b) A ranking of the importance of each input,

c) Uncertainties, either distributions or ranges of possible values, for each input, and

d) Current status of each input describing how the input is currently treated in the model.

The I/U map is dynamic: as information is acquired and the validation process proceeds, the
attributes, especially b)-d), may change or require updating.

The inputs are drawn from the development process. They will include parameters inherent to
the scientific/engineering assumptions, the mathematical implementation and numerical parameters
associated with the implementing code. In short, the inputs are the ingredients necessary to make
the model run. Because this list can be enormous, more important parameters must be singled out
to help structure the validation process by providing a sense, albeit imperfect, of priorities. We
adopt a scale of 1–5 for ranking the inputs with 1 indicating only minor likely impact on prediction
error and 5 indicating significant potential impact.

Pedagogic: The two inputs, time t and calibration parameter u, are a complete set of inputs.
Each is anticipated to be of rank 5. We are going to focus interest on the first 3.0 units of time,
and the range of interesting values of u is going to be (0, 3). A uniform distribution on this
range is assumed to capture the uncertainty about the true value of u.

Spotweld: The purpose of the spot weld model is to investigate the process parameters for
welding aluminum. The I/U map of the model is in Table 1. The list of inputs in Table 1
is more fully described in Bayarri et al. (2002). Initially, only three inputs have rank 5 based
on the model developer’s assessment. These three parameters (and gauge) are the focus of the
validation experiments; earlier experiments by the model developer led to the impact assessments
appearing in the table. The specified ranges of the controllable parameters, current, load, and
gauge, are given in Step 2. There is assumed to be “no uncertainty” about these inputs, either in
the computer model or in the laboratory data collected for the Validation exercise. (In contrast,
if validation of the model were required at the production level, then uncertainties in current
and load might be significant–the I/U map is context-dependent.)

There are several specific items connected with the I/U map in Table 1 that are worth noting.
First, the most significant specified uncertainty (impact factor 5) in the model is that of contact
resistance. The model incorporates contact resistance through an equation that, for the faying
surface, has a multiplicative constant u about which it is only known that u lies in the interval
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[0.8, 8.0]. It will be necessary to tune this parameter of the model with field data. The second
most significant uncertainty in the model (impact factor 4) is the linear approximation for
stress/strain. The modeler was unable to specify the uncertainty regarding this input, and so
error in this input will simply enter into the overall unknown (and to be estimated) bias of the
model.

INPUT IMPACT UNCERTAINTY CURRENT
STATUS

Geometry electrode
symmetry-2d 3 unspecified fixed

cooling channel 1 unspecified fixed
gauge unclear unspecified 1, 2mm

materials unclear Aluminum (2 types fixed
× 2 surfaces)

Stress/ 4 unspecified fixed
strain piecewise linear (worse at high T)

C0, C1, σs 3 unspecified fixed
1/σ = u · f ; f fixed 3 unspecified fixed by modeler

contact u = 0 for tuned to data
resistance electrode/sheet 5 u ∈ [0.8, 8.0] for 1 metal

u = tuning for faying
thermal 2 unspecified fixed

conductivity κ
current 5 no uncertainty controllable

load 5 no uncertainty controllable
mass density (ρ) 1 unspecified fixed
specific heat (c) 1 unspecified fixed

mesh 1 unspecified convergence/speed
numerical M/E coupling time 1 unspecified compromise
parameters boundary 1 unspecified

conditions fixed
initial conditions 1 unspecified fixed

Table 1: The I/U map for the spot weld model

Initial impact assessments are based on experience to reflect a combined judgment of the inher-
ent sensitivity of the input (the extent to which small changes in the input would affect the output)
and the range of uncertainty in the input. These may be revised through sensitivity analyses and
‘tuning with data’ that occur later in the process. Inputs about which we are “clueless” might be
singled out for attention at some point along the validation path but the effect of “missing” inputs
(i.e., non-modeled features) may never be quantifiable or only emerge after all effects of “present”
inputs are accounted for.

In model validation, attention may need to be paid to the numerical accuracy of the imple-
mented model: for instance, in assessing if numerical solvers and finite element (FEM) codes have
‘converged’ to the solution of the driving differential equations. This can be important and, as de-
tailed in Cafeo and Cavendish (2001), is an issue of model and code verification. Ideally, numerical
accuracy should be addressed early in the model development process and prior to the validation
activity emphasized in this paper. It is often the case, however, that convergence will not have
been obtained. For example, modelers may simply use the finest mesh size that is computationally
feasible, even if insufficient for assuring convergence. The method we propose for validation still
works: the error introduced by a lack of convergence becomes part of the ‘bias’ of the model that is
to be assessed (see Section 5). The I/U map should, of course, clearly indicate the situation involv-
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ing such convergence. The possible confounding effect of parameters, such as grid size, on other
assumptions about the model will make it more difficult to improve the model. Ideally, identifying
this effect could be done through designed experiments, varying values of the numerical parameters
in order to assess numerical accuracy.

2.2 Step 2. Determine evaluation criteria

Evaluation of a model depends on the context in which it is used. Two key elements of evaluation
are:

• Specification of an evaluation criterion (or criteria) defined on model output

• Specification of the domain of input variables over which evaluation is sought.

Even if only one evaluation criterion is initially considered, other evaluation criteria inevitably
emerge during the validation process. The overall performance of the model may then depend
on the outcomes of the validation process for several evaluation criteria – the model may fail for
some and pass for others – leading ultimately to follow-on analyses about when and how the model
should be used in prediction.

Informal evaluations are typical during the development process – does the computer model
produce results that appear consistent with scientific and engineering intuition? Later in the
validation process these informal evaluations may need to be quantified and incorporated in the
“formal” process. Sensitivity analyses may, in some respects, be considered part of evaluation if,
for example, the sensitivities confirm (or conflict with) scientific judgment.

The evaluation criteria can introduce complexities that would need to be addressed at Steps 4–6,
but these complexities may also affect the choices made of the criteria. For example, an evaluation
criterion that leads to comparisons of curves or surfaces or images places greater demands on the
analyst than simpler scalar comparisons.

Of necessity, the specifications must take into account the feasibility of collecting data, particu-
larly field data, to carry out the validation. This can be further complicated by the need to calibrate
or tune the model using the collected data; the tuning itself being driven by the specifications.

For the pedagogic example, we are going to be fairly vague about evaluation criteria. We are
interested in determining how closely the computer model reproduces the concentration curves we
are going to observe in the “field”. For spotweld, matters are somewhat more complicated.

Spotweld: Two evaluation criteria were initially posed:

I. Size of the nugget after 8-cycles,

II. Size of the nugget as a function of the number of cycles.

The first criterion is of interest because of the primary production use of the model; the second
as a possible aid in reducing the number of cycles to achieve a desired nugget size. Ideally the
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evaluation would be based directly on the strength of the weld, but weld diameter is taken as
a surrogate because of the feasibility of collecting laboratory data on the latter. (Of course,
if nugget size was not strongly correlated with weld strength, these criteria would probably be
inappropriate.) In production, the spot welding process results in a multiple set of welds, but
the evaluation criterion considered here involves only a single weld. Criterion (II) was later
discarded as a result of the difficulty during data collection of getting reliable computer runs
producing output at earlier times than 8-cycles.

The feasible domains of the input variables were specified to be:

– Material: Aluminum 5182-O and Aluminum 6111-T4,

– Surface: treated or untreated,

– Gauge (mm): 1 or 2,

– Current (kA): 21 to 26 for 1mm aluminum; 24 to 29 for 2mm aluminum,

– Load (kN): 4.0 to 5.3.

Material and surface might enter the model through other input variables relating to properties
of materials. Our initial specification in Table 1 considers material and surface as fixed. The
tuning parameter, u, has the range indicated In Table 1 and is the only other input that is not
fixed.

3 Data Collection (Step 3)

Both computer and field (laboratory or production) experiments are part of the validation and
development processes and produce data essential for

• Developing needed approximations to (expensive) numerical models,

• Assessing bias and uncertainty in model predictions,

• Studying sensitivity of a model to inputs,

• Identifying suspect components of models,

• Designing and collecting data that build on, and augment, existing, or historical, data.

The iterative and interactive nature of the validation and development processes will result in
multiple stages of computer experiments and even field experiments.

Intuitively, designs should cover the ranges of the key input values and “space-filling” strategies
can be devised to accomplish this in an effective way (Sacks et al. 1989; Bates et al. 1996). The spe-
cific strategy we use is to select a (maximin) Latin Hypercube Design satisfying maxLHD mini,j δ(zi, zj)
where δ is a distance on the experimental space. We use code from W. Welch to produce such de-
signs.
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t u yM (·)
2.159 1.145 0.422
0.941 2.000 0.761
0.303 0.710 4.032
0.709 1.040 2.392
1.753 1.895 0.180
1.144 0.605 2.502
0.506 1.685 2.132
2.391 1.565 0.118
1.956 0.500 1.880
1.550 0.935 1.174
2.594 0.815 0.604
2.797 1.790 0.033
1.347 1.460 0.700
0.100 1.355 4.366
3.000 1.250 0.118

Table 2: Pedagogic example: model data at the 15 selected design points.

Pedagogic: The computer model is given by equation (1.1) (with y0 = 5.0) which is obviously
easy to compute. In such cases one can by-pass construction of the computer experiment and
development of the model approximation in Section 4, directly incorporating the formula for
the computer model into the analyses in Section 5 (see, for example, Paulo et al. (2004)). For
illustrative and comparative purposes, however, we treat this problem as if the computer model
were in fact computationally intensive to run.

We exercised the computer model (1.1) on a 15-point maximin LHD on the 2-dimensional
rectangle [0.5, 2.0]× [0.1, 3.0] in (u, t) space. The 15 inputs, and corresponding model (function)
values are given in Table 2. These will be used in developing the ‘fast approximation’ to the
code.

Spotweld: The inputs to be varied were C = current, L = load, G = gauge, and the unknown
tuning parameter u; the other inputs were held fixed. The cost – thirty minutes per computer
run – is high, so a limited number, 26, of runs were planned for each of the two gauge sizes. The
26 runs for 1 mm metal covered the 3-dimensional rectangle, [20, 27]× [3.8, 5.5]× [1]× [1.0, 7.0],
in the (C, L,G, u) space, while those for the 2mm metal covered the 3-dimensional rectangle,
[23, 30]× [3.8, 5.5]× [2]× [0.8, 8.0]. The explicit values of the 26-point maximin LHDs are given
in Table 3, along with the resulting model output for the nugget diameter.

The computer runs exhibited some aberrant behavior. Many (17) runs failed to produce a
meaningful outcome at cycle 8; these runs were eliminated. For reasons that are not yet clear
many runs were unable to produce reliable data for earlier cycle times; as a result evaluation
criteria depending on early cycle times were abandoned. The data retained (35 runs) are used
in the subsequent analyses.

Field data will usually be harder to obtain than computer experimental data and, as in spotweld,
are often a result of other experiments not designed for the validation study. Typically, field data
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Gauge u Load Current Nugget Gauge u Load Current Nugget
Dia. Dia.

(mm) (-) (kN) (kA) (mm) (mm) (-) (kN) (kA) (mm)
1 6.52 4.072 26.44 – 2 4.544 3.936 27.76 7.15
1 4.60 4.684 21.68 5.64 2 5.696 4.14 25.52 6.39
1 3.64 5.024 23.64 – 2 1.088 4.684 28.32 6.38
1 7.00 4.412 23.36 – 2 0.8 4.276 24.40 4.87
1 6.76 4.888 25.04 – 2 3.68 4.412 26.08 6.47
1 1.00 4.82 22.52 4.36 2 4.832 4.616 23.00 6.68
1 3.40 4.616 27.00 – 2 7.136 4.344 27.20 6.71
1 5.32 4.48 20.84 6.12 2 4.256 5.228 24.68 6.54
1 2.92 5.092 20.56 5.00 2 3.392 4.004 23.28 5.97
1 1.48 5.364 21.12 4.53 2 1.952 4.48 23.84 5.72
1 2.20 4.004 21.40 5.20 2 2.528 3.8 24.96 6.23
1 2.68 4.344 25.88 – 2 2.24 4.208 29.72 –
1 2.44 5.50 23.08 – 2 1.376 5.024 25.80 5.46
1 4.36 3.80 25.32 – 2 7.424 4.072 28.88 –
1 1.24 4.208 24.76 6.06 2 6.272 4.548 29.16 7.36
1 6.04 4.752 20.00 – 2 6.848 5.364 23.56 –
1 5.56 5.432 25.60 – 2 3.968 4.888 29.44 7.16
1 1.96 4.956 26.16 6.69 2 3.104 5.432 28.60 6.61
1 5.80 3.936 23.92 7.17 2 5.12 5.5 26.64 5.98
1 4.84 4.14 22.80 – 2 6.56 3.868 26.36 6.74
1 3.16 3.868 22.24 5.71 2 5.984 4.956 24.12 5.32
1 6.28 5.228 21.96 5.38 2 8 5.092 28.04 –
1 1.72 4.548 24.20 5.85 2 2.816 4.82 26.92 6.70
1 5.08 5.16 26.72 – 2 5.408 5.16 30.00 –
1 4.12 5.296 24.48 6.87 2 1.664 5.296 27.48 6.02
1 3.88 4.276 20.28 4.91 2 7.712 4.752 25.24 5.50

Table 3: Spotweld data from 52 model runs. Run failures indicated by –

will depend crucially on the specifications in Section 2.2 and what can be feasibly obtained; specific
design strategies usually seem to have little role.

The field data obtained in the two test beds is as follows.

Pedagogic: In order to simulate field data, recall that “reality” was specified by (1.2) with
c = 1.5 and u? = 1.7. For these values, we computed equation (1.2) at an equally-spaced grid of
ten values of t in the interval (0.11, 3.01). For each value of these ten true values, we obtained
3 replicate field observations by adding independent N(0, 0.32) noise to the true value. The
resulting data can therefore be thought of as the result of three independent replicates in a lab
experiment measuring the concentration of SiH4 on the specified grid of time points. These data
are given in Table 4. In the analysis, we will, of course, presume that u? and c are unknown.

Spotweld: The field data for spotweld is given in Table 5. It was obtained by physical exper-
imentation, the details of which made reasonable the assumption that the measurement errors
are independent normal, with mean zero and unknown variance.
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t yF (·)
0.110 4.730 4.720 4.234
0.432 3.177 2.966 3.653
0.754 1.970 2.267 2.084
1.077 2.079 2.409 2.371
1.399 1.908 1.665 1.685
1.721 1.773 1.603 1.922
2.043 1.370 1.661 1.757
2.366 1.868 1.505 1.638
2.688 1.390 1.275 1.679
3.010 1.461 1.157 1.530

Table 4: Pedagogic example: field data consists of 3 replicate observations of the process (plus
noise) at each of 10 input values.

L C G yF (·)
4.00 21.0 1 4.81 5.08 5.09 4.84 5.40 5.14 4.92 5.31 4.95 4.80
4.00 23.5 1 5.31 6.52 5.89 5.51 5.77 4.96 5.04 5.22 5.54 6.36
4.00 26.0 1 5.52 6.62 5.97 5.76 6.13 5.82 5.81 6.00 6.00 6.52
5.30 21.0 1 5.09 4.43 4.63 5.01 5.07 4.14 4.03 4.30 4.09 4.02
5.30 23.5 1 5.11 5.17 5.71 5.60 5.85 4.60 5.51 4.82 6.37 5.23
5.30 26.0 1 5.34 5.19 5.86 5.94 5.98 5.09 5.43 5.14 5.21 5.73
4.00 24.0 2 6.78 5.89 6.49 6.78 6.81 7.00 7.16 6.68 6.68 6.98
4.00 26.5 2 6.62 6.54 6.30 6.00 6.67 6.89 7.15 5.99 5.90 7.29
4.00 29.0 2 7.28 6.98 7.46 7.87 8.02 6.97 8.15 7.14 7.55 7.75
5.30 24.0 2 6.62 6.74 6.59 6.39 6.45 6.64 5.59 6.30 5.64 6.05
5.30 26.5 2 7.25 6.80 6.50 6.36 7.67 7.14 5.95 7.10 7.57 7.08
5.30 29.0 2 7.62 7.71 8.14 7.26 8.37 7.68 6.95 6.41 8.35 7.50

Table 5: Spotweld example: field data consists of 10 replicate observations of nugget size at each
of 12 input values.

17



Note: In both examples, replicated data was available at the various input values. Having such
replicate data is highly desirable, in that doing a reasonable job of pinning down the measurement
error variance makes the validation analysis considerably more accurate.

4 Model Approximation (Step 4)

4.1 Introduction

Unless the computer model code is very cheap to run, it is difficult to use the code directly to perform
the validation analysis, since validation (see Section 5) typically requires many code evaluations. It
is thus common to utilize approximations to the computer model – based on a limited number of
runs – for validation. There are other reasons for desiring such approximations, such as ease of use
“in the field” (as compared to use of the original code), in optimization (where typical algorithms
may again require many evaluations of the code), and in ‘output analysis’ (which is analysis of
senstivity of outputs to inputs or analysis of output distributions based on random inputs.)

A very useful general tool for models whose output depends smoothly on inputs (very common
in engineering and scientific processes) is the Gaussian process response surface technique (GASP)
advanced in Sacks et al. (1989) and frequently utilized subsequently (Currin et al. 1991; Morris
et al. 1993; Kennedy and O’Hagan 2001; Santner et al. 2003; Higdon et al. 2004). This technique
meshes well with the validation analysis proposed in Step 5.

More formally, denote model output by yM (x, u), where x is a vector of controllable inputs
and u is a vector of unknown calibration and/or tuning parameters in the model. The goal is to
approximate yM (x, u) by a function ŷM (x, u) that is easy to compute. In addition, it is desirable
to have a variance function V M (x,u) that measures the accuracy of ŷM (x, u). We turn now to the
details of how the GASP approach achieves these goals.

4.2 The GASP response-surface methodology

Let yM = (yM (x1,u1), . . . , yM (xm, um)) denote the vector of m evaluations of the model at inputs
DM = {(xi,ui) : i = 1, . . . , m} and write z = (x,u). The computer model is exercised only at
the inputs DM , so that yM (z) is effectively unknown for other inputs z 6∈ DM . Before seeing yM ,
we assign yM (·) a prior distribution, specifically, a stationary Gaussian process with mean and
covariance functions governed by unknown parameters θL and θM = (λM ,αM ,βM ), respectively.
(Since in applications we only deal with a finite set of zi, the Gaussian process at these points
reduces to a multivariate normal distribution, so in essence we are assuming that the output of the
code at any finite number of locations has a multivariate normal distribution.)

The mean function of the Gaussian process is assumed to be of the form Ψ′(·)θL where Ψ(z)
is a specified k × 1 vector function of the input z and θL is a k × 1 vector of unknown parameters.
A constant mean (k = 1, Ψ(z) = 1, and θL = θ) is often satisfactory if one plans only to use
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the model approximation within the range of the available model-run data. A more complicated
mean function can be useful if the model approximation is to be used outside the range of the
data because outside of this range the Gaussian process approximation to the model will gradually
tend towards its estimated mean function. This can be especially important when features such as
temporal trends are present.

The parameter λM is the precision (the inverse of the variance) of the Gaussian process and
the other parameters (αM , βM ) control the correlation function of the Gaussian process, which we
assume to be of the form

cM (z,z?) = exp


−

d∑

j=1

βM
j |zj − zj

?|αM
j


 . (4.3)

Here, d is the number of coordinates in z, the αM
j are numbers between 1 and 2, and the βM

j

are positive scale parameters. The product form of the correlation function (each factor is itself
a correlation function in one-dimension) helps the computations made later. Prior beliefs about
the smoothness properties of the function will affect the choice of αM . The choice αM

j = 2 for
all j reflects the belief that the function is infinitely differentiable, which is plausible for many
engineering and scientific models.

This can be summarized by saying that, given the hyper-parameters θL and θM = (λM , αM , βM ),
the prior distribution of yM is GP(Ψ′(·) θL, 1

λM cM (·, ·) ), i.e., a Gaussian process with the given
mean and covariance functions.

As before, let yM denote the vector of model evaluations at the set of inputs DM . Conditionally
on the hyperpartameters, yM is, a priori , multivariate normal with covariance matrix ΓM =
CM (DM , DM )/λM , where CM (DM , DM ) is the matrix with (i, j) entry cM (zi, zj), for zi,zj in
DM .

After observing yM , the conditional posterior distribution of yM given the hyperparameters,
p(yM (·) | yM , θL, θM ), is a Gaussian process with updated mean and covariance functions given by

E[ yM (z) | yM ,θL, θM ] = Ψ′(z) θL + rz
′(ΓM )−1(yM −XθL) (4.4)

Cov[ yM (z), yM (z?) | yM ,θL,θM ] =
1

λM
cM (z, z?)− rz

′(ΓM )−1rz? , (4.5)

where rz
′ = 1

λM (cM (z, z1), . . . , cM (z, zm)), ΓM is given above and X is the matrix with rows
Ψ′(z1), . . . ,Ψ′(zm).

With specifications for θL and θM , the GASP behaves as a Kalman filter, yielding a posterior
mean function (4.4) that can be used as the fast approximation or inexpensive emulator for yM (·).
Thus (given (θL, θM )), the response surface approximation to yM (z), at any point z, is simply
E[ yM (z) | yM ,θL,θM ] given by (4.4), and the variance measuring the uncertainty in this approxi-
mation is, following (4.5), Var[ yM (z) | yM , θL,θM ] = 1/λM−r′z(ΓM )−1rz. Note that the variance
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is zero at the design points at which the function was actually evaluated: the GASP approximation
is an interpolator of the data.

Unfortunately, the hyper-parameters (θL, θM ) are rarely, if ever, known. Two possibilities then
arise:

1. Plug-in some estimates in the above formulae, for instance maximum likelihood estimates (as
in the GASP software of W. Welch), pretending they are the ‘true’ values. For MLE estimates
(θ̂

L
, θ̂

M
), this produces the following model approximation for input z:

ŷMLE(z) = Ψ′(z) θ̂
L

+ r̂′z(Γ̂
M

)−1(yM −Xθ̂
L
) ,

where θ̂
M

= (λ̂M , α̂M , β̂
M

) is used to compute Γ̂
M

and r̂z. Similarly, VarMLE[ yM (z) |
yM , θ̂

L
, θ̂

M
] = 1/λ̂M − r̂′z(Γ̂

M
)−1r̂z is used as the estimate of the approximation variance.

This results in an underestimate of the true variability, since the uncertainty in the estimates
of θ̂

L
and θ̂

M
is not taken into account.

2. Integrate the hyper-parameters with respect to the posterior distribution in a full Bayesian
analysis (as detailed in Paulo 2005), leading to a more appropriate approximation: the integral
of (4.4) with respect to the posterior distribution of (θL,θM ), p(θL, θM | yM ). This is done
in practice by, using MCMC techniques, generating N (large) values {(θL(i),θM(i))} from this
posterior distribution, evaluating (4.4) at these generated values, and averaging. The variance
of this approximation is obtained by adding two terms: the posterior expectation of (4.5) and
the posterior variance of (4.4). In practice, these terms are estimated, respectively, by the
sample average of (4.5) and by the sample variance of (4.4) evaluated at the generated values
(θL(i), θM(i)). Alternatively, one may wish to draw realizations from the marginal posterior
of yM (z), p(yM (z) | yM ), directly, and then compute appropriate summary statistics. This
can be done in practice by, for each generated value (θL(i), θM(i)) computing (4.4) and (4.5)
and then drawing a normal random variable with mean and variance given by these numbers.

Pedagogic: In the setting of the pedagogic example, t is a controllable input and u is a cali-
bration parameter. Figure 2 shows the approximations and associated 90% pointwise posterior
intervals for the output of model (1.1), as a function of t, at the input value u = 1.5. The top
panel was produced using the MLE plug-in strategy, while the bottom panel is the result of a
full Bayesian analysis. These approximations are based on applying the GASP methodology to
the the 15 model evaluations given in Table 2. Note that the approximations track the true
model (function) values very well. Note, also, that the approximation has nearly zero variance
when it is being done near one of the input values at which the computer model was evaluated.

Spotweld: The vector of controllable inputs is x = (C, L, G), the tuning parameter is u. Use
of a GASP full Bayesian analysis with the data from Table 3 leads to the response surface
approximation to yM (C,L, G, u) that can be seen in Figure 8 of Higdon et al. (2004). The MLE
approximation is very similar, and hence is omitted.
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Figure 2: Pedagogic Example: Prediction of yM (·, u) where u = 1.5 using GASP approximation.
Top panel corresponds to the maximum likelihood plug-in approach, bottom panel corresponds to
full Bayesian approach. Dashed lines are pointwise 90% confidence bands.
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4.3 MLE plug-in or full Bayes?

The full Bayesian analysis is theoretically superior, because the resulting variance takes into account
the uncertainty in the GASP parameters. Thus, in Figure 2, the full Bayes analysis does indicate
considerably larger uncertainty for certain values of t. Because the function being approximated
is very smooth in this example, the additional uncertainty is not really needed, but it could be
relevant if approximating less smooth models. The advantage of using the MLE plug-in approach
is, of course, computational; it is much easier to implement a GASP with fixed parameters than
averaging GASPs over a posterior sample of parameters.

The primary focus in this paper is not in model approximation itself, but in the valida-
tion/prediction analysis discussed in the next section. In such analyses, we have found that use
of the maximum likelihood estimates of the GASP parameters typically yields much the same an-
swers as the full Bayesian analysis, at least when tuning/calibration parameters are present in the
computer model. The reason is that the uncertainty in calibration and tuning parameters, together
with the uncertainty in the ‘bias’ of the computer model, tend to overwhelm the uncertainty in the
model approximation. Hence our current (cautious) recommendation is to use MLE plug-in GASPs,
together with Bayesian analysis of the validation/prediction process. This allows implementation
of the validation methodology in vastly more complicated scenarios (Bayarri et al. 2005a) than
would otherwise be possible.

5 Analysis of Model Output (Step 5)

In this section, we describe the structure (statistical model) and analysis we use for computer model
evaluation, and illustrate the methods using the test bed examples. Some technical details that
threaten to cloud the exposition are relegated to appendices.

The section is organized as follows: we start by describing the statistical structure and necessary
notation. In Section 5.2 we address computation of the posterior distributions, predictions and
tolerance bounds, the heart of the matters at hand.

5.1 Notation and statistical modeling

The computer model approximates reality and the discrepancy between the model and reality is
the model bias. Accounting for this bias is the central issue for validation. There are (at least)
three sources for this bias:

1. The science or engineering used to construct the model is incomplete.

2. Calibrated/tuned parameters may be in error.

3. Numerical implementation may introduce errors (e.g., may not have converged).
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The first two sources are typical; the third occurs with some frequency.
The computer model alone cannot provide evidence of bias. Either expert opinion or field

data are necessary to assess bias – we focus on the latter. If field data are unavailable (even from
experiments involving related models), strict model validation is impossible. Useful things may
still be said, but the ultimate goal of being able to confirm accuracy of predictions will not be
attainable.

Recall that yM (x, u) denotes the model output when (x, u) is input. When u is not present,
we formalize the statement “reality = model + bias” as

yR(x) = yM (x) + b(x) , (5.6)

where yR(x) is the value of the ‘real’ process at input x and b(x) is the (unknown) bias function.
When u is present as a calibration parameter, we call its true (but unknown) value u?, and then
bias is defined via

yR(x) = yM (x,u?) + bu?(x) . (5.7)

In situations where u is viewed as simply a tuning parameter there is no ‘true value’, so u? should
be thought of as some type of best fit value of u, with the bias defined relative to this. Note that
there is confounding between u? and the bias function, i.e. they are not statistically identifiable.
This important issue is discussed in Section 5.3, as it has profound implications for the possible
types of analysis; in particular the natural way to deal with a lack of identifiability is to utilize
prior information to provide identification or, at least, use Bayesian analysis to properly account
for the uncertainty caused by the non-identifiability. For notational convenience we will often drop
the dependence of b on the true value of the calibration parameter.

Field data at inputs x1, x2, . . . ,xn are assumed to be “reality” measured with error. Specifically,

yF (xi) = yR(xi) + εF
i (5.8)

where the εF
i are independent normal random errors with mean zero and variance 1/λF . This equa-

tion may only be reasonable after suitable transformation of the data and, often, more complicated
error structures (such as correlated errors) are needed; these can typically be accommodated with
some additional computational effort. Note that u is not an input in determining the field data.

The assumption that εF has mean zero implies there is no bias in the field measurements
i.e., the measurement process is “well-calibrated”. Otherwise, the situation is problematic: the
estimated bias will be a combination of both model and field bias, and there is no data-based
way to separate the two; additional insight or expert opinion would be necessary to permit such
separation. Unfortunately, it is quite common for ‘existing field data’ (e.g., historical data, data
acquired for different purposes but now used for validation) to be biased (see, e.g., Roache 1998),
so obtaining unbiased field data may be challenging in its own right (see Trucano et al. 2002, for
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further discussion).
For the Bayesian model to be complete, one needs to specify the priors for the unknowns: u,

λF and b(x). These are chosen as follows:

— p(u) is specified in the I/U map; it is often uniform on a given range;

— p(λF ) is Exponential (see Appendix A.9);

— the prior for the bias function will be a GASP (see below and Appendix A.9).

If computation of yM (as in the pedagogic example) is fast, the Bayesian analysis can proceed
directly. Otherwise (as in spotweld where a single model run may take 30 minutes) we need to also
incorporate the model approximation from Section 4 into the Bayesian analysis. We must then
either add the GASP (hyper-)parameters for yM to the list of unknowns for a complete Bayesian
analysis, or use the plug-in MLE method if required by computational limitations. See Section 5.2.1
below for details.

We choose the GASP for the bias to have correlation function of the same form as in (4.3), with
its own set of covariance parameters (λb,βb, αb), but with all components of αb set at 2. Restricting
αb at 2 (or even at some other value such as 1.9) reduces the number of hyper-parameters that must
be taken into account. Because the bias cannot be observed directly and field data are usually scant,
the information about the hyper-parameters is limited and reducing their number is computationally
advantageous. Moreover, predictions and their error bounds will only be marginally affected by
imposing this restriction. In fact, the restriction implies that the bias is very smooth, a condition
all but certain to hold where reality, yR, is smooth, a typical state in engineering and scientific
applications; this smoothness assumption is also of help in de-confounding the bias and u.

The mean function of the GASP for the bias process is typically chosen to be either zero or an
unknown constant µb. Since the bias is not directly observed, it is doubtful whether more compli-
cated mean structures are viable. For interpolation, the choice between zero mean or unknown level
will have marginal effect on the results of the analysis; for extrapolation, however, as in the case of
the mean of the GASP approximation to the code output described in Section 4, the latter choice
might be more appropriate, as it may affect predictions and associated tolerance bounds (to be
precisely defined in Section 5.2.3). Also, allowing an unknown mean level for the bias may reduce
the danger of over-tuning, as indicated in Section 5.3. As in the case of the GASP approximation
to the computer model, one can also utilize a plug-in method to determine the GASP correlation
parameters, if required for computational simplification. This is discussed in Section 5.2.1 below.
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5.2 Bayesian inferences

5.2.1 The posterior distribution and its computation

Begin with the setting where the computer code is fast so approximation of yM is not necessary.
The modeling assumptions from Section 5.1 are that, for each field input x,

yF (x) = yR(x) + εF

yR(x) = yM (x,u) + bu(x)

εF ∼ N(0, 1/λF ) .

Given the unknowns, these produce a multivariate normal density for the collection of all field
data, yF , denoted by f(yF | u, λF , b). (Strictly, we should write u? instead of u but, in the
Bayesian approach, all unknowns are considered to be random and so we will drop the ? subscript
for notational simplicity. Also suppressed is the dependence of b on u.) Denote the prior distribution
of the unknown elements (u, λF , b) by p(u, λF , b). (Prior construction was already described briefly
in Section 5.1; details are in Appendix A.9.) Write the posterior density of these unknowns, given
the data yF , as

p(u, λF , b | yF ) ∝ f(yF | u, λF , b) p(u, λF , b). (5.9)

The posterior distribution is determined via MCMC techniques (cf. Robert and Casella 1999).
Carrying out the MCMC analysis requires evaluation of yM (x, u) at each generated value of u and
x in the field design space DF . This is infeasible when model runs are expensive, in which case we
resort to the GASP approximation of yM , described in Section 4, to carry out the computations.
This (unavoidably) introduces additional uncertainty into the predictions.

Two key simplifications: For reasons that have to do with achieving a stable and quasi-automatic
MCMC algorithm, we recommend two simplifications, which together we call a Modular-MLE
analysis:

1. Utilize a modular analysis, in which the the GASP hyperparameters for the computer model
are determined only from the computer model data. In a full Bayesian analysis, the field data
could also influence these hyperparameters. There are scientific as well as computational
reasons for utilizing the modular approach. These, and implementation issues, are discussed
in Appendix A.8.

2. Rather than keeping GASP hyperparameters random in the Bayesian analysis, fix them (for
both the computer model and the bias) at their MLE’s; leave only the precisions and cal-
ibration parameters random. (Details on how these estimates are computed are given in
Appendix A.9.) The reason for doing this is partly computational, and partly to ensure
that the methodology is stable and quasi-automatic. Further discussion of this is given in
Appendix A.9.
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Despite the fact that the modular-MLE analysis is only approximately Bayes, the resulting
answers seem to be close to those from a full Bayesian analysis, at least when it comes to prediction
(see Section 5.2.4 below). We note that this type of approximation was also utilized in, e.g.,
Kennedy and O’Hagan (2001).

The MCMC analysis that results (see Appendix B for details) produces a set of N draws from
the posterior distribution of the unknowns u, λF , yM (x, u), and b. To be more precise, the output
of the computations is a sample {u(i), λF (i), yM (x, u(i)), b(i)(x), i = 1, . . . , N}. From these samples,
the posterior distribution of all quantities of interest can be estimated.

As an example, the posterior distributions of calibration or tuning parameters can be estimated
by a histogram computed from the samples of the u(i). From these samples one can also form an
estimate, û, of the unknown u; for instance, the average of the samples is an approximation to the
posterior mean of u. Credible intervals for u can be formed by taking appropriate percentiles of
the ordered samples.

Pedagogic: The controllable input is x = t and the calibration parameter is u. Recall that
the data were generated with u? = 1.7 and an added bias term. The posterior distribution of u

from the MCMC analysis is given in the upper right graph in Figure 3. The estimated posterior
mean of u is û = 1.29 with a 90% credible interval of (0.49,2.87).

Although the true value u? = 1.7 lies within the credible interval, the posterior distribution
does not concentrate near the true value, a consequence of the confounding between calibration
and bias. Unless bias is negligible, the posterior distribution of u cannot be relied upon to
accurately estimate calibration parameters.

Of course, estimating u while ignoring bias leads to even less reliable results. For instance,
those who ignore bias would typically use the least-squares estimate of u here, which is ũ = 0.63
– extremely remote from the true value. The Bayesian analysis yields more accurate values of
u because it compromises between bias and model-tuning.

Spotweld: The vector of controllable inputs is x = (C, L, G) and there is a tuning parameter u.
Figure 4 gives the posterior density of u based on the Modular-MLE approach. The estimated
posterior mean is û = 3.28. There is clearly considerable uncertainty in values for u. Assessments
of prediction accuracy (described in Section 5.2.2) account for this uncertainty and help alleviate
the danger of over-tuning that can result if one were to simply pick and use a single fixed
parameter value such as 3.28.

The considerable right tail here is likely due to the fact that there was data from two thick-
nesses (gauges) of material – the ‘optimal’ tuning parameter for each gauge would be different.
This again indicates how misleading it would be to simply choose a best estimate of the tuning
parameter, and proceed as if it were known. Note that the full-Bayesian analysis in Higdon
et al. (2004) leads to a qualitatively similar posterior.

Similarly, the estimated bias function is given by

b̂(x) =
1
N

N∑

i=1

b(i)(x).
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Figure 3: Pedagogic Example: Top-Left Panel: The solid line is the bias-corrected prediction, the
dashed lines are 90% tolerance bounds. The dash-dotted and dotted lines correspond , respectively,
to the pure-model prediction associated to the posterior mean and to the least-squares estimate of u.
The circles are the true values of the real process, whereas the triangles represent the observed field
data. Top-Right Panel: Posterior distribution of u. Lower Panels: Estimate of bias corresponding
to the pure-model prediction associated to the posterior mean of u (left plot) and to the least-
squares estimate of u (right plot).
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Separately graphing this bias function is not particularly useful, because of its very considerable
posterior dependence on u. Thus, when we present bias functions in later figures, we will give them
conditionally on interesting values of u.

5.2.2 Predictions and bias estimates

The central issue for validation is assessing whether the accuracy of the predictions produced by
the computer model is adequate for the intended use of the model. The MCMC samples described
above can be used to produce predictions with associated uncertainties, thus quantifying validation.

For instance, to predict the real process yR(x) at a set of (new) inputs DF
NEW (denoting the

resulting vector by yR
NEW), all we need is to have access to draws from the posterior predictive

distribution of yR
NEW, p(yR

NEW | yF , yM ), where yF and yM are the available field and model data.
Because of equation (5.7), these are obtained from draws from the joint posterior predictive of yM

NEW

and bNEW. Denote these draws by

y
M(i)
NEW , b

(i)
NEW, i = 1, . . . , N . (5.10)

Details on how to obtain such draws are in Appendix C.

Pure-model prediction If there are no calibration/tuning parameters, define the pure-model
prediction of yR(x) simply as ŷM (x). If we have available a new model run at input x, then we
do not need the approximation and can use yM (x); modelers often indeed plan to perform a new
model run if a prediction is desired at a new x. If there are calibration/tuning parameters, use an
estimate û based on the previous data, evaluate ŷM (or yM if possible) at input (x, û) and define
the pure-model prediction as ŷM (x, û). For û, use the posterior mean or mode of u, although other
choices could be made. Denote the pure-model prediction by ŷM

NEW(û).
For the pedagogic example, using the posterior mean û = 1.29, the pure-model prediction at

t = 1 is ŷM (1, 1.29) = 1.43. The entire pure-model prediction function is given in the upper left
graph in Figure 3, for both û set equal to the posterior mean (dash-dotted line) and the least
squares estimate (dotted line).

For spotweld, the entire pure-model prediction function ŷM (L,C, G, û) – based on the computer
model approximation and û the posterior mean – is (for four different values of load and gauge)
graphed as the solid lines in the top graphs of Figure 5.

Bias-corrected prediction The bias-corrected prediction of the true process yR at x is given
by the estimate of the posterior predictive mean of yR(x), that is

ŷR
NEW =

1
N

N∑

i=1

[
ŷ

M(i)
NEW + b

(i)
NEW

]
. (5.11)
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If the code is fast, the draw from the approximation to the code in the formula above is replaced
by its actual value.

When bias is present, the bias-corrected prediction improves on the pure-model prediction. For
example, in the pedagogic example, ŷR(1) = 2.06; the true value of the real process is yR(1) = 2.14
and the pure-model prediction is 1.43. The entire bias-corrected prediction function is given as the
solid line in the upper left graph in Figure 3. For spotweld, the entire bias-corrected prediction
function, ŷR(L, C,G), is (for four different values of load and gauge) graphed as the solid lines in
the bottom graphs of Figure 5.

Bias of the pure-model prediction Since common practice today is to utilize some variant of
pure-model prediction, it is useful to explicitly look at the bias of this procedure. The bias function
of pure-model prediction is clearly given by

b̂û ≡ ŷR
NEW − yM

NEW(û) .

If one were actually trying to establish that the computer model is uniformly valid, in some sense,
one would have to show that this bias function is effectively zero.

For the pedagogic example, the bias function for pure-model prediction is given in the solid
line in the bottom two graphs of Figure 3 when, respectively, û is the posterior mean and least
squares estimate. Clearly the bias is far from zero in either case. In spotweld, the bias function,
b̂û(L,C, G), for pure-model prediction is graphed (for four different values of load and gauge) as
the solid lines in the middle graphs of Figure 5.

Variances of these predictors The covariance matrices corresponding to the pure-model pre-
dictor and the bias-corrected predictor can be estimated, respectively, by

Cov(yM
NEW(û)) =

1
N

N∑

i=1

[yM
NEW(û)− (ŷM(i)

NEW + b
(i)
NEW)][yM

NEW(û)− (ŷM(i)
NEW + b

(i)
NEW)]′

Cov(ŷR
NEW) =

1
N

N∑

i=1

[ŷR
NEW − (ŷM(i)

NEW + b
(i)
NEW)][ŷR

NEW − (ŷM(i)
NEW + b

(i)
NEW)]′ .

It is easy to see that
Cov(ŷR

NEW) = Cov(yM
NEW(û))− b̂û b̂

′
û

so that bias-corrected prediction will clearly have smaller variance than pure-model prediction (a
strong incentive for use of bias-corrected prediction).
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Figure 4: The posterior distribution of the tuning parameter u in the Spotweld example.
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Figure 5: Spotweld Example: For four values of load and gauge, First Row: the pure-model weld
diameter predictions, ŷM (L,C, G, û), and 90% tolerance bands; Middle Row: the associated biases,
b̂û(L,C, G), and 90% tolerance bands; Last Row: the bias-corrected predictions, ŷR(L,C, G), and
90% tolerance bands. The circles represent the field data that were observed at those input values.
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5.2.3 Tolerance bounds

As discussed in Section 1, we are primarily concerned with the predictive accuracy statement: “with
probability γ, the prediction is within (tolerance) τ of the true yR(x).” Such tolerance bounds for
pure-model prediction are straightforwardly obtained from the samples (5.10). For a given γ we
can estimate τ = (τ(x) : x ∈ DF

NEW)′ by making sure that γ × 100% of samples satisfy

∣∣∣ŷM
NEW(û)−

[
ŷ

M(i)
NEW + b

(i)
NEW

]∣∣∣ < τ .

[In the previous formulae, all operations should be interpreted in a componentwise fashion, i.e.:
|x| = (|xi|, i = 1, . . . , n) and x < y iff xi < yi, i = 1, . . . , n.]

Similarly, for the bias-corrected prediction the tolerance τ is estimated by making sure that
γ × 100% of the samples satisfy

∣∣∣ŷR
NEW −

[
ŷ

M(i)
NEW + b

(i)
NEW

]∣∣∣ < τ .

The tolerance bands for the bias of pure-model prediction follow from simply subtracting the
pure-model prediction function, ŷM (x, û), from the bands for bias-corrected prediction.

Pedagogic: The top-left panel of Figure 3 shows the bias-corrected predictions as a function of
time (solid line) along with the (pointwise) 90% tolerance bounds (dashed lines). Also depicted
are the pure-model predictions associated with the posterior mean (dash-dot line) and least-
squares (dotted line) of u. These are plotted without tolerance bounds, which would be huge;
there is little to be gained by depicting these – the message is clear that pure-model predictions
are far from reality, while the bias-corrected predictions (and tolerance bounds) track reality
very well.

The lower panel shows the estimate of the bias corresponding to each of the pure-model
predictions, along with 90% credible intervals.

It can be convenient and straightforward – though we do not pursue the matter – to modify
the definition of tolerance bounds by making them asymmetric and determine (τ 1, τ2) such that
γ × 100% of the predictive samples satisfy

ŷ
M(i)
NEW + b

(i)
NEW − τ 1 < ŷR

NEW < ŷ
M(i)
NEW + b

(i)
NEW + τ 2 ,

subject to minimizing τ 1 + τ 2 componentwise. This would be useful if bias is very large and the
tolerance bounds would be one-sided or nearly so.

5.2.4 Comparison of Full Bayes and Modular-MLE analyses

The spotweld example was examined from a fully Bayesian perspective in Higdon et al. (2004).
Although their prior specification is different from ours, the results are very close. Recall that the
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advantage of the approach here is that the sampling mechanism is quite stable and automatic and
allows non-experts to directly apply the methodology with relatively simple code.

Also for comparison purposes, a full Bayesian (modular) analysis of the pedagogic example
was implemented, using methodology in Bayarri et al. (2002) and Paulo (2005). The results are
summarized in Figure 6. Comparing this figure with Figure 3 shows that the approaches yield
qualitatively very similar answers. In particular, the bias-corrected predictions and tolerance bands
are almost identical.

5.3 Confounding of tuning and bias

When u is present, there is confounding between u and the bias function; they are not identifiable.
There appears to be some controversy about this – witness the discussion in Kennedy and O’Hagan
(2001). To see the confounding, note again equation (5.7):

yR(x) = yM (x, u) + bu(x) .

Suppose that one observes a huge amount of field data so that (see (5.8)) yR(x) becomes effectively
known. Suppose also that we can view yM (x, u) as a completely known function. Then – even in
this most favorable situation – for each u, there is a bu(x) that satisfies the above equation; they
cannot separately be identified. Note that this happens because the support of the prior for bu(x)
is any (appropriately smooth) function; in contrast, if bu(x) had a parametric form, identifiability
could result, but it will rarely be appropriate in the context of analysis of complex computer models
to assume that bu(x) has a specified parametric form.

This general non-identifiability has rather severe implications for the possible methods of vali-
dation analysis. Bayesian analysis is clearly tenable, for several reasons:

• Predictions and attached uncertainties can be stable, even though separate inference on u and
bu(x) may be less stable, due to the confounding. As an illustration, consider the pedagogic
example but with the GASP prior allowed to have a nonzero (unknown) mean µb. The results
of this analysis are given in Figure 7, and should be compared with the analysis in Figure 3.
The bias-corrected predictions change very little, even though the changes in the posterior
for u and the bias were significant.

• If inference concerning a calibration parameter u is a primary goal, or if it is desired to use
the model to predict outside the range of the data, it is crucial to incorporate good prior
information about u. Good prior information can prevent the tendency to ‘overtune’ u,
resulting in better inference and better out-of-sample prediction.

• Allowing greater flexibility in the bias function can also help control overtuning of u. In
Figure 7, for instance, the increased prior flexibility allowed for the bias resulted in the
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Figure 6: Pedagogic Example: The difference between this set of plots and those of Figure 3 is
that these were produced using a full Bayesian analyis in each stage of the modular approach
(Full-modular analysis). Top-Left Panel: The solid line is the bias-corrected prediction, the dashed
lines are 90% tolerance bounds. The dash-dotted and dotted lines corresponds, respectively, to the
pure-model prediction associated to the posterior mean and least-squares estimate of u. The circles
are the true values of the real process, whereas the triangles represent the observed field data.
Top-Right Panel: Posterior distribution of u. Lower Panels: Estimate of bias corresponding to the
pure-model prediction associated to the posterior mean of u (left plot) and to the least-squares
estimate of u (right plot).
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Figure 7: Pedagogic Example: The difference between this set of plots and those of Figure 3 is that
these were produced allowing the bias function to have an unknown mean. Top-Left Panel: The
solid line is the bias-corrected prediction, the dashed lines are 90% tolerance bounds. The dash-
dotted line corresponds to the pure-model prediction associated to the posterior mean of u. The
circles are the true values of the real process, whereas the triangles represent the observed field data.
Top-Right Panel: Posterior distribution of u. Lower-Left Panel: Estimate of bias corresponding to
the pure-model prediction associated to the posterior mean of u. Lower-Right Panel: Histogram of
the posterior distribution of the bias mean, µb.
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posterior having a larger bias, with less tuning of the calibration parameter u. Indeed, the
posterior mean of u moved to 1.72, which is essentially the correct value, although this may
have just been a coincidence.

It is unclear how one would approach this crucial issue of confounding from a non-Bayesian
perspective.

6 Feedback; Feed Forward (Step 6)

The analyses in Step 4 and Step 5 will contribute to the dynamic process of improving the model
and updating the I/U map by identifying

• Model inputs whose uncertainties need to be reduced

• Needs (such as additional analyses and additional data) for closer examination of important
regions or parts of the model

• Flaws that require changes in the model

• Revisions to the evaluation criteria.

In Spotweld, for instance, the posterior distribution of u (Figure 4) will now replace the uncertainty
entry in the I/U map. Another aspect of feedback is use of the Step 4 and Step 5 analyses to further
refine the validation process; e.g. to design additional validation experiments.

The feed-forward notion is to develop capability to predict the accuracy of new models that are
related to models that have been studied, but for which no specific field data is available. This can
be done through utilization of hierarchical Bayesian techniques, and we will explore it elsewhere.

7 Concluding Comments

We collect here some relevant comments that would have otherwise impeded the flow of the paper.

1. Combined Validation and Calibration

One test bed example (pedagogic) had a calibration parameter, the other (spotweld) a tuning
parameter. There is a distinction, although mathematically they are treated the same. Tuning
uses field data to bring the model closer to reality while calibration is a process by which
unknown model parameters are estimated from data. The distinction is that, in calibration,
one tries to find the true – but unknown – physical value of a parameter, while in tuning one
simply tries to find the best fitting value. The values of a tuning parameter will typically
change if the data change and tuning may produce a good model for prediction in the range
of the field data, but may well give very bad predictions outside this range.
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It is generally believed that data used for calibration/tuning cannot simultaneously be used for
model validation. However, the Bayesian methodology described readily accommodates such
simultaneous use of data by incorporating the posterior distribution of the tuning parameters
in the overall assessment of uncertainties. In contrast, simply replacing a tuning parameter by
some optimal ’tuned’ value û (commonly done using least-squares) obscures the interaction
between bias and tuning, and can lead to overly optimistic assessments of validity.

2. New Model Runs for Prediction

In performing predictions, it is frequently sensible to include new model runs, if feasible, to
obtain yM (x, û) for some key values of x. In this paper we emphasized prediction when
such new runs are unavailable, but the analysis can easily incorporate such new runs (cf.
Appendix C), without having to redo all the computations from scratch. Utilization of such
model runs may be particularly helpful in assessing changes arising from moving from input
x to nearby input x′. We forego further consideration of this modification.
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A Summary of Notation and Assumptions

A.1 Gaussian process

A random process y(z) is a Gaussian process with mean function µ(·) and covariance function
C(·, ·) if, for any finite set {z1, . . . , zn}, y(z1), . . . , y(zn) is multivariate normal with mean vector
(µ(z1), . . . , µ(zn))′ and covariance matrix [C(zi, zj)]ij .

A.2 Model inputs

We denote in general the input vector to a computer model by z = (x, u), where x is a p-vector of
controllable and specified inputs (velocity, current, etc.), and u is a q-vector of calibration/tuning
parameters.

A.3 Reality and bias

Given z = (x,u), b(x), and yM (z),

yR(x) = yM (z) + b(x) , (A-1)
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where b(·) is an unknown function with constant prior mean µb (often just chosen to be zero)

b(x) | µb, θb ∼ GP(µb,
1
λb

cb(·, ·)) , (A-2)

cb(x, x?) =
p∏

i=1

exp{−βb
i (xi − x?

i )
2} , (A-3)

θb = (λb, βb) = (λb, βb
1, . . . , β

b
p) . (A-4)

Note that we choose the exponents of |xi − x?
i | in the bias correlation function to be 2, reflecting

the fact that we expect the bias to be a smooth function.

A.4 Field (error)

Given yR(x),

yF (x) = yR(x) + εF (x) , (A-5)

where

εF (x) | λF ∼ GP(0,
1

λF
cF (·, ·)) , (A-6)

cF (x, x?) = 1{x=x?} . (A-7)

This is assuming that the field data arise via independent measurements and are unbiased (mean
of εF = 0).

A.5 Model data

The design space for the model data is DM = {z1, . . . , zm}, where zi = (xi, ui), i = 1, . . . , m. Let
yM = (yM (z1), . . . , yM (zm))′.

A.6 Field data

The design space for the field data is DF = {x?
1, . . . ,x

?
n}. The data consists of ni replica-

tions taken at each point in DF . Denoting these replications as {yF
j (x?

i ), j = 1, . . . , ni}, given
yR(x?

i ), j = 1, . . . , ni, we can replace the field data with the independent sufficient statistics ȳF =
(ȳF (x?

1), . . . , ȳ
F (x?

n))′, where ȳF (x?
i ) = 1

ni

∑ni
j=1 yF

j (x?
i ), and s2

F =
∑n

i=1

∑ni
j=1[y

F
j (x?

i ) − ȳF (x?
i )]

2.

40



These are such that, independently,

ȳF (x?
i ) = yR(x?

i ) + ε̄F (x?
i ) , (A-8)

ε̄F (x?
i ) | λF ,θT ∼ GP(0,

1
λF

c̄F (·, ·)) , (A-9)

c̄F (x?
i , x

?
j ) = (ninj)−1/2cF (x?

i ,x
?
j ) , (A-10)

s2
F | λF ∼ 1

λF χ2(
∑n

i=1(ni − 1)) . (A-11)

A.7 Likelihood

We present the more complicated case of a slow computer model, when the approximation detailed
in Section 4 must be used. The situation where yM is fast follows as a particular case.

Define Cf (Dg, Dh) to be the matrix with (i, j) entry cf (wi, w
?
j ), and µf (Df ) to be the vector

with component i equal to µf (wi), where wi and w?
j are, respectively, the ith and jth points in the

design spaces Dg and Dh. Also, let Cf (Dg, Dg) ≡ Cf (Dg).
Because the model run input values and field run input values need not coincide, definition of

the likelihood requires formal augmentation of the field design space by the calibration parameters
u. When this is needed, we denote the augmented design space by DF

u (which is the same design
space as DF , except that we simply replace x?

i by (x?
i ,u)). It is useful to augment the observed

data (yM , ȳF , s2
F ) with the bias function evaluated at DF , b, and the model values evaluated at

points in DF
u , to be denoted yM

? . Then, with the above in mind, we have

f(ȳF , s2
F , b,yM

? , yM | θL,θM , µb, θb, λF ,u) = f(s2
F | λF ) × f(ȳF | b, yM

? , λF ) ×
f(b | θb, µb) × f(yM

? | yM ,θL, θM , u) × f(yM | θL, θM ) , (A-12)

where

f(s2
F | λF ) = λF χ2(λF s2

F |
∑n

i=1(ni − 1)) (A-13)

f(ȳF | b,yM
? , λF ) = N(ȳF | yM

? + b, 1
λF C̄F (DF , DF )) (A-14)

f(b | θb, µb) = N(b | µb(DF ), 1
λb Cb(DF , DF )) (A-15)

f(yM
? | yM , θL,θM ,u) = N(yM

? | µ,Σ) (A-16)

f(yM | θL, θM ) = N(yM | µM (DM ), CM (DM , DM )) , (A-17)

with

µ = µM (DF
u ) + CM (DF

u , DM ) [CM (DM , DM )]−1(yM − µM (DM ))

Σ = CM (DF
u )− CM (DF

u , DM ) [CM (DM , DM )]−1CM (DM , DF
u ) .

Note that one can analytically integrate out b and yM
? in (A-12) to obtain the following expression
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for the marginal likelihood for the indicated parameters:

f(ȳF , s2
F , yM | θL, θM , µb, θb, λF , u) = f(s2

F | λF )×
N(ȳF | µ + µb(DF ),Σ + 1

λF C̄F (DF , DF ) + 1
λb Cb(DF , DF )) × f(yM | θL, θM ) . (A-18)

To complete the Bayesian analysis, priors must be chosen for the unknown parameters: those
we recommend are given in Appendix A.9. The MCMC sampling scheme we recommend to sample
from the posterior is given in Appendix B.

A.8 Modularization

Here we describe, in detail, the approximate Bayesian analysis which we refer to as the Modular
Approach. The basic idea is to first do the analysis of all the model data, ignoring the contribution
of the field data in estimating GASP model approximation parameters (including θL.) Then,
treat the model parameters (other than tuning parameters) as specified by the resulting posterior
distribution – or, possibly, by their maximum likelihood estimates – and incorporate the field data
by a separate Bayesian analysis. Formally, this is a partial likelihood approach, treating (A-17) as
the only part of the likelihood that is used to determine the model GASP parameters.

This approach is implemented as follows.

Stage 1 : Analyze the model data in isolation, to obtain the posterior density p(θL,θM | yM ),
using (A-17) together with the prior density p(θL, θM ) specified in Appendix A.9. This will
typically be represented by an MCMC cloud of realizations of points (θL, θM ).

Alternatively, if the MLE plug-in approach is used, simply utilize (θ̂
L
, θ̂

M
) in the following.

Stage 2 : To incorporate the field data yF , find the marginal posterior (defining θ = (θL, θM ))

p(µb, θb, λF ,u | yF , yM ,Stage1) =
∫

p(µb,θb, λF , u | yF , yM , θ) p(θ | yM ) dθ

(or utilize p(µb, θb, λF , u | yF ,yM , θ̂) if the MLE plug-in approach is used). Note that,
depending on the application, one might use the posterior which includes b and yM

? , if that
simplifies the sampling mechanism.

This step is implemented by drawing a point from the Stage 1 cloud (or utilizing (θ̂
L
, θ̂

M
)),

generating µb, θb, λF , u (and perhaps also b and yM
? ), and repeating. Note that, in generating

from p(µb, θb, λF | yF ,yM , θ, u), the full likelihood ((A-18) or (A-12)) must be used, together
with the prior density p(µb, θb, λF ) p(u).

The motivation and advantages of the modular approach are as follows.
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1. Field data can affect the GASP model approximation parameters (the α’s, β’s, and λ’s) in
undesirable ways, allowing them to do some of the ‘tuning’ of the model, instead of limiting
the tuning effect of the field data to u. Indeed, this was observed in the spotweld example,
where u was shifted to the edge of its domain, and the GASP parameters played the role of
model ‘tuners.’ The modular approach prevents this from happening.

2. This easily generalizes to systems with several model components, Mi, each of which has
separate model-run data. Dealing first with the separate model-run data, in setting up the
GASP model approximations, and incorporating the field data only at the tuning/validation
stage, makes for an easier-to-understand and computationally much more efficient process.

3. Computations are considerably simplified, since the overall posterior factors into lower di-
mensional blocks.

A.9 Prior distributions

Paulo (2005) specifically addresses the problem of specifying the prior p(θL, θM ) and of sampling
from the corresponding posterior p(θL,θM | yM ). In that paper, several priors are derived and
compared on the basis of their frequentist properties.

However, as already mentioned, for computational reasons we recommend simply computing the
maximum likelihood estimates of θL, θM based on model data alone, and consider those parameters
as fixed in the second stage of the modular approach.

In order to carry out the analysis of the second stage, one must specify the prior on µb, θb =
(βb, λb), λF , and u. The prior on the calibration parameter u is the one specified in the I/U map.
Choosing default priors for the other bias GASP parameters is actually quite challenging, because
of the typically limited data that is available, and the fact that there is no direct data about the
bias. Also, as with the model GASP parameters, we noticed considerable confounding between
the parameters, and thus opted for a method (described below) that fixes the βb parameters at
reasonable values, and allows only λb (and possibly µb) to vary.

It then remains to choose priors for λb and λF . As long as replications are available, use of a
standard prior such as 1/λF should be fine for the error precision, but replications are not always
available. Other problems are that the likelihood for λb can be quite flat, and λb can be highly
confounded with u. This leads us below to advocate use of data-dependent priors, centered at
estimates of λb and λF .

Any of these choices can be criticized from a strict Bayesian viewpoint, but we feel that there
are compelling practical reasons to make them. First, there is a great deal of confounding going
on here; we want the flexibility of GASPs in approximating the model and representing the bias,
but they have too many parameters. Proper subjective priors for these parameters are simply not
going to be available, and the principled objective priors of Paulo (2005) are computationally too
intensive. Since the methodology is being designed for use by non-experts, it also is not feasible
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to utilize more standard default priors with the advice to “watch out for convergence or stability
issues.” Finally, even with the rather ad hoc methods we use to determine the GASP parameters
(and center some of the priors), the variability of the resulting predictions seems to be similar
to that from a full (careful) Bayesian analysis. Hence we feel that we are capturing the major
uncertainties of the problem, while using a blend of techniques that results in a reliable and stable
methodology.

Here are the details of the proposed implementation:

1. Using the first stage approximation to the computer model, produce the pure-model prediction
at the points in the field design space DF augmented with a reasonable guess, ũ, of the
calibration parameter (e.g., the MLE or simply the apriori mean); recall that we denote this
augmented design space by DF

ũ . Denote the vector of resulting model predictions by ỹM .

2. Treat the vector yF − ỹM as a realization from a Gaussian process with a nugget, namely, as
a realization from a multivariate Normal with constant mean µb and covariance matrix

1
λb Cb(DF , DF ) + 1

λF I .

Using the Welch GASP software, one can then obtain an (MLE) estimate of βb, which will
be the fixed value used in the analysis. Note that, if the model and field design points were
the same, there would be no need to use the model approximation to determine the vector
ỹM .

3. The GASP software will also yield MLE estimates, λ̂b and λ̂F , but it is important to allow
λb and λF to vary in the Bayesian analysis. For these parameters, we choose independent
Exponential priors with means equal to a modest multiple (e.g., 5) of the MLE’s. In line with
Paulo (2005), experience has shown that the final predictions are relatively insensitive to the
choice of the multiplying factor.

4. If a nonzero mean, µb, is used for the bias, we suggest simply using the usual constant prior
(which can be shown to yield a proper posterior). We typically do not use a mean for the
bias, however, i.e. we usually set µb = 0.

B The MCMC Method for Posterior Inference

Here we present the details of the MCMC method for posterior inference under the MLE-Modular
approach, that which we recommend for routine implementation of the methodology. (When per-
forming a full Bayesian analysis, algorithms described in Paulo (2005) and Bayarri et al. (2002)
work well, although they may require monitoring and tuning.)

As detailed in Appendix A.9, the only parameters that have not been fixed are the calibration
parameter u, the precisions λF and λb, and possibly the bias mean µb. These are sampled in the
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MCMC as follows: given the current state of the chain yM
?old, bold, λ

F
old, λ

b
old, uold, we compute the

next state as follows:

1. Generate (yM
?new, bnew) directly from its full conditional,

[yM
? , b | λb

old, λ
F
old,uold, y

M , ȳF , s2
F ] (B-1)

which is a Multivariate Normal whose parameters are determined using standard Kalman
filter formulas – see the discussion below.

2. Generate λF
new from its full conditional

[λF | λb
old, uold, y

M
?new, bnew,yM , ȳF , s2

F ] = Γ(λF | a1, a2)

where

a1 =
∑n

i=1ni/2 + αF

a2 = rF + s2
F /2 + (ȳF − bnew − yM

?new)′ diag n (ȳF − bnew − yM
?new)/2

and, a priori, λF ∼ Γ(αF , rF ) (in Appendix A.9 we recommended αF = 1 and rF = 5λ̂F , but
the MCMC works in this more general setting.)

3. Generate λb
new directly from its full conditional

[λb | λF
new,uold,y

M
?new, bnew, yM , ȳF , s2

F ] = Γ(λb | a1, a2)

where

a1 = n/2 + αb

a2 = rF + b′new [Cb(DF , DF )]−1 bnew/2

and, a priori, λb ∼ Γ(αb, rb) (in Appendix A.9 we recommended αb = 1 and rb = 5λ̂b, but
the MCMC works in this more general setting.)

Note that, if a nonzero bias mean is utilized in the analysis, one also has to sample µb
new

directly from its full conditional

[µb | λb
new, λF

new,uold,y
M
?new, bnew, yM , ȳF , s2

F ] = N(m, s2)
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where

m = 1′ [Cb(DF , DF )]−1bnew/1′ [Cb(DF , DF )]−11

s−2 = λb
new1′ [Cb(DF , DF )]−11 ,

and all the other steps should be carried out using the most recent value of µb.

4. Generate unew using a Metropolis-Hastings step. We have had success with the strategy of
choosing with probability Q (e.g., 0.5) to propose a draw from the prior and with probability
1−Q to propose a locally perturbed version of the previous current value of the chain. The
algorithm is thus

Draw q ∼ U(0, 1) and

(a) if q < Q, draw v from the prior on u, p(u),

(b) else, draw v ∼ ∏
i U(ui,old − εi, ui,old + εi), where ui,old is the ith component of uold and

the εi are chosen, say, as a fixed proportion of the range of ui in the prior.

Finally, set

unew =





v w.p. ρ(uold, v)

uold w.p. 1− ρ(uold, v)

where

ρ(u, v) = min
{

1,
f(yM

? | yM ,v)
f(yM

? | yM , u)
Q + (1−Q) [

∏
i U(vi | ui − εi, ui + εi)]/p(u)

Q + (1−Q) [
∏

i U(ui | vi − εi, vi + εi)]/p(v)

}
. (B-2)

In (B-2), f(yM
? | yM , v) is as in (A-16) but with (θL,θM ) replaced by the estimates computed

as described in Appendix A.9.

Regarding the parameters of the full conditional of the latent data, it is clear that (yM
? , b,yM , ȳF ),

conditional on all other parameters, is Multivariate Normal with mean

(µM (DF
u ), µb(DF ), µM (DM ), µb(DF ) + µM (DF

u )) (B-3)

and covariance matrix



1
λM CM (DF

u )
0 1

λb C
b(DF )

1
λM CM (DM , DF

u ) 0 1
λM CM (DM )

1
λM CM (DF

u ) 1
λb C

b(DF ) 1
λM CM (DF

u , DM ) 1
λM CM (DF

u ) + 1
λb C

b(DF ) + 1
λF C̄F (DF )




.

(B-4)
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As such, using standard Kalman filter formulas one can easily compute the parameters of the
ensuing conditional distribution of (yM

? , b). One can draw from this joint distribution in several
different ways, but direct simulation typically seems to work well.

C Predictions

For prediction, it is necessary to sample from the posterior predictive distribution of the real process
evaluated at a set DF

NEW of new design points. Assuming that the available field data is ȳF , s2
F and

that the available computer model data is yM , what we want is to obtain draws from
∫

p({ŷM (x, u), b(x) : x ∈ DF
NEW} | ȳF , s2

F , yM ,θ) p(θ | ȳF , s2
F , yM ) dθ

where θ ≡ {u,θL, θM , µb, λb, βb, θb}. We have denoted those draws by (5.10). To obtain these,
we proceed as follows: for each element of a sample from the posterior distribution of θ, p(θ |
ȳF , s2

F , yM ), say θ(i), which can be obtained as detailed in Appendix B, we have to generate a
realization from p({ŷM (x,u), b(x) : x ∈ DF

NEW} | ȳF , s2
F ,yM , θ(i)). This distribution is similar

to (B-1) with the obvious modifications; hence, it is multivarite normal with mean vector and
covariance matrix obtained using the standard Kalman filter formulas. The parameters for the
joint normal are similar to (B-3) and (B-4); the mean is

(µM (DF
NEW u(i)), µb(DF

NEW), µM (DM ), µb(DF ) + µM (DF
u )) (C-5)

and the covariance matrix follows similarly.
If one decides to collect more computer model data to aid prediction, formally one should rerun

the MCMC to update the posterior of the unknown parameters given this additional information.
That is rarely practical, even if one is following a modular approach, so we recommend to add the
additional code data to the vector yM but to leave all other aspects of the posterior unchanged.
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