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ABSTRACT

This is a review of multiple hypothesis testing methods that control in some
overall way the probabilities of rejecting true null hypotheses. Two types of procedures
are considered: (a) methods based on ordered p-values, and (b) methods for comparing
normally-distributed means. Recent results are emphasized.
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INTRODUCTION

Multiple testing refers to the testing of more than one hypothesis at a time. It is a
subfield of the broader field of multiple inference, or simultaneous inference, which
includes multiple estimation as well as testing. The term ‘multiple comparisons’ has
come to be used synonymously with ‘simultaneous inference’, even when the infer-
ences do not deal with comparisons. It will be used in this broader sense throughout
this review.

In general, in testing any single hypothesis, conclusions based on statistical evi-
dence are uncertain. We typically specify an acceptable maximum probability of
rejecting the null hypothesis when it is true, or committing a Type I error, and base the
conclusion on the value of a statistic meeting this specification, preferably one with
high power. When many hypotheses are tested, and each test has a specified Type I
error probability, the probability that at least some Type I errors are committed
increases, often sharply, with the number of hypotheses. This may have serious conse-
quences if the set of conclusions must be evaluated as a whole. Numerous approaches
to this issue and many methods for resolving it have been proposed. No one solution

will be acceptable for all situations.

Examples
In order to focus the discussion, several examples are given below illustrating different
types of multiple testing problems. More examples can be found in the books described
later and in Diaconis (1985).

A. Subpopulations:‘ A historical éxampie. ” ‘Cournot (1843) descﬁbed vividly the
multiple testing problem resulting from the exploration of effects within different sub-
populations of an overall population. In his words (translated from the French): "...it is

clear that nothing limits ... the number of features according to which one can distribute



[natural events or social facts] into several groups or distinct categories." As an exam-
ple he mentions investigating the chance of a male birth. "One could distinguish first of
all legitimate births from those occurring out of wedlock, ... one can also classify births
according to birth order, according to the age, profession, wealth, or religion of the
parents... ." He goes on to point out that as one increases the number of such "cuts" (of
the material into two categories) it becomes more and more likely that by pure chance
for at least one pair of opposing categories the observed difference will be significant.
"As a result... the probability that an observed deviation can not be attributed to the
vagaries of chance takes on very different values depending o/n whether one has tried a
more or less large number of cuts before having hit on the observed deviation. ... Usu-
ally these attempts through which the experimenter passed don’t leave any traces; the
public will only know the result that has been found worth pointing out; and as a conse-
quence, someone unfamiliar with the attempts which have led to this result completely
lacks a clear rule for deciding whether the result can or can not be attributed to chance."
(See Stigler 1986, for further discussion of the historical context.)

While these issues are still serious and far from being solved (see e.g. Nowak
1994), multiple comparison methods provide a means for approaching such problems.
It is vital to obtain solutions--in medicine, in education, in all social and behavioral
sciences--where the effects of experimental treatments or environmental events may
vary over subpopulations defined in many ways. (See Shafer & Olkin 1983 for work
closely related to this issue.)

B. Multiple outcomes: Drug screening. for carcinogenic .effects. Many
potentially-useful drugs are initially screened for carcinogenic effects in animal studies.
There are about 15 major cancer sites that are monitored; correlations between effects
at different sites are positive but rather low. Thus, if the effects at each site are tested

individually at typical Type I error levels, the probability that one or more sites will



show apparent carcinogenic activity may approach .50. Any carcinogenic effect will
eliminate the use of a drug, so many promising candidates could be eliminated using
such a procedure. On the other hand, it is vital to detect such effects if they are present.
See e.g. Heyse & Rom (1988), Rom (1992).

C. Interim Tests. In clinical trials of new treatments, early results may indicate
such marked positive effects of an innovation that it appears unethical to continue the
trials in which some patients are receiving alternative medical interventions. Thus,
many trials allow for repeated testing. If no allowance is made for the effect of multi-
ple testing, an unacceptably high level of Type I error may result. This is a very active
area of current research, with potential applications in many fields; for reviews see
Armitage (1993), DeMets (1987), Geller & Pocock (1987), Jennison & Turnbull
(1990).

It should be pointed out that although a trial may be designed to compare a single
treatment with a control group, there are always multiple outcomes to consider, since
side effects of any new treatment must be monitored. Thus, the multiplicity due to mul-
tiple outcomes, as described in Example B, and to interim testing, must be considered
jointly.

D. Large surveys and observational studies. In large social science surveys,
thousands of variables are investigated, and participants are grouped in myriad ways.
The results of these surveys are often widely publicized and have potentially large
effects on legislation, monetary disbursements, public behavior, etc. Thus, it is impor-
tant to analyze results in such a way as to minimize misleading conclusions. Some type
of multiple error control is needed, but it is clearly impractical, if not impossible, to
control errors at a small level over the entire set of potential comparisons. For discus-

sion of these issues see Ahmed (1991).



Some critics maintain that results of large surveys should be simply tabulated and
presented without any conclusions as to which are reliable, and that such decisions
should be left up to the individuals reading the reports. But statistically unsophisticated
readers are likely to draw far too many unsubstantiated conclusions if such policies
were to be adopted.

E. Apparent clusters in space and/or time. There is constant publicity concerning
apparently high rates of cancer in specific localities, apparent crime surges during par-
ticular time periods in some places, etc. Since some such events would be expected by
chance, methods are needed for deciding whether particular occurrences should be con-
sidered random, or evidence of underlying problems. Of course, investigations of these
apparent clusters involve consideration of many associated variables that could con-
ceivably have causal connections to the target events. But multiplicity issues remain,
and far too often the outcomes of such investigations are inconclusive. For methods
used in this area see Williams (1984).

F. Factorial designs. The standard textbook presentation of multiple comparison
issues is in the context of a one-factor investigation, where there is evidence from an
overall test that the means of the dependent variable for the different levels of a factor
are not all equal, and more specific inferences are desired to delineate which means are
different from which others. Here, in distinction to many of the examples above, the
family of inferences for which error control is desired is usually clearly speciﬁed, and is
often relatively small. On the other hand, in multifactorial studies, the situation is less
clear. The typical approach is to treat the main effects of each factor as a separate fam-
ily for purposes of error control, although both Tukey (1953) and Hartley (1955) gave
examples of 2 x 2 x 2 factorial designs in which they treated all seven main effect and
interaction tests as a single family. The probability of finding some significances may

be very large if each of many main effect and interaction tests is carried out at a



conventional level in a multifactor design. Furthermore, it is important in many studies
to assess the effects of a particular factor, say A, separately at each level of other fac-
tors. thus bringing in another layer of multiplicity (see Shaffer 1991).

In spite of the importance of factorial designs and their wide use, there has been

relatively little discussion of these issues in the literature.

A Brief History

As noted in Example A, Cournot (1843) clearly recognized the problems involved in
multiple inference, but considered them insoluble. Although there were a few isolated
earlier relevant publications, sustained statistical attacks on the problems began in the
late 1940s and early 1950s. Papers by Mosteller (1948) and Nair (1948) dealt with
extreme value problems, while a more comprehensive approach was published by
Tukey (1949). Duncan (1951) treated multiple range tests. Related work on ranking
and selection was published by Paulson (1949) and Bechhofer (1952). Scheffé (1953)
introduced his well-known procedures, and work by Roy and Bose in that same year
(1953) developed another simultaneous confidence interval approach. Also in that year,
a book-length unpublished manuscript by Tukey presented a general framework cover-
ing a number of aspects of multiple inference. This manuscript remained unpublished
until recently, when it was reprinted in full (Braun 1994). In the later 1950s a decision-
theoretic approach was developed by Lehmann (1957a,b), and a Bayesian decision-
theoretic approach was developed shortly afterwards by Duncan (1961). For additional
historical material see Tukey (1953), Harter (1980), Miller (1981), Hochberg &
Tamhane (1987), and Shaffer (1988). S .

Books
The first published book on the subject was Miller (1966); it was reissued in 1981
(Miller 1981), unchanged except for the addition of a 1977 review article (Miller 1977).



For some time there were no additional book-length treatments, except in the ranking
and selection area. Then, in 1986, a series of books began to appear. A brief synopsis
of each of these newer volumes is given below.

MULTIPLE COMPARISONS (Klockars & Sax, 1986; 87 p.) This is an introductory
treatment oriented towards social scientists. It treats general issues, and specific
methods for normally-distributed observations in one-way randomized designs, with
some consideration of multifactor completely randomized designs.

MULTIPLE COMPARISON PROCEDURES (Hochberg & Tamhane 1987; xxii, 450
p.) This is a comprehensive reference work with good background information on gen-
eral approaches, theoretical issues, and useful probability distributions and inequalities,
as well as extensive coverage of methodology specific to linear models and a survey of
methods appropriate to categorical data and contingency table analysis. It does not deal
specifically with multivariate analysis, although the general material is applicable in
that area. For reviews, see Littell (1989) and Peritz (1989).

MULTIPLE HYPOTHESENPRUFUNG (MULTIPLE HYPOTHESES TESTING
(Bauer, Hommel, & Sonnemann 1988; ix, 234 p.) This is an edited bilingual volume
containing papers delivered at a two-day symposium on "Multiple Hypotheses Testing"
held November 6-7, 1987 in the Federal Republic of Germany. The preface and sum-
maries of all papers are in both German and English; of the 18 papers, ten are in Ger-
man and eight in English. There are a number of stimulating theoretical discussions,
and a variety of interesting probability inequalities are presented and associated test
procedures described. Most papers are theoretical, but there are also.some simulation
studies comparing the powers of alternative methods. For reviews see Liuter (1990)
and Holm (1990).

MULTIPLE COMPARISONS FOR RESEARCHERS (Toothaker 1991; viii, 168 p.)
and MULTIPLE COMPARISON PROCEDURES (Toothaker 1993; viii, 96 p.). The



1991 volume is for applied researchers; the 1993 volume is a condensed and simplified
version. They constitute an introduction to the subject containing a minimum of statist-
ical theory, and a number of numerical illustrations of the methods covered, which are
mainly those designed for the one-way ANOVA model, with a brief discussion of
extensions to two-way models. There are nontechnical discussions of issues connected
to the use of the methods. The material is a subset, at a much less technical level, of
that covered in the Hochberg & Tamhane book. For reviews of the 1991 volume, see
Gaffan (1992) and Tatsuoka (1992).

MULTIPLE COMPARISONS, SELECTION, AND APPLICATIONS IN BIOMETRY
(Hoppe 1993; xii, 558 p.). Subtitled "A Festschrift in Honor of Charles W. Dunnett,"
this is an edited volume containing papers on multiple comparisons, selection, and
specific applications to biometry. The papers cover a large variety of situations, and
vary greatly in difficulty and in theoretical vs. applied emphasis. For a review, see
Ziegel (1994).

RESAMPLING-BASED MULTIPLE TESTING (Westfall & Young 1993; Xvii, 340 p.)
This volume describes a comprehensive approach to the use of bootstrap and permuta-
tion methods with univariate and multivariate data. There are valuable general discus-
sions of multiple comparisons (with a useful discussion of their utility in comparison to
meta- analysis) and of bootstrap methods, and a variety of specific applications are
analyzed in detail. Many examples of the type described above are considered, with
discussions more extensive than those possible in this review. The book advocates the
use of adjusted p-values (to be described in a later section of this report) for interpreta-
tion. The resampling methods advocated are highly computer-intensive. Detailed dis-
cussion of computer implementation is provided. For reviews see Chaubey (1993) and

Booth (1994).
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THE COLLECTED WORKS OF JOHN W. TUKEY, VOLUME VIII: MULTIPLE
COMPARISONS: 1948-1983. (Braun 1994; Ixi, 475 p., i10) This volume contains con-
tributions of Tukey from 1948 through 1983 with an almost equal mixture of published
and unpublished works. As noted above, the volume contains the first published ver-
sion of the 1953 book-length manuscript "The Problem of Multiple Comparisons," still
much worth reading for its coverage of general concepts, although of course many of
the specific methods discussed have been superseded. (Tukey notes in the Foreword to
the Volume that this manuscript was unpublished due to "the only piece of bad advice I
ever had from Walter Shewhart! He told me it was unwise to put a book out until one
was sure that it contained the last word of one’s thinking.")

MULTIPLE COMPARISONS: THEORY AND METHODS (Hsu 1996) This volume,
to be published in 1996, is organized around a classification of procedures in terms of
type and strength of permissible inference. It deals primarily with linear models and
normally-distributed errors. It has a nice discussion of relevant probability inequalities,
many elegant proofs, and illuminating geometric explanations. The theoretical discus-

sions are supplemented with detailed computer implementation guidelines.

Scope of This Review

The field of multiple testing is too broad to be covered in its entirety in a review of this
length. In consequence, apologies are due to many active researchers whose valuable
contributions may not be acknowledged. Most attention will be devoted to two types of
methods, (1) Methods based on ordered p-values, and (2) Compansons among

normally-dlstrlbuted means.
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ORGANIZING CONCEPTS

Primary Hypotheses, Closure, Hierarchical Sets, Minimal Hypotheses

Assume some set of null hypotheses of primary interest to be tested. Sometimes the
number of hypotheses in the set is infinite (e.g. hypothesized values of all linear con-
trasts among a set of population means), although in most practical applications it is
finite (e.g. values of all pairwise contrasts among a set of population means). It is
assumed that there is a set of observations with joint distribution depending on some
parameters, and that the hypotheses specify limits on the values of those parameters. I'1l
give examples using a primary set based on differences among the means [Li,[p,.... My,
of m populations, although the concepts apply in general. Let §;; be the difference
Hi—;; let 8;; be the set of differences among the means y;, W;, and , etc. The
hypotheses will be of the form Hjj . : 8;jx..=0, indicating that all subscripted means are
equal; e.g. Hj34 is the hypothesis 1;=l)=p3=}4. Note that the primary set need not
consist of the individual pairwise hypotheses H;;. If m =4, it may, for example, be the
set H 15, H 123, H 1234, €tc., which would signify a lack of interest in including inference
concerning some of the pairwise differences (e.g. H 23) and therefore no need to control
errors with respect to those differences.

The closure of the set is the collection consisting of the original set together with
all distinct hypotheses formed by intersections of hypotheses in the set; such a collec-
tion is called a closed set. For example, an intersection of the hypotheses H;; and Hy; is
the hypothesis H;j;: W;=[j=llx. Any hypotheses included in an intersection are called
components of the intersection hypothesis. Technically, a hypothesis is a component ‘of
itself; any other component is called a proper component. In the example above, the
proper components of H;j are H;j, Hy and, if it is included in the set of primary
interest, also Hj, since its intersection with either of H;;, Hy; also gives H;j;,. Note that

the truth of a hypothesis implies the truth of all its proper components.
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Any set of hypotheses in which some are proper components of others will be
called a hierarchical set. (The term is sometimes used in a more limited way, but this
definition will be adopted here.) A closed set (with more than one hypothesis) is there-
fore a hierarchical set. In a closed set, the top of the hierarchy is the intersection of all
hypotheses: in the examples above it is the hypothesis H 12, , Or li=Ho=" - * =M, . The
set of hypotheses that have no proper components comprise the lowest level of the
hierarchy; these are called the minimal hypotheses (Gabriel 1969). Equivalently, a
minimal hypothesis is one that does not imply the truth of any other hypothesis in the
set. For example, if all the hypotheses state that there are no differences among sets of
means, and the set of primary interest includes the hypotheses H;; for all

i#j=1,...,m, these pairwise equality hypotheses are the only minimal hypotheses.

Families

The first and perhaps most crucial decision is what set of hypotheses to treat as a fam-
ily, that is, as the set for which significance statements will be considered and errors
controlled jointly. In some of the early multiple comparisons literature, e.g. Ryan
(1959, 1960), the term ‘experiment’ rather than ‘family’ was used in referring to error
control. The implication was that an explicit control of error should apply jointly to all
potential inferences resulting from a total experiment. Implicitly, attention was directed
to relatively small and limited experiments. As a dramatic contrast, consider large sur-
veys as described in Example D. Here, because of the inverse relationship between
control of Type I errors and power, it is unreasonable if not impossible to consider
methods contrOilihg the error rate at a conventional level, or indeed ény level, over all
potential inferences from such surveys. An intermediate case is a multifactorial study,
where as noted in Example F, it frequently seems unwise from the point of view of

power to control error over all inferences. The term "family" was introduced by Tukey
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(1952, 1953), and allows flexibility in defining the set of actual or potential inferences
to be considered jointly in bounding some function of Type I error. Miller (1981),
Diaconis (1985), Hochberg & Tamhane (1987) and others discuss the issues involved in
deciding on a family. They stress the difference between exploratory research, involv-
ing data snooping, and confirmatory research, where the questions of interest are well
defined. Although a less stringent criterion might be adopted in exploratory studies,
nonetheless some allowance for multiplicity in such studies will prevent wasteful fol-
lowup of illusory leads; consider especially examples A, D, and E. The most
comprehensive discussion of these issues is in the book by Westfall & Young (1993),
who give explicit advice on methods of approaching complex experimental studies.
Since a study can be used for different purposes, the results may have to be con-
sidered under several different family configurations. This issue came up in reporting
state and other geographical comparisons in the National Assessment of Educational
Progress Trial State Assessment, a part of a large national survey designed to compare
geographical jurisdictions on the educational achievements of their school-age children.
In a recent national report, each of the 780 pairwise differences on a measure of
achievement among the 40 jurisdictions involved (states, territories, District of Colum-
bia) was tested for significance at level .05/780 in order to control Type I errors for that
family. However, from the point of view of a single jurisdiction, the family of interest
is the 39 comparisons of itself with each of the others, so it would be reasonable to test
those differences each at level .05/39, in which case some differences would be
declared significant that were not so designated.in the national report. For a discussion

of this example and other issues in the context of large surveys, see Ahmed (1991).

Type I Error Control and Power

In testing a single hypothesis, the probability of a Type I error, i.e. of rejecting the null
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hypothesis when it is true, is usually controlled at some designated level a. The choice
of a should be governed by considerations of the costs of rejecting a true hypothesis as
compared with those of accepting a false hypothesis. Because of the difficulty of quan-
tifying these costs and the subjectivity involved, o is usually set at some conventional
level, often .05. A variety of generalizations to the multiple testing situation are possi-
ble.

Some multiple comparison methods control the Type I error rate only when all
null hypotheses in the family are true. Others control this error rate for any combina-
tion of true and false hypotheses. Hochberg & Tamhane (1987) refer to these as weak
control and strong control, respectively. Examples of methods with only weak error
control are the Fisher protected least significant difference (LSD) procedure, the
Newman-Keuls procedure, and some nonparametric procedures. (For discussion of the
first two, see Keselman, Keselman, & Games 1991. For the latter see Fligner 1984.)
The multiple comparison literature has been confusing because the distinction between
weak and strong control is often ignored. In fact, weak error rate control without other
safeguards is unsatisfactory; for example, such control is achieved in a one-way layout
satisfying standard linear model conditions if a significant F test results in the decision
that all differences among means are significant without further testing. This review
will concentrate on procedures with strong control of the error rate.

Several different error rates have been considered in the multiple testing literature.
The major ones are listed below.

The error rate per hypothesis (PCE) (usually called PCE, for per-comparison error
rate, although the hypotheses need not be restricted to comparisons) is defined for each
hypothesis as the probability of Type I error or, when the number of hypotheses is
finite, the average PCE can be defined as the expected value of (Number of false rejec-

tions/ Number of hypotheses), where a false rejection means the rejection of a true
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hypothesis.

The error rate per family (PFE) is defined as the expected number of false rejec-
tions in the family. Note that this error rate doesn’t apply if the family size is infinite.

The error rate familywise or familywise error rate (FWE) is defined as the proba-
bility of at least one error in the family.

A fourth type of error rate, the false discovery rate (FDR) will be described below.
First, to make the three definitions above clearer, consider what they imply in a simple
example in which each of n hypotheses H 1, - - - H, is tested individually at a level o;,
and the decision on each is based solely on that test. (Procedures of this type are called
single-stage; other procedures have a more complicated structure.) If all the hypotheses
are true, the average PCE equals the average of the «;, the PFE equals the sum of the
o;, and the FWE is a function of both the o; and the joint distribution of the test statis-
tics; it is between the largest o; and the PFE.

A common misconception of the meaning of an overall error rate o applied to a
family of tests is that on the average, only a proportion o of the rejected hypotheses are
true ones, i.e. are falsely rejected. That this is not so can be seen by considering the
case in which all the hypotheses are true; then 100% of rejected hypotheses are true, i.e.
are rejected in error, in those situations in which any rejections occur. This misconcep-
tion, however, suggests considering the proportion of rejected hypotheses that are
falsely rejected and trying to control this proportion in some way. Letting V equal the
number of false rejections (i.e. rejections of true hypotheses) and R equal the total
number of rejections, the. proportion of false rejections is Q = V/R: -Some interesting
early work related to this ratio is described in Seeger (1968), who credits the initial
investigation to unpublished papers of Eklund. A recent reference is Sori¢ (1989), who _
describes a different approach to this ratio. These papers (Seeger, Eklund, and Sorié)

advocated informal consideration of the ratio. A new, more formal approach is based
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on the following definition.

The false discovery rate (FDR), in the terminology of Benjamini & Hochberg
(1994a), is the expected value of Q = (Number of false significances/Number of
significances).

In moving from single to multiple testing, just as error rates can be generalized in
different ways, so can power. Three definitions have been common: the probability of
rejecting at least one false hypothesis, the average probability of rejecting the false
hypotheses, and the probability of rejecting all false hypotheses. When the family con-
sists of pairwise mean comparisons, these have been called, respectively, any-pair
power (Ramsey 1978), per-pair power (Einot & Gabriel 1975), and all-pairs power
(Ramsey 1978). Ramsey (1978) showed that the difference in power between single-
stage and multistage methods with strong control of the FWE is much greater for all-
pairs than for any-pair or per-pair power. See also Gabriel (1978), Hochberg &

Tamhane (1987), for discussion of these results.

P-values and Adjusted P-values

In testing a single hypothesis, investigators in general have moved away from simply

accepting or rejecting the hypothesis toward giving the p-value connected with the test,

i.e. the probability of observing a test statistic as extreme or more extreme in the direc-

tion of rejection as the observed value. This can be conceptualized as the level at which

the hypothesis would just be rejected, and therefore both allows individuals to apply

their own criteria and gives more information than merely acceptance or rejection.

Extension of this concept in its full meaning‘ to the multiple testing ébntext ié not neces-

sarily straightforward. One generalization of the p-value for the test of a single

hypothesis to the multiple context is the adjusted p-value, introduced by Rosenthal &

Rubin (1983). Given any test procedure, the adjusted p-value corresponding to the test
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of a single hypothesis H; can be defined as the level of the entire test procedure at
which H; would just be rejected, given the values of all test statistics involved. For
example, if each of n hypotheses is tested at level o/n in order to control the FWE at o
(see the description of the Bonferroni procedure below), the adjusted p-value for each
hypothesis H; is np;, where p; is the unadjusted p-value. Application of this definition
in complex multiple comparison procedures is discussed by Wright (1992), and by
Westfall & Young (1993), who base their methodology on the use of such values. In
addition to the generalization to the multiple testing context these values are also inter-
pretable on the same scale as those for tests of individual hypotheses, making com-

parison with single hypothesis testing easier.

Closed Test Procedures

Most of the multiple comparison methods in use are designed to control the FWE. The
most powerful of these methods are in the class of closed test procedures, described in
Marcus, Peritz, & Gabriel (1976). To define this general class, assume a set of
hypotheses of primary interest, add hypotheses as necessary to form the closure of this
set, and recall that the closed set consists of a hierarchy of hypotheses. The closure
principle is as follows: A hypothesis is rejected at level a if and only if it and every
hypothesis directly above it in the hierarchy (i.e. every hypothesis that includes it in an
intersection and thus implies it) is rejected at individual level o. For example, given
four means, with the minimal hypotheses the six hypotheses H;ji#j=1,...,4, the highest
hypothesis in the hierarchy is H 1734, and no hypothesis below it can be rejected unless
it (H 1734) is féjected at lévéi a. Assuming itv ié ”fejected,- the hypothes1s Hqy cah’t be
rejected unless the three other hypotheses above it in the hierarchy, H 123, H 124, and the
intersection hypothesis H1, and H34 (ie. the single hypothesis Ui=|l, and p3=},) are

rejected at level o, and then it (H1y) is rejected if its associated test statistic is
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significant at that level. Any tests can be used at each of these levels, provided the
choice of tests does not depend on the observed configuration of the means. The proof
that closed test procedures provide strong control of the FWE involves the following
simple logical argument. Consider every possible true situation, each of which can be
represented as an intersection of null and alternative hypotheses. Note that only one of
these possible situations can be the true one, and that under a closed testing procedure
the probability of rejecting that one true configuration is <c.. All true null hypotheses in
the primary set are contained in the intersection corresponding to the true configuration,
and none of them can be rejected unless that configuration is rejected. Therefore, the

probability of one or more of these true primary hypotheses being rejected is <c.

METHODS BASED ON ORDERED P-VALUES
The methods discussed in this section will be defined in terms of a finite family of
hypotheses H;, i = 1, ..., n, consisting of minimal hypotheses only. It will be assumed
that for each hypothesis H; there is a corresponding test statistic 7; with a distribution
that depends only on the truth or falsity of H;. It will further be assumed that H; is to
be rejected for large values of 7;. (The T; are absolute values for two-sided tests.)
Then the (unadjusted) p-value p; of H; is defined as the probability that T; is larger than
or equal to ¢;, where T refers to the random variable and t to its observed value. For
simplicity of notation, assume the hypotheses are numbered in the order of their p-
values so that p 1<p,<...<p,,, with arbitrary ordering in case of ties.

With the exception of the subsectlon of methods controlling the FDR, all methods

in this section are intended to prov1de strong control of the FWE.

Methods Based on the First-order Bonferroni Inequality
The first-order Bonferroni inequality states that, given any set of events A1,A4, ..., A,,

the probability of their union (i.e. of the event A;or Ayor - - - or A,) is smaller than
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or equal to the sum of their probabilities. Letting A; stand for the rejection of H;, i =
1,..., n, this inequality is the basis of the Bonferroni methods discussed in this section.
THE SIMPLE BONFERRONI METHOD Reject H; if p; <a;, where the o; are chosen
so that their sum equals .. Usually, the o; are chosen to be equal (all equal to o/n),
and the method is then called the unweighted Bonferroni method. This procedure con-
trols the PFE to be <a--exactly o if all hypotheses are true. The FWE is usually < o.

This simple Bonferroni method is an example of a single-stage testing procedure.

In single-stage procedures, control of the FWE has the consequence that the larger the
number of hypotheses in the family, the smaller the average power for testing the indi-
vidual hypotheses. In multistage testing procedures, in which the levels at which indi-
vidual hypotheses are tested depend on decisions with respect to other hypotheses, the
power for testing the individual hypotheses also decreases as the number of hypotheses
in the family increases, but often to a lesser extent. The following are some multistage
modifications of the Bonferroni method.
THE SEQUENTIALLY-REJECTIVE BONFERRONI METHOD (Holm 1979a) The
unweighted method only will be described here; for the weighted method see Holm
(1979a). This method is applied in stages as follows: At the first stage, H; is rejected if
pi1<o/n. If H, is accepted, all hypotheses are accepted without further test; otherwise,
H, is rejected if po<o/(n—1). Continuing in this fashion, at any stage j, H; is rejected if
and only if all H; have been rejected fori < j, and p;<o/(n—j+1).

To prove that this method provides strong control of the FWE, let k be the number
of hypotheses that are true, where k is some number between 0 and n. -If k=n, the test at
the first stage will result in a Type I error with probability <o If k = n-1, an error might
occur at the first stage but will certainly occur if there is a rejection at the second stage,
so again the probability of a Type I error is <o [since there are n-1 true hypotheses and

none can be rejected unless at least one has an associated p-value <o/(n—1)]. Similarly,
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whatever the value of k, a Type I error may occur at an early stage but will certainly
occur if there is a rejection at stage n-k+1, in which case the probability of a Type I
error is <o. Thus, the FWE is <a for every possible configuration of true and false
hypotheses.

A MODIFICATION FOR INDEPENDENT AND SOME DEPENDENT STATISTICS
If test statistics are independent, the Bonferroni procedure and the Holm modification
described above can be improved slightly by replacing o/k, for any k = 1,..,n, by
1—(1—o)k), which is always > ovk , although the difference is small for small values of
a. As Holland & Copenhaver (1988) point out, these somewhat higher levels can also
be used when the test statistics are positive orthant dependent, i.e. for which the joint
probability that each is smaller than some individual fixed value is at least as large as if
the test statistics were independent. The two-sided t statistics for pairwise comparisons
of normally-distributed means in a one-way layout are positive orthant dependent, as
are any symmetric two-sided test statistics for hypotheses concerning linear combina-
tions of normally-distributed means with arbitrary positive-definite covariance struc-
ture. Holland & Copenhaver (1988) give examples of other positive orthant dependent

statistics.

Methods Based on the Simes Equality

Simes (1986) proved that if a set of hypotheses H ,H 5,...,H, are all true, and the associ-
ated test statistics are continuous and independent, then with probability 1—-c, p; > io/n
for all i = 1,...,n, where o is any number between 0 and 1. Furthermore, although
Simes noted that 'the‘prdba‘bility of this Jo1ntévent could be smaller than 1—ocfor
dependent test statistics (see Hommel 1983 for a lower limit to the probability), this
appeared to be true only in rather pathological cases. Simes and others (Hommel 1988,

Holland 1991, Klockars & Hancock 1992, Hochberg & Blair 1994) have provided
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simulation results suggesting that the probability of the joint event is larger than 1-c
for a number of types of dependence found in typical testing situations, including the
important case of the usual two-sided t test statistics for all pairwise comparisons
- among normally- distributed treatment means.

Simes suggested that this result could be used in multiple testing but did not pro-
vide a formal procedure. As Hochberg (1988) and Hommel (1988) pointed out, on the
assumption that the inequality applies in a testing situation, more powerful procedures
than the sequentially rejective Bonferroni can be obtained by invoking the Simes result
in combination with the closure principle. Since carrying out a full Simes-based clo-
sure procedure testing all possible hypotheses would be tedious with a large closed set,
Hochberg (1988) and Hommel (1988) each give simplified, conservative methods of
utilizing the Simes result.

HOCHBERG’S MULTIPLE TEST PROCEDURE Hochberg’s (1988) procedure can be
described as a "step-up" modification of Holm’s procedure. Consider the set of primary
hypotheses H;, .. .,H,. If pj<a/(n—j+1) for any j = 1, ..., n, reject all hypotheses H;
for i<j. In other words, if p,<a reject all H;; otherwise if p,_;<0/2, reject
H,,.. H,_4,etc.

HOMMEL’S MULTIPLE TEST PROCEDURE Hommel’s (1988) procedure is more
powerful than Hochberg’s but more difficult to understand and apply. Let j be the larg-
est integer for which p,_j.x> ko/j for all k = 1, ..., j. If no such j exists, reject all
hypotheses. Otherwise reject all H; with p; < o/j.

'ROM’S MODIFICATION OF HOCHBERG--Romt-(1990)-gave slightly higher critical
p-value levels that can be used with Hochberg’s procedure, making it somewhat more
powerful. The values must be calculated; see Rom (1990) for details and a table of

values for small n.
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Modifications for Logically Related Hypotheses
Shaffer (1986) pointed out that Holm’s sequentially-rejective multiple test procedure
can be improved when hypotheses are logically related; the same considerations apply
to multistage methods based on Simes’ equality. In many testing situations, it is not
possible to get all combinations of true and false hypotheses. For example, if the
hypotheses refer to pairwise differences among treatment means, it is impossible to
have wy=H, and po=p3 but py#l3. Using this reasoning, with four means and six possi-
ble pairwise equality null hypotheses, if all six are not true, then at most three are true,
since if there are any differences at all, at least one mean must be different from the
other three. Therefore, it isn’t necessary to protect against error in case five hypotheses
are true and one is false, for example, since this combination is impossible. Let ¢; be
the maximum number of hypotheses that can be true given that at least j-1 hypotheses
are false. Shaffer (1986) gives recursive methods for finding the values t; for several
types of testing situations. Tables of values of ¢; for pairwise mean tests for m = 3,...,10
may be found in Holland & Copenhaver (1987) and Westfall & Young (1993). The
methods discussed above can be modified to increase power when the hypotheses are
logically related.
MODIFIED METHODS As is clear from the proof that it maintains FWE control, the
Holm procedure can be modified as follows: At stage j, instead of rejecting H; only if
pjsa/(n—j+1), H; can be rejected if pj<a/tj. Thus, when the hypotheses of primary
interest are logically related, as in the example above, the modified sequentially-
rejective Bonferroni-method.is- more powerful than-the unmodified-method. For some
simple applications, see Levin, Serlin, & Seaman (1994).

Hochberg & Rom (1994) and Hommel (1988) describe modifications of their
Simes-based procedures for logically-related hypotheses. Of the two modifications

described by Hochberg & Rom, the simpler is: proceed from i=n, n-1, n-2, etc. until
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for the first time p; <o/ (n—i+1). Then reject all H; for which p;< a/t;4+;. (The Rom
(1990) modification of the Hochberg procedure can be improved in a similar way.) In
the Hommel modification let j be the largest integer in the set n,fs,...,1,, and
proceed as in the unmodified Hommel procedure.

Still further modifications at the expense of greater complexity can be achieved,
since it can also be shown (Shaffer 1986) that for FWE control it is necessary to con-
sider only the number of hypotheses that can be true given that the specific hypotheses
that have been rejected are false. Rasmussen (1993) gives algorithms that simplify
application of this modification for comparing treatment means when the sample sizes
are equal. Hommel (1986), Conforti & Hochberg (1987), Rom & Holland (1994), and
Hochberg & Rom (1994) consider more general procedures incorporating these
modifications.

COMPARISON OF PROCEDURES Among the unmodified procedures, Hommel’s
and Rom’s are more powerful than Hochberg’s, which is more powerful than Holm’s;
the latter two, however, are the easiest to apply (Hommel 1988,1989, Hochberg 1988,
Hochberg & Rom 1994). Simulation results using the unmodified methods suggest that
the differences are usually small (Holland, 1991). Comparisons among the modified
procedures are more complex; see Hochberg and Rom (1994).

A CAUTION Note that all methods based on Simes’ results rest on the assumption that
the equality he proved for independent tests results in a conservative multiple com-
parison procedure for dependent tests. Thus, the use of these methods in atypical multi-
ple test situations should be backed up by simulation or further theoretical results; for

some such results, see Hochberg & Rom (1994).

Methods Controlling the FDR

The ordered p-value methods described above all are intended to provide strong control
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of the FWE. Control of the FDR is a less conservative type of error control. When the
test statistics are independent, Benjamini & Hochberg (1994a) show that the following
step-up procedure controls the FDR at level o If pj<joun, reject all H; for i<j. (Note
that the Simes equality implies that this method also controls the FWE at level o in the
independent case when all null hypotheses are true, i.e. it weakly controls the FWE at
level a.. However, as shown by Hommel 1988, it does not control the FWE under all
configurations of true and false hypotheses at level o.) A recent simulation study (Ben-
jamini, Hochberg, & Kling 1994) suggests that the FDR is controlled at level a for the
dependent tests involved in pairwise comparisons as well as for independent tests.

To see that the Benjamini-Hochberg (1994a) method can lead to many more rejec-
tions than the Hochberg step-up procedure, consider, for example, n=10, and suppose
pn>0. Then the Hochberg procedure would reject Ho, . . . ,H,_1 if p,-1< 0.5, while
the Benjamini-Hochberg (1994) FDR-controlling procedure would reject Ho, . . . ,H, 1
if p,—1<0.90.

Williams, Jones, and Tukey (1994) give a number of examples comparing the
results of applying the Benjamini-Hochberg (1994a) FDR method and several FWE-
controlling methods described above. In one example they assessed significance of the
changes in 8th-grade Mathematics achievement in 34 states between 1990 and 1992, as
measured by the National Assessment of Educational Progress Trial State Assessment
mentioned previously. Only three of the 34 changes were negative, and those were
very small, so all significant results indicated improvement. Using two-sided t tests and
the .05 level, 15 of the changes were significant using tests controlling-only the PCE,
i.e. had values p;<.05, 6 were significant using the Bonferroni procedure, 6 again using
the Hochberg (1988) procedure, and 12 using the Benjamini-Hochberg FDR-controlling
procedure. In most of their examples, the Hochberg modification of the Bonferroni pro-

cedure resulted in somewhat more rejections than the simple Bonferroni procedure, but
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the Benjamini-Hochberg procedure led to substantially more rejections, sometimes
coming close to the number of rejections based on t-tests with no correction for multi-
plicity.

FDR error control is much less stringent than FWE control, but may be an attrac-
tive alternative when the number of hypotheses is very large, assuming the conse-
quences of a small proportion of errors would not be extremely deleterious. Note, how-
ever, that in order to obtain an expected proportion of false rejections, Benjamini and
Hochberg have to define a value when the denominator, the number of rejections,
equals zero; they define the ratio then as zero. Then the expected proportion of false
rejections, given that some rejections actually occur, is greater than o in some situa-
tions (in fact it necessarily equals 1 when all hypotheses are true), so more investigation

of the error properties of this procedure is needed.

COMPARING NORMALLY-DISTRIBUTED MEANS

The methods in this section differ from those of the last in three respects: They deal
specifically with comparisons of means, they are derived assuming normally-distributed
observations, and they are based on the joint distribution of all observations. In con-
trast, the methods considered in the previous section are completely general, both with
respect to the types of hypotheses and the distributions of test statistics, and, except for
some results related to independence of statistics, utilize only the individual marginal
distributions of those statistics.

Contrasts among treatment means are linear functions of the form Y'c;|;, where
> ci=0. The pairwise differences amon‘gmrﬁé;;ls' z&é»called simple 'cl:‘(;r‘ltrasts; a geriera'lh
contrast can be thought of as a weighted average of some subset of means minus a
weighted average of another subset. The reader is presumably familiar with the most

commonly-used methods for testing the hypotheses that sets of linear contrasts equal
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zero with FWE control in a one-way analysis of variance layout under standard assump-
tions. They will be described briefly.

Assume m treatments with N observations per treatment and a total of T observa-
tions over all treatments, let ; be the sample mean for treatment i, and let MSW be the
within-treatments mean square.

If the primary hypotheses consist of all linear contrasts among treatment means,
the Scheffé method controls the familywise error rate. Using the Scheffé method

(Scheffé 1953), a  contrast  hypothesis Y c¢;u;=0 is  rejected  if

| > ciyi IZ\/ZC,- 2(MSW IN Ym—1)F 1 T—m 0. Where Fp_1T_m.o is the o-level critical
value of the F distribution with m-1 and T-m degrees of freedom.

If the primary hypotheses consist of the pairwise differences, i.e. the simple con-
trasts, the Tukey method (Tukey 1953) controls the familywise error rate over this set.
Using this method, any simple contrast hypothesis 8;;=0 is rejected if
|yi—y; |>NMSW N q,,, T—m;o» Where gp 7.0 is the o-level critical value of the studen-
tized range statistic for m means and T-m error degrees of freedom.

If the primary hypotheses consist of comparisons of each of the first m-1 means
with the mth mean (e.g. of m-1 treatments with a control), the Dunnett method (Dunnett
1955) controls the familywise error rate over this set. Using this method, any
hypothesis 8;,=0 is rejected if |¥;—Fy, |2N2MSW /N dpp_1 7m0 Where dyp_1 7 . is
the a-level critical value of the appropriate distribution for this test.

Both the Tukey and Dunnett methods can be generalized to test the hypotheses
that all linear contrasts among the means equal zero, so that the three procedures can be
compared in power on this whole set of tests, and similarly on the lengths of the associ-
ated confidence intervals. (These generalizations don’t apply to the multistage methods
described next.) Among the three, the Scheffé method is most powerful for tests on

very complex contrasts, the Tukey is most powerful for tests on simple contrasts among
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the first m-1 means, and the Dunnett is most powerful for tests on the contrasts ;,,. For
discussion of these extended methods and specific comparisons, see Shaffer (1977).
For a more general treatment of the extension of confidence intervals for a finite set to
intervals for all linear functions of the set see Richmond (1982).

All three methods can be modified to multistage methods that give more power for
hypothesis testing. In the case of the Scheffé method, if the F test is significant, the
FWE is preserved if m-1 is replaced by m-2 everywhere in the expression for Scheffé
significance tests (Scheffé 1970).

The Tukey method can be improved by a multiple range test using significance
levels described by Tukey (1953) and sometimes referred to as Tukey-Welsch-Ryan
levels; see also Einot & Gabriel (1975), Lehmann & Shaffer (1979). Begun & Gabriel
(1981) describe an improved but more complex multiple range procedure based on a
suggestion by Peritz (1970) using closure principles, and denoted the Peritz-Begun-
Gabriel method by Grechanovsky (1993). Welsch (1977) and Dunnett & Tamhane
(1992) proposed step-up methods (looking first at adjacent differences) as opposed to
the stepdown methods in the multiple range procedures just described. The step-up
methods have some desirable properties; see Ramsey (1981), Dunnett & Tamhane
(1992), Keselman & Lix (1994), but require heavy computation or special tables for
application.

The Dunnett test can be treated in a sequentially-rejective fashion, where at stage j
the smaller value dy,—j 7-m;q Can be substituted for dy,—17-m 0.

Since the hypotheses in a closed set may.each be tested at level o by a variety of
procedures, there are many other possible multistage procedures. For example, results
of Ramsey (1978), Shaffer (1981), and Kunert (1990) suggest that for most
configurations of means, a multiple F-test multistage procedure is more powerful than

the multiple range procedures described above for testing pairwise differences,
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although the opposite is true with single-stage procedures. Other approaches to com-
paring means based on the joint distributions of nonoverlapping ranges have been
investigated by Braun & Tukey (1983), Finner (1988), and Royen (1989,1990).

The Scheffé method and its multistage version are applicable in a straightforward
way when sample sizes are unequal; simply substitute N; for N in the Scheffé formula
given above, where N; is the number of observations for treatment i. Exact solutions
for the Tukey and Dunnett procedures are possible in principle, but involve evaluation
of multidimensional integrals. More practical approximate methods are based on
replacing MSW /N, which is half the estimated variance of y;—J; in the equal-sample-
size case, with (1/2)MSW (1/N;+1/N;), which is half its estimated variance in the
unequal-sample-size case. The common value MSW /N is thus replaced by a different
value for each pair of subscripts i and j. The Tukey-Kramer method (Tukey 1953, Kra-
mer 1956) uses the single-stage Tukey studentized range procedure with these half-
variance estimates substituted for MSW/N. Kramer (1956) proposed a similar multis-
tage method; a preferred, somewhat less conservative method proposed by Duncan
(1957) modifies the Tukey multiple range method to allow for the fact that a small
difference may be more significant than a large difference if it is based on larger sample
sizes. See Hochberg & Tamhane (1987), who discuss the implementation of the Duncan
modification and show it is conservative in the unbalanced one-way layout.

For modifications of the Dunnett procedure for unequal sample sizes, see Hoch-
berg & Tamhane (1987).

The methods must be modified when it can’t be assumed that within-treatment
variances are equal. If variance heterogeneity is suspected, it is important to use a
separate variance estimate for each sample mean difference or other contrast. The mul-
tiple comparison procedure should be based on the set of values of each mean differ-

ence or contrast divided by the square root of its estimated variance. The distribution of
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each can be approximated by a t distribution with estimated degrees of freedom (Welch
1938, Satterthwaite 1946). Tamhane (1979) and Dunnett (1980) compared a number of
single-stage procedures based on these approximate t statistics; several provided satis-
factory error control.

In one-way repeated measures designs (one factor within-subjects or subjects by
treatments designs), the standard mixed model assumes sphericity of the treatment
covariance matrix, equivalent to the assumption of equality of the variance of each
difference between sample treatment means. In standard mixed models for between-
subjects-within-subjects designs there is the added assumption of equality of the covari-
ance matrices among the levels of the between-subjects factor(s). Keselman, Kesel-
man, & Shaffer (1991) give a detailed account of the calculation of appropriate test
statistics when both these assumptions are violated, and show in a simulation study that
simple single-stage multiple comparison procedures based on these statistics have satis-
factory properties. See also Keselman & Lix (1994), who investigated multistage pro-
cedures and who show by simulation that both a step-up method and an adaptation of
the Duncan (1957) modification, for unequal sample sizes, of the Tukey multiple range

procedure have good error and power properties.

OTHER ISSUES
In this section, a number of interrelated issues of importance in making a choice among

methods will be reviewed briefly.

Tests vs. Confidence Intervals

The simple Bonferroni, and the basic Scheffé, Tukey, and Dunnett methods described
above are single-stage methods, and all have associated simultaneous confidence inter-
val interpretations. When a confidence interval for a difference doesn’t include zero,

the hypothesis that the difference is zero is rejected, but the confidence interval gives
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more information by indicating the direction and something about the magnitude of the
difference or, if the hypothesis isn’t rejected, the power of the procedure can be gauged
by the width of the interval. In contrast, the multistage or stepwise procedures have no
such straightforward confidence-interval interpretations, but intervals of a more compli-
cated kind can sometimes be constructed. The first confidence interval interpretation of
a multistage procedure was given by Kim, Stefansson, & Hsu (1988), and recently
Hayter & Hsu (1994) have described a general method for obtaining these intervals
with an extended discussion and a number of examples. The intervals are complicated
in structure, more assumptions are required for them to be valid than for conventional
confidence intervals, and the interval for each parameter depends on the values of test
statistics for other parameters, as might be expected. Furthermore, although as a testing
method a multistage procedure might be uniformly more powerful than a single-stage
procedure, the confidence intervals corresponding to the former are sometimes less
informative than those corresponding to the latter. Nonetheless, these are interesting
recent results, and more along this line are to be expected.

The importance of having the usual confidence intervals derived from single-stage
methods must be weighed against the increased power obtainable from multistage

methods.

Directional vs Nondirectional Inference

In the examples discussed above, attention has been focused primarily on simple con-
trasts, testing hypotheses H:9;j=0 vs. Hy:0;;#0. However, in most cases, if Hy is
rejected, it is crucial to conclude either W; >, or W; <W;. A number of different types
of testing problems arise when direction of difference is considered.

(1) Sometimes the interest is in testing one-sided hypotheses of the form p;<u; vs

W; >Wj, e.g. if a new treatment is being tested to see whether it is better than a standard
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treatment, and there is no interest in pursuing the matter further if it is inferior.

(2) In a two-sided hypothesis test, as formulated above, rejection of the hypothesis is
equivalent to the decision W;#1;. Is it appropriate to further conclude y; >u; if ¥; >¥;
and the opposite otherwise?

(3) Sometimes there is an a priori ordering assumption W <py< - - - <M, , OF some sub-
set of these means are considered ordered, and the interest is in deciding whether some
of these inequalities are strict.

Each of these situations is different, and different considerations arise. An impor-
tant issue in connection with (2) and (3) above is whether it makes sense to even con-
sider the possibility that the means under two different experimental conditions are
equal. Some writers contend that a priori no difference is ever zero: for a recent
defense of this position see Tukey (1991,1993). Others, including this author, believe
that there is no necessity to assume that every variation in conditions must have an
effect. In any case, even if one believes that a mean difference of zero is impossible, an'
intervention can have an effect so minute that it is essentially undetectable and unim-
portant, in which case the null hypothesis is reasonable as a practical way of framing
the question. Whatever the views on this issue, the hypotheses in (2) are not correctly
specified if directional decisions are desired. One must consider, in addition to Type I
and Type II errors, the probably more severe error of concluding a difference exists but
making the wrong choice of direction. This has sometimes been called a Type III error
and may be the major or even the only concern in (2).

For methods with corresponding simultaneous confidence intervals, inspection of
the intervals yields a directional answer immediately. For many multistage methods,
the situation is less clear. Shaffer (1980) showed that an additional decision on direc-
tion in (2) does not control the FWE of Type III for all test statistic distributions,

although the error is controlled for independent normally-distributed test statistics using
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Holm’s sequentially- rejective method. Recent simulation results (Hochberg & Parmat
1994) indicate that directional error control in the case of independent normal statistics
also holds for the methods of Hochberg (1988), Hommel (1988), and Rom (1990) based
on the Simes inequality. Hochberg & Tamhane (1987) describe the Shaffer (1980)
results and others due to Holm (1979b); for more recent results see Finner (1990), and
for a general review see Hochberg & Parmat (1994). Less powerful methods which do,
however, have guaranteed Type I and/or IIl FWE control have been developed by
Spjétvoll (1972), Holm (1979a, improved and extended by Bauer, Hackl, Hommel, &
- Sonnemann 1986), Bohrer (1979), Bofinger (1985), and Hochberg (1987).

Some writers have considered methods for testing one-sided hypotheses of the
type (3) (e.g. Marcus, Peritz, & Gabriel 1976, Spjétvoll 1977, Berenson 1982.) Budde
& Bauer (1989) compare a number of such procedures both theoretically and via simu-
lation.

In another type of one-sided situation, Hsu (1981,1984) introduced a method that
can be used to test the set of primary hypotheses of the form: H;:\; is the largest mean.
The tests are closely related to a one-sided version of the Dunnett method described
above. They also relate the multiple testing literature to the ranking and selection

literature.

Robustness

This is a necessarily brief look at robustness of methods based on the homogeneity of

variance and normality assumptions of standard analysis of variance. Chapter 10 of

Scheffé (1959) is a good source for basic theoretical results concerningr these violations.
As Tukey (1993) has pointed out, an amount of variance heterogeneity that affects

an overall F test only slightly becomes a more serious concern when multiple com-

parison methods are used, since the variance of a particular comparison may be badly
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biased by use of a common estimated value. Hochberg & Tamhane (1987) discuss the
effects of variance heterogeneity on the error properties of tests based on the assump-
tion of homogeneity. Some more appropriate alternative analyses, given variance
heterogeneity, are discussed above.

With respect to nonnormality, asymptotic theory ensures that with sufficiently
large samples, results on Type I error and power in comparisons of means based on
normally-distributed observations are approximately valid under a wide variety of non-
normal distributions. (Results assuming normally-distributed observations often are not
even approximately valid under nonnormality, however, for inference on variances,
covariances, and correlations.) This still leaves the issue: How large is large? In addi-
tion, alternative methods are more powerful than normal-theory-based methods under
many nonnormal distributions.

A consideration of robust multiple comparison methods is beyond the scope of this
article; only a couple of points will be noted.

(a) The ordered p-value methods require only accurate p-values for the individual
hypotheses, so they are sometimes easier to apply than more global methods based on
joint distributions of the test statistics. Note however that, if normal or other large-
sample approximations are invoked, samples must be larger when more hypotheses are
tested, since more extreme tails of the distributions of the relevant individual statistics
are involved, and approximations are usually relatively poorer in more extreme tails.

(b) One of the major causes of poor performance of normal-theory methods is the pres-
ence of outliers, due either to errors or to heavy-tailed distributions.for which extreme
values are more likely than with normal distributions. Methods involving trimmed dis-
tributions and rank-based methods, among others, are often more robust in these cases.
If distributions are asymmetric, estimates of the means of trimmed distributions are not

estimates of the means of the original distributions; this may or may not be an issue.
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Rank-based methods have discrete jumps in possible significance probabilities; with
small samples and a large number of hypotheses, it may be impossible to achieve the
small significance probabilities needed in applying the usual Bonferroni procedures.
(See Rom 1992 for an approach to this latter problem.)

Hochberg & Tamhane (1987, Ch. 9) discuss distribution-free and robust procedures and
give references to the many studies both of the robustness of normal-theory-based
methods and of possible alternative methods for multiple comparisons. In addition,
Westfall and Young (1993) give detailed guidance for using resampling methods to

obtain appropriate error control.

Others

FREQUENTIST METHODS, BAYESIAN METHODS, AND META-ANALYSIS Fre-
quentist methods control error without any assumptions about possible alternative
values of parameters except for those that may be implied logically. Meta-analysis in
its simplest form assumes that all hypotheses refer to the same parameter and it com-
bines results into a single statement. Bayes and Empirical Bayes procedures might be
thought of as intermediate in that they assume some connection among parameters and
base error control on that assumption. A major contributor to the Bayesian methods is
Duncan (see e.g. Duncan, 1961, 1965, Duncan & Dixon, 1983). Hochberg & Tamhane
(1987) describe Bayesian approaches; see also Berry (1988). Westfall & Young (1993)
discuss the relations among these three approaches.

DECISION-THEORETIC OPTIMALITY Lehmann (1957 a,b), Bohrer (1979) and
Spjétvoll (1972) defined optimal multiple cofnparison methods baséd on” frequentist
decision-theoretic principles, and Duncan (1961, 1965) and coworkers developed
optimal procedures from the Bayesian decision-theoretic point of view. Hochberg &

Tamhane (1987) discuss these and other results.
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RANKING AND SELECTION This is a large related literature that is beyond the scope
of this review. The methods of Dunnett (1955) and Hsu (1981, 1984), discussed above,
form a bridge between the selection and multiple testing literature, and are discussed in
relation to that literature in Hochberg & Tamhane (1987). Another method incorporat-
ing aspects of both approaches is described in Bechhofer, Dunnett, & Tamhane (1989).
GRAPHS AND DIAGRAMS As with all statistical results, the results of multiple com-
parison procedures are often most clearly and comprehensively conveyed through
graphs and diagrams, especially when a large number of tests is involved. Hochberg &
Tamhane (1987) discuss a number of procedures. Duncan (1955) has some illuminat-
ing geometric diagrams of acceptance regions, as do Tukey (1953), and Bohrer and
Schervish (1980). Tukey (1953,1991) gives a number of graphical methods for describ-
ing differences among means; see also Hochberg, Weiss, & Hart (1982), Gabriel &
Gheva (1982), and Hsu & Peruggia (1994). Tukey (1993) suggests graphical methods
for displaying interactions. Schweder & Spjétvoll (1982) illustrate a graphical method
for plotting large numbers of ordered p-values that can be used to help decide on the
number of true hypotheses; this approach is used by Benjamini & Hochberg (1994b) to
develop a more powerful FDR-controlling method. See Hochberg & Tamhane (1987)
for further references.

HIGHER-ORDER BONFERRONI AND OTHER INEQUALITIES One way of utiliz-
ing partial knowledge of joint distributions is to consider higher-order Bonferroni ine-
qualities in testing some of the intersection hypotheses, thus potentially increasing the
power of FWE-controlling multiple comparison methods. The Bonferroni inequalities
are derived from a general expression for the probability of the union of a number of
events. The simple Bonferroni methods using individual p-values are based on the
upper bound given by the first-order inequality. Second-order approximations use joint

distributions of pairs of test statistics, third-order approximations use joint distributions
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of triples of test statistics, etc., thus forming a bridge between methods requiring only
univariate distributions and those requiring the full multivariate distribution. See
Hochberg & Tamhane (1987) for further references to methods based on second-order
approximations; see also Bauer & Hackl (1985). Hoover (1990) gives results using
third-order or higher approximations, and Glaz (1993) includes an extensive discussion
of these inequalities. (See also Naiman & Wynn 1992, Hoppe 1993a, and Seneta
1993.) Some approaches are based on the distribution of combinations of p-values; see
Cameron & Eagleson (1985), Buckley & Eagleson (1986), Maurer & Mellein (1988),
and Rom & Connell (1994). A number of other types of inequalities are useful in
obtaining improved approximate methods; see Hochberg & Tamhane (1987, Appendix
2).

WEIGHTS In the description of the simple Bonferroni method it was noted that each
hypothesis H; can be tested at any level o; with the FWE controlled at o=30t;. In the
great majority of applications, the o; are taken to be equal, but there may be reasons to
prefer unequal allocation of error protection. For methods controlling FWE see Holm
(1979a), Rosenthal & Rubin (1983), DeCani (1984), and Hochberg & Liberman (1994).
Benjamini & Hochberg (1994c) extend the FDR method to allow for unequal weights,
and discuss various purposes for differential weighting and alternative methods of
achieving it.

OTHER AREAS OF APPLICATION Hypotheses specifying values of linear combina-
tibns of independent normal means other than contrasts can be tested jointly using the
distribution of either the maximum modulus or the augmented range: see Scheffé
(1959) for details. Hochberg & Tamhane (1987) discuss methods in analysis of covari-
ance, methods for categorical data, methods for comparing variances, and experimental
design issues in various areas. For further work in experimental design for multiple

comparisons, see Ture (1994). Cameron & Eagleson (1985) and Buckley & Eagleson
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(1986) consider multiple tests for significance of correlations. Gabriel (1968) and
Morrison (1990) deal with methods for multivariate multiple comparisons. Westfall &
Young (1993, Ch. 4) discuss resampling methods in a variety of situations. The large
literature on model selection in regression includes many papers focusing on the multi-

ple testing aspects of this area.

CONCLUSION

The problem of multiplicity is gaining increasing recognition, and research in the area
is proliferating. The major challenge is to devise methods that incorporate some kind
of overall control of Type I error while retaining reasonable power for tests of the indi-
vidual hypotheses. This review, while sketching a number of issues and approaches, has
emphasized recent research on relatively simple and general multistage testing methods

that are providing progress in this direction.



-38-

REFERENCES

Ahmed SW. 1991. Issues arising in the application of Bonferroni procedures in federal

surveys. 1991 ASA Proceedings of the Survey Research Methods Section, pp. 344-49
Armitage, P. 1993. Interim analyses in clinical trials. See Hoppe 1993, pp. 391-402

Bauer P, Hackl P. 1985. The application of Hunter’s inequality to simultaneous testing.

Biometrical J. 27:25-38

Bauer P, Hackl P, Hommel G, Sonnemann E. 1986. Multiple testing of pairs of one-

sided hypotheses. Metrika 33:121-27

Bauer P, Hommel G, Sonnemann E, eds. 1988. Multiple Hypothesenpriifung. (Multiple
Hypotheses Testing.) Berlin: Springer-Verlag

Bechhofer RE. 1952. The probability of a correct ranking. Ann. Math. Stat. 23:139-40

Bechhofer RE, Dunnett CW, Tamhane AC. 1989. Two-stage procedures for comparing
treatments with a control: elimination at the first stage and estimation at the second

stage. Biometrical J. 31:545-61

Begun J, Gabriel KR. 1981. Closure of the Newman-Keuls multiple comparison pro-
cedure. J. Amer. Stat. Assoc. 76:241-45

Benjamini Y, Hochberg Y. 1994a. Controlling the false discovery rate: a practical and

powerful approach to mﬁltiple testing. J. Royal Stat. Soc. Ser. B, in press

Benjamini Y, Hochberg Y. 1994b. The adaptive control of the false discovery rate.

Paper submitted for publication



-39-

Benjamini Y, Hochberg Y. 1994c. Multiple hypothesis testing with weights. Paper sub-

mitted for publication

Benjamini Y, Hochberg Y, Kling Y. 1994. Controlling the false discovery rate in pair-

wise comparisons. Paper in preparation

Berenson ML. 1982. A comparison of several k sample tests for ordered alternatives in

completely randomized designs. Psychometrika 47: 265-80 (Corr. 535-39)

Berry DA. 1988. Multiple comparisons, multiple tests, and data dredging: a Bayesian
perspective (with discussion). In Bayesian Statistics, ed. JM Bernardo, MH DeGroot,

DV Lindley, AFM Smith, 3:79-94. London: Oxford University Press

Bofinger E. 1985. Multiple comparisons and Type III errors. J. Amer. Stat. Assoc.
80:433-37

Bohrer R. 1979. Multiple three-decision rules for parametric signs. J. Amer. Stat.

Assoc. 74:432-37

Bohrer R, Schervish MJ. 1980. An optimal multiple decision rule for signs of parame-

ters. Proc. Natl. Acad. Sci. USA 77:52-56

Booth JG. 1994. Review of "Resampling Based Multiple Testing." J. Amer. Stat. Assoc.
89:354-55

Braun HI, ed. 1994. The Collected Works of John W. Tukey Vol. VIII- Multiple
Comparisons:1948-1983. New York: Chapman & Hall



- 40 -

Braun HI, Tukey JW. 1983. Multiple comparisons through orderly partitions: the max-
imum subrange procedure. In Principals of Modern Psychological Measurement: A
Festschrift for Frederic M. Lord, ed. H Wainer, S Messick, pp.55-65. Hillsdale, NIJ:

Erlbaum

Buckley MJ, Eagleson GK. 1986. Assessing large sets of rank correlations. Biometrika

73:151-57

Budde M, Bauer P. 1989. Multiple test procedures in clinical dose finding studies. J.
Amer. Stat. Assoc. 84:792-96

Cameron MA, Eagleson GK. 1985. A new procedure for assessing large sets of correla-

tions. Austral. J. Stat. 27:84-95

Chaubey YP. 1993. Review of "Resampling Based Multiple Testing." Technometrics
35:450-51

Conforti M, Hochberg Y. 1987. Sequentially rejective pairwise testing procedures. J.

Stat. Planning and Inference 17:193-208

Cournot AA. 1843. Exposition de la Théorie des Chances et des Probabilités . Paris:
Hachette. (Reprinted 1984 as vol. 1 of Cournot’s Oevres Complétes, ed. Bernard Bru.

Paris: J. Vrin.)

DeCani JS. 1984. Balancing Type I risk and loss of power in ordered Bonferroni pro-
cedures. J. Educ. Psychol. 76:1035-37 i N

DeMets DL. 1987. Practical aspects in data monitoring: a brief review. Stat. in Medi-

cine 6:753-60



-41 -

Diaconis P. 1985. Theories of data analysis: from magical thinking through classical
statistics. In Exploring Data Tables, Trends, and Shapes, ed. DC Hoaglin, F Mosteller,
JW Tukey, pp.1-36. New York:Wiley

- Duncan DB. 1951. A significance test for differences between ranked treatments in an

analysis of variance. Virginia J. Sci. 2:172-89
Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11:1-42

Duncan DB. 1957. Multiple range tests for correlated and heteroscedastic means.

Biometrics 13:164-76

Duncan DB. 1961. Bayes rules for a common multiple comparisons problem and

related Student-t problems. Ann. Math. Stat. 32:1013-33

Duncan DB. 1965. A Bayesian approach to multiple comparisons. Technometrics

7:171-222

Duncan DB, Dixon DO. 1983. k-ratio t tests, t intervals, and point estimates for multi-
ple comparisons. Encyclopedia of Statistical Sciences, ed. S Kotz, NL Johnson, 4:403-

10. New York: Wiley

Dunnett CW. 1955. A multiple comparison procedure for comparing several treatments

with a control. J. Amer. Stat. Assoc. 50:1096-1121

Dunnett CW. 1980. Pairwise multiple comparisons in the unequal variance case. J.

Amer. Stat. Assoc. 75:796-800

Dunnett CW, Tamhane AC. 1992. A step-up multiple test procedure. J. Amer. Stat.
Assoc. 87:162-70



-42-

Einot I, Gabriel KR. 1975. A study of the powers of several methods in multiple com-

parisons. J. Amer. Stat. Assoc. 70:574-83

Finner H. 1988. Abgeschlossene spannweitentests (Closed multiple range tests). See

Bauer et al 1988, pp. 10-32

Finner H. 1990. On the modified S-method and directional errors. Commun. Stat. Part

A: Theory Methods 19:41-53

Fligner MA. 1984. A note on two-sided distribution-free treatment versus control multi-

ple comparisons. J. Amer. Stat. Assoc. 79: 208-11

Gabriel KR. 1968. Simultaneous test procedures in multivariate analysis of variance.

Biometrika 55:489-504

Gabriel KR. 1969. Simultaneous test procedures--some theory of multiple comparis-

ons. Ann. Math. Stat. 40:224-50
Gabriel KR. 1978. Comment on the paper by Ramsey. J. Amer. Stat. Assoc. 73:485-87

Gabriel KR, Gheva 1982. Some new simultaneous confidence intervals in MANOVA
and their geometric representation and graphical display. In Experimental Design, Sta-
tistical Models, and Genetic Statistics, ed. K Hinkelmann, pp. 239-275. New York:
Dekker

Gaffan EA. 1992. Review of "Multiple Comparisons for Researchers." Brit. J. Math.
Stat. Psychol. 45:334-35

Glaz J. 1993. Approximate simultaneous confidence intervals. See Hoppe 1993b, pp.
149-166



-43-
Geller NL, Pocock SJ. 1987. Interim analyses in randomized clinical trials:

ramifications and guidelines for practitioners. Biometrics 43:213-23

Grechanovsky E. 1993. Comparing stepdown multiple comparison procedures.

Presented at Annu. Jt. Stat. Meet., 153rd, San Francisco

Harter HL.. 1980. Early history of multiple comparison tests. In Handbook of Statistics,

ed. PR Krishnaiah, 1:617-22. Amsterdam: North-Holland

Hartley HO. 1955. Some recent developments in analysis of variance. Commun. Pure

Appl. Math. 8:47-72

Hayter AJ, Hsu JC. 1994. On the relationship between stepwise decision procedures

and confidence sets. J. Amer. Stat. Assoc. 89:128-36

Heyse JF, Rom D. 1988. Adjusting for multiplicity of statistical tests in the analysis of

carcinogenicity. Biometrical J. 30:883-96

Hochberg Y. 1987. Multiple classification rules for signs of parameters. J. Stat. Plan-

ning and Inference 15:177-88

Hochberg Y. 1988. A sharper Bonferroni procedure for multiple tests of significance.

Biometrika 75:800-3

Hochberg Y, Blair C. 1994. Improved Bonferroni procedures for testing overall and

pairwise homogeneity hypotheses. Paper submitted for publication
Hochberg Y, Liberman U. 1994. An extended Simes test. Stat. Prob. Letters, in press

Hochberg Y, Parmat Y. 1994. On the problem of directional decisions. Paper submit-

ted for publication



-44 -
Hochberg Y, Rom D. 1994. Extensions of multiple testing procedures based on Simes’
test. J. Stat. Planning and Inference , in press
Hochberg Y, Tamhane AC. 1987. Multiple Comparison Procedures. New York: Wiley

Hochberg Y, Weiss G, Hart S. 1982. On graphical procedures for multiple comparisons.
J. Amer. Stat. Assoc. 77:767-72

Holland B. 1991. On the application of three modified Bonferroni procedures to pair-
wise multiple comparisons in balanced repeated measures designs. Comp. Stat. Quar-

terly. 6:219-31. (Corr. 7:223)

Holland BS, Copenhaver MD. 1987. An improved sequentially rejective Bonferroni test

procedure. Biometrics 43:417-23.. (Corr:43:737)

Holland BS, Copenhaver MD. 1988. Improved Bonferroni-type multiple testing pro-
cedures. Psychol. Bull. 104:145-49

Holm S. 1979a. A simple sequentially rejective multiple test procedure. Scand. J. Stat.

6:65-70

Holm S. 1979b. A stagewise directional test based on T statistics. Unpublished

manuscript
Holm S. 1990. Review of "Multiple Hypothesis Testing." Metrika 37:206

Hommel G. 1983. Test of the overall hypothesis for arbitrary dependence structures.

Biometrical J. 25:423-30

Hommel G. 1986. Multiple test procedures for arbitrary dependence structures. Metrika

33:321-36



-45-

Hommel G. 1988. A stagewise rejective multiple test procedure based on a modified

Bonferroni test. Biometrika 75:383-86

Hommel G. 1989. A comparison of two modified Bonferroni procedures. Biometrika

76:624-25

Hoover DR. 1990. Subset complement addition upper bounds -- An improved

inclusion-exclusion method. J. Stat. Planning and Inference 24:195-202

Hoppe FM. 1993a. Beyond inclusion-and-exclusion: natural identities for P[exactly t
events] and P[at least t events] and resulting inequalities. International Stat. Rev.

61:435-46

Hoppe FM, ed. 1993b. Multiple Comparisons, Selection, and Applications in Biometry.
New York:Dekker

Hsu JC. 1981. Simultaneous confidence intervals for all distances from the ‘best’. Ann.

Stat. 9:1026-34

Hsu JC. 1984. Constrained simultaneous confidence intervals for multiple comparisons

with the best. Ann. Stat. 12:1136-44

Hsu JC. 1996. Multiple Comparisons: Theory and Methods. New York: Chapman &

Hall, in press

Hsu JC, Peruggia M. 1994. Graphical representations of Tukey’s multiple comparison

method. J. Comput. Graph. Stat. 3:143-61

Jennison C, Turnbull BW. 1990. Interim monitoring of medical trials: a review and

commentary. Statistical Science 5:299-317



- 46 -

Keselman HJ, Keselman JC, Games PA. 1991. Maximum familywise Type I error rate:
the least significant difference, Newman-Keuls, and other multiple comparison pro-

cedures. Psychol. Bull. 110:155-61

~ Keselman HJ, Keselman JC, Shaffer JP. 1991. Multiple pairwise comparisons of
repeated measures means under violation of multisample sphericity. Psychol. Bull.

110:162-70

Keselman HJ, Lix LM. 1994. Improved repeated-measures stepwise multiple com-

parison procedures. Accepted for publication, J. Educ. Stat.

Kim WC, Stefansson G, Hsu JC. 1988. On confidence sets in multiple comparisons. In
Statistical Decision Theory and Related Topics IV, ed. SS Gupta, JO Berger, 2:89-104.
NY: Academic Press

Klockars AJ, Hancock GR. 1992. Power of recent multiple comparison procedures as

applied to a complete set of planned orthogonal contrasts. Psychol. Bull. 111:505-10
Klockars AJ, Sax G. 1986. Multiple Comparisons. Newbury Park,CA: Sage

Kramer CY. 1956. Extension of multiple range tests to group means with unequal

numbers of replications. Biometrics 12:307-10

Kunert J. 1990. On the power of tests for multiple comparison of three normal means. J.

Amer. Stat. Assoc. 85:808-12

Lauter J. 1990. Review of "Multiple Hypotheses Testing." Comput. Stat. Quarterly
5:333



-47 -
Lehmann EL. 1957a. A theory of some multiple decision problems, I. Ann. Math. Stat.
28:1-25

Lehmann EL. 1957b. A theory of some multiple decision problems, I. Ann. Math. Stazt.
28:547-72

Lehmann EL, Shaffer JP. 1979. Optimum significance levels for multistage comparison

procedures. Ann. Stat. 7:27-45

Levin JR, Serlin RC, Seaman MA. 1994. A controlled, powerful multiple-comparison

strategy for several situations. Psychol. Bull. 115:153-59

Littell RC. 1989. Review of "Multiple Comparison Procedures." Technometrics

31:261-62

Marcus R, Peritz E, Gabriel KR. 1976. On closed testing procedures with special refer-

ence to ordered analysis of variance. Biometrika 63:655-60

Maurer W, Mellein B. 1988. On new multiple tests based on independent p-values and

the assessment of their power. See Bauer et al 1988, pp. 48-66
Miller RG. 1966. Simultaneous Statistical Inference. New York: Wiley

Miller RG. 1977. Developments in multiple comparisons 1966-1976. J. Amer. Stat.
Assoc. 72:779-88

Miller RG. 1981. Simultaneous Statistical Inference. New York: Wiley. 2nd ed.

Morrison DF. 1990. Multivariate Statistical Methods. New York: McGraw-Hill. 3rd ed.



-48 -
Mosteller F. 1948. A k-sample slippage test for an extreme population. Ann. Math.
Stat. 19:58-65

Naiman DQ, Wynn HP. 1992. Inclusion-exclusion-Bonferroni identities and inequali-

‘ties for discrete tube-like problems via Euler characteristics. Ann. Stat. 20:43-76

Nair KR. 1948. Distribution of the extreme deviate from the sample mean. Biometrika

35:118-44

Nowak R. 1994. Problems in clinical trials go far beyond misconduct. Science

264:1538-41

Paulson E. 1949. A multiple decision procedure for certain problems in the analysis of

variance. Ann. Math. Stat. 20: 95-98
Peritz E. 1970. A note on multiple comparisons. Unpublished manuscript
Peritz E. 1989. Review of "Multiple Comparison Procedures." J. Educ. Stat. 14:103-6

Ramsey PH. 1978. Power differences between pairwise multiple comparisons. J. Amer.

Stat. Assoc. 73:479-85

Ramsey PH. 1981. Power of univariate pairwise multiple comparison procedures.

Psychol. Bull. 90:352-66

Rasmussen JL. 1993. Algorithm for Shaffer’s multiple comparison tests. Educ. Psychol.
Meas. 53:329-35 | | "

Richmond J. 1982. A general method for constructing simultaneous confidence inter-

vals. J. Amer. Stat. Assoc. 77:455-60



-49 -
Rom DM. 1990. A sequentially rejective test procedure based on a modified Bonfer-
roni inequality. Biometrika 77:663-65

Rom DM. 1992. Strengthening some common multiple test procedures for discrete

data. Stat. in Medicine 11:511-14

Rom DM, Connell L. 1994. A generalized family of multiple test procedures. Commun.

Stat. Part A: Theory Methods, in press

Rom DM, Holland B. 1994. A new closed multiple testing procedure for hierarchical

families of hypotheses. J. Stat. Planning & Inference in press
Rosenthal R, Rubin DB. 1983. Ensemble-adjusted p values. Psychol. Bull. 94:540-41

Roy SN, Bose RC. 1953. Simultaneous confidence interval estimation. Ann. Math. Stat.

24:513-36

Royen T. 1989. Generalized maximum range tests for pairwise comparisons of several

populations. Biometrical J. 31:905-29

Royen T. 1990. A probability inequality for ranges and its application to maximum

range test procedures. Metrika 37:145- 54

Ryan TA. 1959. Multiple comparisons in psychological research, Psychol. Bull. 56:26-
47

Ryan TA. 1960. Significance tests for niultiplek(:(‘)mparison of proportions, variances,

and other statistics. Psychol. Bull. 57:318-28

Satterthwaite FE. 1946. An approximate distribution of estimates of variance com-

ponents. Biometrics 2:110-14



-50-
Scheffé H. 1953. A method for judging all contrasts in the analysis of variance. Biome-
trika 40:87-104
Scheffé H. 1959. The Analysis of Variance. New York: Wiley

Scheffé H. 1970. Multiple testing versus multiple estimation. Improper confidence sets.

Estimation of directions and ratios. Ann. Math. Stat. 41:1-19

Schweder T, Spjétvoll E. 1982. Plots of P-values to evaluate many tests simultaneously.

Biometrika 69:493-502

Seeger P. 1968. A note on a method for the analysis of significances en masse. Tech-

nometrics 10:586-93

Seneta E. 1993. Probability inequalities and Dunnett’s test. See Hoppe 1993b, pp. 29-
45

Shafer G, Olkin I. 1983. Adjusting p values to account for selection over dichotomies.

J. Amer. Stat. Assoc. 78:674-78

Shaffer JP. 1977. Multiple comparisons emphasizing selected contrasts: an extension

and generalization of Dunnett’s procedure. Biometrics 33: 293-303

Shaffer JP. 1980. Control of directional errors with stagewise multiple test procedures.

Ann. Stat. 8:1342-48

Shaffer JP. 1981. Complexity: an interpretability'cﬁtcrion for multiple comparisons. J.

Amer. Stat. Assoc. 76:395-401

Shaffer JP. 1986. Modified sequentially rejective multiple test procedures. J. Amer.
Stat. Assoc. 81:826-31



-51-
Shaffer JP. 1988. Simultaneous testing. In Encyclopedia of Statistical Sciences, ed. S
Kotz, NL Johnson, 8:484-90. New York: Wiley

Shaffer JP. 1991. Probability of directional errors with disordinal (qualitative) interac-
‘tion. Psychometrika 56:29-38

Simes RJ. 1986. An improved Bonferroni procedure for multiple tests of significance.

Biometrika 73:751-54

Sorié B. 1989. Statistical "discoveries" and effect-size estimation. J. Amer. Stat. Assoc.

84:608-10

Spjétvoll E. 1972. On the optimality of some multiple comparison procedures. Ann.

Math. Stat. 43:398-411
Spjétvoll E. 1977. Ordering ordered parameters. Biometrika 64:327-34
Stigler SM. 1986. The History of Statistics. Cambridge: Harvard Univ. Press

Tamhane AC. 1979. A comparison of procedures for multiple comparisons of means

with unequal variances. J. Amer. Stat. Assoc. 74:471-80

Tatsuoka MM. 1992. Review of "Multiple Comparisons for Researchers." Contemp.

Psychol. 37:775-76
Toothaker LE. 1991. Multiple Comparisons for Researchers. Newbury Park CA: Sage
Toothaker LE. 1993. Multiple Comparison Procedures. Newbury Park CA: Sage

Tukey JW. 1949. Comparing individual means in the analysis of variance. Biometrics

5:99-114



-52-

Tukey JW. 1952. Reminder sheets for "Multiple Comparisons." See Braun 1994:341-45
Tukey JW. 1953. The problem of multiple comparisons. See Braun 1994: 1-300
Tukey JW. 1991. The philosophy of multiple comparisons. Statistical Science 6:100-16

Tukey JW. 1993. Where should multiple comparisons go next? See Hoppe 1993Db, pp.
187-207

Ture TE. 1994. Optimal row-column designs for multiple comparisons with a control: a

complete catalog. Technometrics 36:292-99

Welch BL. 1938. The significance of the difference between two means when the popu-

lation variances are unequal. Biometrika 25: 350-62

Welsch RE. 1977. Stepwise multiple comparison procedures. J. Amer. Stat. Assoc.

72:566-75
Westfall PH, Young SS. 1993. Resampling-based Multiple Testing. New York:Wiley

Williams GW. 1984. Time-space clustering of disease. In Statistical Methods for

Cancer Studies, ed. RC Cornell, pp. 167-227 New York: Dekker

Williams VSL, Jones LV, Tukey JW. 1994. Controlling error in multiple comparisons,
with special attention to the Trial State Assessment of Educational Progress. Paper in

preparation
Wright SP. 1992. Adjusted p-values for simultaneous inference. Biometrics 48:1005-13

Ziegel ER. 1994. Review of "Multiple Comparisons, Selection, and Applications in

Biometry." Technometrics 36:230-31



