
Finding Clusters in Network Link
Strength Data

Todd L. Graves

Technical Report Number 94
March, 1999

National Institute of Statistical Sciences
19 T. W. Alexander Drive

PO Box 14006
Research Triangle Park, NC 27709-4006

www.niss.org

NISS

Finding clusters in network link strength data

Todd L. Graves�

December 8, 1998

Abstract

In this paper we introduce BEACON, a tool for �nding clusters of objects using data which are
measurements of strengths of links between those objects. This technique is useful for measuring
modularity in software systems as well as in analysis of social network data. We apply Bayesian
tools such as Markov chain Monte Carlo to estimate clusters. The paper discusses simulation
experiments which demonstrate the power of the methodology to �nd true clusters, and applies the
technique to the analysis of a subsystem of a large telecommunications software product.

1 Introduction and Problem Statement

In most statistical problems, each data point is a set of measurements of di�erent variables, where
the measurements pertain to a single object or point in time. A number of interesting applications
include data which measure strengths of connections between pairs (or larger sets) of objects. One
question of interest in such applications is whether it is possible to decompose the \network," or
set of objects, into clusters of nodes. Clusters should have the property that connections between
pairs of nodes in the same cluster should be stochastically larger than connections between pairs
of nodes in di�erent clusters.

A motivating example comes from software engineering. A large software system has an o�cial
hierarchical decomposition into source �les, modules which as used here are collections of �les, and
subsystems, which are collections of modules. As the code evolves, subsets of �les are modi�ed
together as part of larger code changes. It is of interest to measure the success of modularity in the
code, for instance how well the o�cial decomposition matches the de facto composition into sets of
�les which are modi�ed in tandem. Hutchens and Basili (1985) use \data bindings" obtained from
analysis of the code to represent software as a dendogram, thereby constructing clusterings of code
units at several levels.

�Todd L. Graves is Postdoctoral Fellow, National Institute of Statistical Sciences, and at Bell Laboratories, 263

Shuman Blvd, Naperville, IL 60566. E-Mail: graves@niss.org; Web: http://www.niss.org/�graves. This research was

supported in part by NSF grants SBR-9529926 and DMS-9208758 to the National Institute of Statistical Sciences.

The author is grateful to Audris Mockus, Alan Karr, Steve Marron, and Graham Wills for helpful suggestions.

1

Another �eld which has seen a great deal of work in statistical inference for network-type data is
the �eld of social networks, for which see Wasserman and Faust (1994; a comprehensive introduction
to the �eld), Wasserman and Galaskiewicz (1994; a collection of case studies demonstrating the
application of social network analysis in several di�erent domains), and Wasserman and Pattison
(1996; a demonstration of a particularly rich class of network models). In addition, Wasserman and
Anderson (1987) point out the need for techniques for estimating network structure from link data,
suggests some techniques based on graphics or correspondence analysis, and recommends Bayesian
analysis to future researchers. Nodes in social network analysis typically represent people, and an
example of a type of linkage is if two people communicate frequently. Often links in social networks
are directional, i.e. the link from node i to node j is distinct from the link from node j to node
i. In much social network data, links between nodes are either present or absent, and many social
network methods are derived from graph theory to deal with this special case. Emphasis in �nding
\clusters" in social networks has been mainly on �nding sets of nodes which relate similarly to
other nodes (two nodes are \structurally equivalent" if they are linked to exactly the same set of
nodes, and there is also much interest in weakened versions of this concept), as opposed to �nding
sets of nodes with strong links among themselves. As will be seen in Section 5, the methodology
described here can be applied to this sort of problem as well. In particular, a modi�cation of the
model can be used to estimate and evaluate blockmodels, which divide the network up into groups
of nodes which have similar relationships to other nodes.

Another arena in which statistical inference for network data is necessary is in complementing
network visualization algorithms, such as Wills (1998), multidimensional scaling as in Kruskal
and Wish (1978), or Freeman (1998). These algorithms represent nodes as points in two- (or
three-) space, and place nodes close together if the links connecting them are strong. Since these
algorithms aim to �nd clusters, there is a danger of overinterpreting spurious clusters. Consequently,
a statistical model which permits the analyst to ask if a cluster is real or perhaps only an artifact
of variability in the measurements of link strengths would greatly strengthen these visualization
techniques.

An example which arose in analysis of software data is depicted in Figure 1. The data here are
measurements on \modules" (collections of �les) in the software from a large telecommunications
product. If two modules were frequently changed together as part of the same change to the code,
the weight between them is large and NicheWorks (Wills, 1998) tries to place them close together in
the visualization. (NicheWorks, intended for use with networks several orders of magnitude larger
than this one, uses simulated annealing as well as a steepest descent algorithm to generate node
locations.) Each dot represents a module, the three plots display all the data up through di�erent
years, and the ends of the tails display the data through the previous year, so that one can observe
a year's changes by looking from tail to head of the arrow. The �rst plot indicates that in 1988,
the modules clustered into two major groups. This grouping began to break down in 1989, and by
1996 there was little if any hint of any way of breaking up the modules. We will return to the data
used to construct this �gure in Section 6.

While graphs such as Figure 1 help motivate the problem, drawing such a graph is not a complete
solution. A graph is a two-dimensional representation of the complex clustering structure of the
nodes. In particular, there is a lot of error in translating from weights to distances between nodes.

2

1988 1989 1996

Figure 1: Left: NicheWorks view of the modules in one subsystem, using data through 1988 to place modules

which have been changed at the same times close to one another. (The heads of the symbols show data

through the year indicated, while the tails show the analogous view from the previous year, so the lines can

be interpreted as displaying what happened in the last year.) Two clusters of modules are evident; a module

within one of these clusters is often changed together with other modules in the cluster but not with other

modules. Center: NicheWorks view of the modules in the left, this time incorporating the history through

1989. The clusters that appear in the left view are converging in on each other. This suggests that the

architecture that was previously successful in separating the functionality of the two clusters of modules is

breaking down. Right: the breakdown continued, and at the end of 1996, there was no suggestion of clusters

of modules.

3

In this paper we �ll these needs by devising a statistical model which explicitly allows identi�ca-
tion of clusters together with measurement of their strengths. We make use of Bayesian techniques
such as Markov chain Monte Carlo to estimate clusters and other parameters of interest. The
implementation of this technology is called BEACON (Bayesian EstimAtion of Clusters Of Nodes).
Wong (1987) applied Bayesian methods to the social network problem, speci�cally the p1 model of
Holland and Leinhardt (1981), for which see also Wasserman and Pattison (1996).

The structure of the paper is as follows. In Section 2 we describe the statistical model. In
Section 3 we describe the �tting of this model using Markov chain Monte Carlo. Section 4 gives the
algorithm's performance on simulated network data, including indications that noisy data are gen-
erally more to blame than the high dimensionality of the problem for failure to estimate the model
correctly. Section 5 discusses the wealth of extensions the modeling framework admits, including
multidimensional and nested clusterings, node-speci�c data, and many of the traditional network
measures discussed by Wasserman and Pattison (1996). We return to the software engineering
example in Section 6. Conclusions are in Section 7.

2 Simplest Model

Here we delineate the most simple incarnation of the cluster estimation model. (More complicated
models will appear in Section 5.) The system under study has N nodes, which will be labeled
1; 2; : : : ; N . The data peculiar to this problem are the link strength measurements, also called
weights. Let wij be the measured strength of the (nondirectional) link between nodes i and j. wii

is unde�ned, and wij = wji for each (i; j). We model clustering by de�ning latent cluster labels
Xi; 1 � i � N . Xi = k means that node i is in the kth cluster. Cluster labels have no absolute
meanings, and we circumvent the problem of specifying the number of clusters a priori by taking
the possible values of the Xi's to be 1; 2; : : : ; N . In principle each node could belong to its own
cluster, but in practice most of the \clusters" are empty and many a \cluster" will contain a single
node (i.e. the number of Xi's equalling k will often be either one or zero).

We model the distribution of the weights conditional on the cluster labels as follows. If nodes i
and j are in di�erent clusters (Xi 6= Xj), the link connecting them has a small mean E(wij) = ��10 .
If on the other hand nodes i and j are in the same cluster (Xi = Xj), their link strength has a
larger mean E(wij) = (�0�1)

�1, where �1 < 1. For simplicity we have modeled the wij 's as having
exponential distributions, which seems not to be quite correct for software data (if only because
exponential random variables are never exactly zero), but as discussed in x4.6, this choice seems
to have adequate robustness properties, and in any case it is possible to extend this formulation to
change the weight distribution to allow Pfwij = 0g > 0.

Finally, a Bayesian solution to this problem requires prior probabilities pk = PfXi = kg, the
unconditional probability that node i belongs to cluster k. We take a Dirichlet prior distribution
for the pk's. It is possible to use the parameters of this prior to encourage the formation of small or
large numbers of clusters (e.g. by taking E(pi+1)=E(pi) = �; presumably one could try to elicit a
value of � from an expert), but we have found that data readily overwhelm the choice of the prior.

4

Denote by �k the Dirichlet parameter corresponding to the kth cluster i.e.

f(pj�) /
NY

k=1

p�kk :

In this paper we will use the notational convention common in Bayesian statistics in which f

represents a number of functions distinguished by their arguments.
We also require prior distributions for the mean link strength parameters. To attain conjugacy,

let �0 have a prior Gamma distribution with parameters �0 and (inverse-scale) �0, while �1 has a
prior Gamma distribution with parameters �1 and �1, but where �1 is conditioned to lie in (0; 1).

The foremost inferential goal in this formulation is the recovery of the Xi's. Also important is
estimation of (�0; �1), to enable statements about the tendency toward strong links in this network,
and in particular to assess the importance of the estimated clustering. If �1 is close to one, the
clustering is more likely spurious and certainly less important in describing the network.

3 Markov Chain Monte Carlo Analysis of the Model

Since the formulation above requires 2N +2 parameters and latent variables, we need to use Gibbs
sampling to obtain approximate draws from the posterior distribution of quantities of interest such
as the Xi's and the �'s. (See Gelman et al (1995) and Tanner (1993) for tutorials on the use of
Gibbs sampling and related methods.) The likelihood f(X; �; p; wj�; �; �) is proportional to

(
NY

k=1

pNk+�k
k)(

1Y

d=0

f��d�1
d exp(��d�d)g)

NY

i=2

i�1Y

j=1

f�0�
IfXi=Xjg
1 exp(��0�

IfXi=Xjg
1 wij)g

where Nk =
PN

i=1 IfXi = kg and I(A) equals one if event A occurs, zero otherwise.
The �rst step in a Gibbs sampling iteration is drawing a random set of probabilities p. For initial

values use the Dirichlet distribution with parameters �k; subsequently use the Dirichlet distribution
with parameters Nk + �k.

The guts of the algorithm is the drawing of new values of the cluster labels. The distribution
of the X's given the remaining parameters and data does not have a familiar form. Suppose we
contemplate moving node i into cluster k. The ratio of the probability of node i belonging to cluster
k to the probability of it belonging to its current cluster (namely Xi) is

�k = �

P
j 6=i

(IfXj=kg�IfXj=Xig)

1

pk

pXi

expf�0(�1 � 1)(
X

j 6=i

wijIfXj = Xig �

X

j 6=i

wijIfXj = kg)g:

To update the value of Xi, then, one computes these ratios, and draws a new value according to
the resulting probabilities �k=

PN
`=1 �`. (An alternate approach, using the Metropolis algorithm,

involves picking a node i and cluster k at random, and changing the value ofXi to k with probability
�k. Within each Gibbs step, use a number of Metropolis steps; I have used N so that each node
gets an average of one chance to move to another cluster. The Metropolis version seems to converge

5

to the limiting distribution of X considerably more slowly, so we do not discuss it further here, but
it requires fewer computations within each iteration.)

The �nal stage in the Gibbs sampling is the drawing of new sample values of � from (constrained)
Gamma distributions. The conditional distibution of �0 is Gamma with shape parameter �0 +
N(N � 1)=2 and inverse scale parameter

�0 +
NX

i=2

i�1X

j=1

wij�
IfXi=Xjg
1 :

The conditional distribution of �1 is Gamma constrained to lie in (0; 1), with shape parameter
�1 +
PN

i=2

Pi�1
j=1 IfXi = Xjg and inverse scale parameter

�1 + �0

NX

i=2

i�1X

j=1

wijIfXi = Xjg:

Since in this work we were most interested in obtaining point estimates for the values of the
clustering variables, we stopped the Gibbs sampler after relatively small numbers of iterations: 200
was typical in the simulation experiment. Were we after posterior probabilities of complex events
such as

PfX1 = X2 = X3 = X4 = X5 = X6 = X7 = X8 = X9 = X10jw; �; �; �g;

a considerable number of additional iterations probably would be required. Such posterior proba-
bilities are certainly of interest, as they would address the question \is that cluster really there?"
which one might ask after viewing a visualization. The emphasis of the present paper is on es-
timation of the clusters and other goals which can be attained using a relatively small number
of iterations, in part because we envision using this technique on large numbers of data sets for
di�erent software subsystems and at di�erent points in time.

After running the desired number of Gibbs iterations, it is necessary to summarize the results.
One may compute the median or mean values or the standard deviation of the �'s after omitting
those from the iterations in a burn-in period for the chain. Summarizing the clustering information
in the chain of Xi's is less straightforward; certainly it is unsatisfactory to use the clustering
corresponding to the last iteration in the chain. I recommend a voting procedure in which Xi is
reported to be equal to k if k is the most common value of Xi in the MCMC iterations (after a
burn-in period if desired), provided that Xi = k in at least 50% (for example) of those iterations. If
there exists no k for which the fraction of iterations that Xi = k exceeds 0.5, then node i is reported
to be in its own cluster. A potential problem with this is if a pair of nodes i1 and i2 have identical
estimated values of the clustering variable in a large number of iterations, but this common value
changes excessively from iteration to iteration. This phenomenon seems to be relatively rare.

4 Performance on Simulated Data

In this section we discuss a simulation experiment which determines how strong a clustering needs
to be before we can expect to �nd it reliably with the algorithm, and how rapidly convergence

6

occurs. We also look into robustness, asking how important it is that the distribution of the link
strengths be nearly exponential by experimenting with dichotomous responses.

The results are very encouraging for networks with small numbers of large clusters. The al-
gorithm rapidly discovers the true clusters in such situations even when the di�erences in link
strengths are relatively small. Increasing the number and decreasing the size of the true clusters
makes it more di�cult for the algorithm to �nd the truth. Smaller clusters are more di�cult to
�nd, but presumably they are also less interesting than larger clusters.

In the simulations, we varied several characteristics of the true network. In all simulations, we
worked with networks of sixty nodes. We used three di�erent true clusterings:

1. two clusters of thirty nodes each;

2. six clusters of ten nodes each;

3. twelve clusters of size four, and twelve \clusters" of size one.

We also varied �1, the measure of how much stronger within-cluster links are than between-cluster
links; we experimented with ��11 = 10; 5; and 2. We ran ten simulation runs under each set of
conditions. In x4.6, we discuss varying the link strength distribution from exponential (which the
algorithm assumes) to Bernoulli to assess the robustness of the methodology.

We measure success of a simulation run in several ways. The �rst is a measure of how well
nodes which belong together are clustered together and is based on the voting technique discussed
in Section 3. Obtain cluster labels from the voting, and then look at the set of nodes in a true
cluster. Pick the most common cluster label within this cluster, and consider the nodes with that
label to have been classi�ed correctly, the remainder to be incorrect. Add the numbers of correctly
placed nodes across all true clusters. This measure has a minimum value of one correct classi�cation
for each true cluster, since the absolute value of a cluster label is meaningless. We will often look
at the equivalent measure obtained by subtracting this measure from N .

A complementary statistic measures how much \pollution" appeared in the simulation and is
also based on voting results. For each true cluster, determine the cluster label most often assigned to
it as above, then count how many nodes not in that true cluster were also assigned that label. Then
add up these counts over true clusters. This measure is often guilty of double-counting; suppose
that n nodes are each isolated but are all clustered together; these n nodes would contribute n(n�1)
to the pollution measure.

Table 1 contains the numbers of errors, calculated by subtracting the values of the �rst statistic
from sixty, for each of the three values of �1 and the three clustering con�gurations; the corre-
sponding values of the pollution statistic are in Table 2. The problem is easiest when there are few
large clusters, and of course when links between nodes in the same cluster are much stronger than
links joining nodes in di�erent clusters. In the bottom row of Table 1, which corresponds to the
con�guration with clusters of four nodes and isolated nodes, the numbers of classi�cation errors
are computed only for the four-node clusters, since the voting-based success measure would always
score an isolated node as if it had been clustered correctly.

We also report, in Table 3 and Table 4, the estimates of � that the algorithm generated from the
simulated data. We take the last 100 out of 200 iterations in each simulation, compute the mean

7

��11 = 10 ��11 = 5 ��11 = 2 Worst possible

2� 30 0.0 0.0 1.8 58

6� 10 3.3 4.8 45.1 54

12� 4 + 12� 1 6.4 19.4 35.2 36

Table 1: Average (over ten simulation runs) numbers of nodes excluded from their correct clusters. Com-

puted using last 100 iterations out of a total of 200. The last column shows the worst possible score attainable

for that con�guration; the algorithm is guaranteed to get at least one node per cluster correct. The scores

in the bottom row are computed using only the clusters of size four, omitting the isolated nodes.

��11 = 10 ��11 = 5 ��11 = 2

2� 30 0.0 0.0 0.1

6� 10 0.4 0.4 4.0

12� 4 + 12� 1 10.4 13.0 2.2

Table 2: Measures of pollution also calculated from votes using the 101st through 200th iterations.

and standard deviation of each parameter over those iterations, and then report the minimum,
median, and maximum over the ten simulation runs. Table 3 indicates that the estimates of �0 are
quite good, and the quality of the estimates is independent of the value of �1 and of the cluster
con�guration, even in con�gurations and with parameter values which make it impossible for the
algorithm to �nd the correct clusters. It appears that even if the clusters are not identi�ed correctly,
enough pairs of nodes are correctly judged to be in di�erent clusters so that �0 can be estimated
with very little error.

The quality of the estimates of �1 does depend on the di�culty of the cluster identi�cation
problem, as can be seen in Table 4. For more accurate comparison of standard deviations of
di�erent parameters, we have reported the standard deviations divided by the true value of the
parameter being estimated to arrive at a coe�cient of variation. There is a strong dependence of

��11 = 10 ��11 = 5 ��11 = 2

2� 30 0.95 1.00 1.07 0.99 1.04 1.08 0.87 0.96 1.02
std.deviations .029 .033 .040 .031 .033 .036 .028 .034 .078

6� 10 0.84 0.95 1.02 0.88 0.97 1.02 0.92 0.94 0.98
std. deviations .021 .026 .050 .022 .026 .028 .024 .030 .033

12� 4 + 12� 1 0.91 0.99 1.02 1.01 1.03 1.05 0.95 1.01 1.05
std. deviations .019 .024 .029 .025 .027 .029 .029 .031 .041

Table 3: Posterior mean of �0, taken from the median of the last 100 out of 200 iterations, together with

estimated posterior standard deviations. The three numbers in each row within a cell are minimum, median,

and maximum over the ten simulation runs.

8

��11 = 10 ��11 = 5 ��11 = 2

2� 30 .092 .100 .106 .183 .196 .201 .467 .489 .535
sd/true mean .041 .046 .053 .039 .045 .050 .041 .046 .057

6� 10 .095 .101 .129 .172 .201 .218 .386 .453 .550
sd/true mean .057 .070 .151 .060 .068 .088 .076 .118 .258

12� 4 + 12� 1 .099 .120 .153 .149 .246 .332 .413 .620 .825
sd/true mean .114 .151 .191 .096 .151 .210 .130 .216 .288

Table 4: Posterior mean of �1, taken from the median of the last 100 out of 200 iterations, together with

estimated posterior standard deviations. The three numbers in each row within a cell are minimum, median,

and maximum over the ten simulation runs. The standard deviations are divided by the true value of the

parameter being estimated to assist comparisons between columns.

coe�cient of variation on the cluster con�guration. This stands to reason because the large cluster
con�gurations have more pairs of nodes in the same cluster, so that �1 is re
ected in more data
points. The large cluster con�guration generates 870 such pairs of nodes compared to 270 for the
moderate clusters and 72 for the small clusters. If coe�cients of variation were proportional to the
�

1
2
power of these quantities (as they would be if variances were proportional to �21 divided by the

\sample size" available for estimating �1), they would be in ratios of 0.56:1:1.9, which are not far
from the values in the table. The dependence of the coe�cients of variation on the true value of
�1 is weaker and for some pairs of values seems to be nonexistent. Unlike in the case of estimating
�0, here we are sometimes unable to cluster enough pairs of nodes together successfully to make �1
easily estimable.

We also need a measure of the speed by which a simulation run attains convergence. We do this
by giving each iteration a score in the same way that we score a voting result. Then take the mode
of this score over iterations. The �rst iteration for which the score equals or exceeds the mode is
then a measure of how rapidly the algorithm locates a con�guration which is at least relatively
close to its ultimate limiting distribution.

4.1 Few large clusters

Estimating two clusters of size thirty is nearly trivial. When ��11 = 10, the algorithm �rst located
the correct clustering no later than the tenth iteration in each of the ten simulation runs. Per-
formance was also very strong for ��11 = 5, when nine of the simulation runs found the correct
clustering at the eleventh iteration or earlier. The tenth run did not succeed in �nding the correct
clustering until the 54th iteration.

When ��11 is decreased to 2, the cluster signal is weak enough so that the algorithm rarely �nds
exactly the right clusters. After computing the voting results as described in Section 3, using the
101st through 200th iterations, one iteration's voting made �ve errors, and one made none, while
the remaining eight had one or two errors. Despite not converging to a perfectly correct clustering,
the algorithm still �nds its apparent limit fairly rapidly: six out of ten times the iteration on which
the algorithm �rst hit its modal score was the 16th iteration or earlier. Once it took 148 iterations

9

to attain the modal score. When ��11 = 2, the chances are too high that at least one or two of the
sixty nodes will have link strengths which do not look su�ciently like they should for a node in
that cluster.

4.2 Several moderate sized clusters

The problem becomes di�cult when we shift from two large clusters to six clusters of ten nodes
each. Even ��11 = 10 is insu�ciently large to guarantee that the algorithm will �nd the correct
limit. However, the convergence to a set of states not too far from the correct limit is fairly rapid.
The clustering obtained from voting were quite close to the truth for large and moderate values of
��11 : for ��11 = 10, three simulation runs led to no errors in the voting, while the maximum number
of errors was nine. For ��11 = 5, two runs had perfect votes, but twice the number of errors reached
14. The drop in performance for ��11 = 2 is large: while one run achieved 32 correct in its vote, the
remainder ranged from nine through 21 correct. (Note that the minimum possible score is six.)

4.3 Many small clusters

Our �nal cluster con�guration that we tried in the simulation experiment had twelve clusters of
four nodes each, and twelve nodes which did not belong to multiple-node clusters. This simulation
is therefore designed both to demonstrate how easy it is to �nd relatively small clusters, and also
how resistant the algorithm is to putting nodes which should be left alone into clusters. We require
two types of measures of the success of the algorithm for this con�guration: how many of the nodes
in four-node clusters are classed together, and how many of the isolated nodes are kept alone.

For ��11 = 10, the algorithm's score in classifying four-node clusters together ranged from 36
to the maximum of 48 over the ten runs. (The possible values of this score range from 12 to 48,
because here we restrict attention to the four-node clusters). Six of the votes placed all twelve
isolates alone, in one run eleven were alone, and three times ten were alone.

For ��11 = 5, the algorithm was considerably worse in placing nodes in the same cluster together,
with scores ranging from 20 to 36. The scores for keeping isolates alone were only slightly worse,
with three tens, three elevens, and four twelves. For ��11 = 2, the voting results are probably better
at keeping isolates apart (one eleven and nine twelves) but there is almost no chance of �nding
clusters of size four. The clustering scores included one 19 and one 13, with the rest 12's, the
minimum score.

For all three values of �1, the convergence to the limiting behavior was quite rapid. The longest
it took for the classi�cation score to attain its modal value was the �fteenth iteration.

4.4 A mixture of cluster sizes

We ran one simulation scenario which used a mixture of large and small clusters: one cluster of
size twenty, two of size ten, three of size four, and eight isolated nodes. Of interest here was, for
example, whether the presence of larger clusters made it easier or harder to detect small clusters.
We used the intermediate value of ��11 = 5, and ran ten replications of this experiment. All ten
of the size-twenty clusters were identi�ed perfectly with no pollution. Only thirteen of the 200

10

nodes (6.5%) in clusters of size ten were placed into incorrect clusters; the comparable value for
the con�guration with only clusters of size ten is 4.8 per sixty nodes (8%) when ��11 = 5, which is
of the same order. A total of two nodes polluted the twenty ten-node clusters (0.1 pollutions per
cluster), compared to an average of 0.4 pollutions per six ten-node clusters (0.067 per cluster) when
all clusters are of size ten. The failed classi�cation measure for four-node clusters was 65 out of a
total of 120 nodes (54%), compared to a somewhat better 194 out of 480 (40%) in the con�guration
with only clusters of sizes four and one. Seven nodes polluted the thirty four-node clusters, better
than the 92 pollutions of 120 clusters in the earlier experiment. Seventeen nodes polluted the eighty
isolated nodes, somewhat less than the 38 per 120 obtained from the fours-and-ones con�guration.

4.5 Initial conditions equal to truth

One thing another simulation can help us do is to assign blame for the algorithm's failure to �nd
the true clustering: the algorithm may get stuck in a suboptimal place, or the data may be such
that the true clustering does not provide the best �t. To test the algorithm for e�ect of initial
conditions, we ran it on the simulated data again, this time beginning the simulation from the true
clustering. If the algorithm has a problem with failing to �nd the best model because of getting
stuck in suboptimal places, this choice of initial conditions should lead to considerably better results
than the randomly generated initial conditions used in real applications.

However, initial conditions equal to the true clustering did not increase the success of the
algorithm in the simulations. First, on the con�guration with six clusters of size ten and ��11 = 2, the
correct initial conditions were if anything harmful: while beginning with random initial conditions
led to an average score of 14.9 correct on the vote, the correct initial conditions decreased this
number by an average of one node per simulation run, though this di�erence was not signi�cant
at the 5% level. There was a close relationship between the voting scores for the two sets of initial
conditions for each simulated data set; the correlation observed was 0.98.

We repeated the experiment with the small cluster con�guration and with ��11 = 5. Again, if
anything the correct initial values tended to make the algorithm perform slightly worse: the mean
voting scores for the four-node clusters were 28.6 nodes correct (i.e. 19.4 errors; see Table 1) for
random initial values and 27.7 for correct initial values. Again the di�erence was not statistically
signi�cant according to a permutation test on the di�erences. There was also no change in the
frequency with which true isolated nodes are estimated to be alone.

4.6 Robustness studies

We also perform studies to see if the fact that we use the exponential distribution for link strengths
in the probability model requires that the data distributions can in fact be well approximated by
the exponential. For an alternate response distribution we took the Bernoulli, with

Pfwij = 1jX; �g = 1� Pfwij = 0jX; �g = ��10 �
�IfXi=Xjg
1 :

We continued to use the exponential distribution in the algorithm, even though it is certainly
possible to incorporate the Bernoulli distribution into the model. A Bernoulli random variable is

11

particularly vulnerable to false positives, since the probability it will attain its maximum value is
positive, and in that case the pair of nodes will appear as much as possible like they are in the
same cluster. It is therefore quite rare that a node will be estimated to be in its own cluster, but
this is not a fault with the algorithm but with the data.

The conclusion is that using the exponential model for 0-1 data does not make the problem
excessively di�cult. Use of 0-1 data if anything made it easier for the algorithm to �nd clusters,
although there was the unavoidable increase in the false positive rate as well. As a �rst attempt, we
set ��10 = 0:15 and ��11 = 5. (This corresponds to success probabilities of 0.15 for nodes in di�erent
clusters, 0.75 for nodes in the same cluster.) In the con�guration with six clusters of ten nodes
each, the algorithm had less di�culty with 0-1 link strengths than with exponential link strengths
and ��11 = 5, as the ten simulation runs had an average of 1.2 errors in the �nal vote, compared to
4.8 errors for exponential data.

The second scenario also used Bernoulli data with success probabilities 0.15 and 0.75, in the
small cluster con�guration with twelve four-node clusters and twelve isolated nodes. With Bernoulli
data, the algorithm correctly placed an average of 31.3 out of forty-eight nodes, while the compa-
rable exponential score was 28.6. However, Bernoulli data made it much more di�cult for isolated
nodes to be identi�ed as such: typically only 1.1 isolated node out of 12 was evaluated as isolated
in the �nal vote, while exponential data were able to score 11.1. Again, it is too much to ask for
the algorithm to be able to avoid false positives of this type.

5 Extensions

The framework outlined in earlier sections is not di�cult to extend to more elaborate models.
Instead of estimating clusters from data, one may use a clustering known from other sources and
measure how well it matches the data. In past sections we have discussed models where pairs of
nodes are either in the same cluster or not, but it is also possible to model situations in which
nodes are together in one respect but di�erent in another. A special case involves hierarchies of
clusterings. This framework can also incorporate some parameters of interest to social network
researchers.

5.1 Fixed clusters

In some applications, the analyst will have a clustering in mind and will want to treat the Xi's as
�xed instead of being quantities to impute using the algorithm. A simple example in the domain
of social networks might take nodes to be children, the weights being a measure of how much time
they spend playing together, and the Xi's being 1 or 2 depending on the gender of the child.

One example of using �xed clusters in data analysis is �tting a clustering to data from one
period in time (for example, the �rst such period), and seeing how relevant that clustering is to
similar data from a di�erent period of time. This idea is particularly appealing for software data: by
�tting a clustering to early data one can obtain a measurement of the original intended modularity.
By evaluating this clustering with respect to new data one can measure the extent to which later
development has remained true to the original design of the code.

12

This idea can become more interesting if we allow multidimensional clusterings.

5.2 Multidimensional models

For example, in the simple model described in Section 2, a pair of nodes can either be in the same
cluster or in di�erent clusters. One can introduce a �ner classi�cation by using a multidimensional
clustering model. In such a model, pairs of unrelated nodes have small mean link strengths, but
a pair of nodes can attain a larger mean link strength if the pair of nodes shares one or more
characteristics. For example, in a social network one might model children as being more likely to
be friends if they live near each other, or if they are of the same gender. In this case one increases
the dimension of � to D + 1, de�nes additional clustering variables fXid : 1 � i � N; 1 � d � Dg,
and writes the mean link strength as

E(wij jX; �)
�1 = �0

DY

d=1

�
IfXid=Xjdg
d :

In the example, the possible values of Xi1 might be codes for di�erent neighborhoods in which
children live, while Xi2 = 1 or 2 according as whether child i is a boy or girl.

Note that a multidimensional model is strictly more powerful than a one-dimensional model.
In an example where the �rst clustering divides women and men, and the second Democrats and
Republicans, there are in a sense four clusters, but the multidimensional model allows, for instance,
Republican women to be more distant from Democratic men than from Democratic women.

5.3 Nested models

A particular form of multidimensional model involves nesting: here, we begin with a division of
the nodes into clusters, then subdivide these large clusters into smaller clusters. The model is then
tree-structured. The formula for the means in a two-dimensional example is

E(wij jX; �)
�1 = �0�

IfXi1=Xj1g
1 �

IfXi1=Xj1 and Xi2=Xj2g
2 :

This model might be particularly sensible in large software applications, when one looks for modu-
larity at several di�erent levels. This sort of model can be �t all at once, or alternatively one may
�t the outer clustering �rst, then reduce the data set to the nodes in one of the clusters, and �t a
new model within that cluster.

Hierarchical clustering is a technique for estimated nested levels of clusterings in data. The
measures of strengths of clustering and their uncertainties that the method here provides may add
an extra dimension to hierarchical clustering analyses. See Wasserman and Galaskiewicz (1994) for
discussion of use of hierarchical clustering in social network applications, as well as their references.

5.4 Some parameters of interest in social network research

In social network applications, it is often of interest to de�ne network- and node-level parameters.
Many of these are applicable to dichotomous links, but some interesting node-level parameters can

13

easily be incorporated into the present framework. For example, from Table 2 in Wasserman and
Pattison (1996), \di�erential choice"
i measures the overall level of connections including node i.
An analogue of this parameter can be introduced into the model by writing

E(wij jX; �;
)
�1 = �0
i
j�

IfXi=Xjg
1 :

Much attention in social network research has been devoted to \blockmodels" in which subsets
of nodes are grouped together if they have similar relationships to other nodes. These subsets
might be known a priori, in which case the data can be used to measure the goodness of �t of
the blockmodel, but constructing and evaluating a blockmodel using the same set of data can be
problematic; see Wasserman and Anderson (1987). A modi�cation of the analysis presented here
could be very well suited to this problem. Let N0 < N be the number of blocks that will be
allowed in the blockmodel; presumably it will make sense to specify a prior distribution for N0.
The problem is then one of estimating block labels Xi so that

E(wij jX; �)
�1 = �XiXj

;

where f�k` : 1 � k � N0; 1 � ` � N0g is a set of link strength parameters satisfying �k` = �`k.

6 Software Example Revisited

We now return to the motivating example of software data as depicted in Figure 1. The software
here is part of a commercially successful telecommunications product (a telephone switching system)
that, over its twenty year history, employed more than �ve thousand developers and is millions of
lines of code long. The switch software consists of roughly �fty \subsystems," which concentrate
parts of the software functionality and which coincide with organizational divisions of developers.
Subsystems are further broken down into collections of �les called modules, which correspond to
directories in the source code repository. Much of the code is written in the C language.

The data that go into the analysis are a list of \modi�cation requests," which are collections of
changes to the code that have a common purpose, and which touch multiple modules of the code.
Each node here will represent a module. We restrict analysis to one subsystem at a time. One
could also perform the following analysis at the �le level by allowing each node to represent a �le,
but there are roughly 4000 �les in the subsystem under consideration, and they tend not to be
altered often enough in a year to result in interesting year-to-year patterns.

The weights that go into the algorithm are computed as follows. Let Ni be the number of
changes touching module i, and Nij be the number of changes touching both modules i and j.
Then

wij = Nij(NiNj)
�1=4:

We use the fourth root as a compromise between the square root, which guarantees weights between
zero and one but which tends to lead to modules touched a small number of times in total having
the largest weights, and the zero power, which contains no normalization for total numbers of
changes at all. Note that the changes in fact may touch more (or less) than two modules. The
reduction of these data to a binary form is potentially a
aw: a change touching n modules, for

14

theta_0

Year

84 86 88 90 92 94 96

0

50

100

150

1/theta_1

Year

84 86 88 90 92 94 96

2

4

6

8

10

12

14

16

1/(theta_0*theta_1)

Year

84 86 88 90 92 94 96

0.10

0.15

0.20

Figure 2: Estimated values of the link strength parameters � through time, with smoothing splines with

cross-validated degrees of smoothness �t to the data from years 1985 through 1996. Left: �0 had only a

negligible decrease through time after removing the extreme years. Center: The decrease in �
�1

1
through

time is also negligible. Right: nor is there an important trend in (�0�1)
�1, the mean weight between nodes

in the same cluster.

instance, appears in the data n(n� 1)=2 times instead of once. To construct the plots in Figure 1,
the data corresponding to a given year include all the changes up to and including that year. In
the analysis that follows, the data for a given year are only the changes that actually took place in
that year. The emphasis on data taken from the history of changes to the code helps distinguish
this work from Hutchens and Basili (1985), who used analysis of the code itself.

We study the subsystem depicted in Figure 1 to see if we can verify the visualization's suggested
deterioration in the modularity of the software in this subsystem.

The subsystem had data over fourteen years, 1984-1997. For most purposes we will discard
1984 and 1997 because only �ve of the modules were modi�ed in 1984, while the 1997 data are
from only part of the year and are otherwise unusual. It contains one hundred modules, not all of
which are under active development, and many of which were absent from the data of at least some
of the years. For each year's worth of data, we ran the Monte Carlo Markov chain algorithm for
100 iterations, obtained a clustering from the voting method described in Section 3, and computed
the median values of �0 and �1.

The changes in median values of �0 over time can indicate whether some sort of modularity is
having success by preventing modules in di�erent clusters from being changed together often. If �0
were to decrease over time, it would be cause for concern, and after removing the anomalous years
in 1984 and 1997, the decrease is only an 0.6 per year, which seems small compared to variability;
see also Figure 2 (left). ��11 is a unitless measure which compares within-cluster links to between-
cluster links. As seen in Figure 2 (center), this coe�cient also remains stable. Had it decreased, it
would have been an indication that the clustering was growing less important. (�0�1)

�1 measures
the cohesion between nodes in the same cluster; see Figure 2 (right). There is also no trend in this
measure.

15

Year 84 85 86 87 88 89 90 91 92 93 94 95 96 97

�0 7 111 80 79 77 91 108 93 48 58 128 91 76 173
sd(�0) 2.2 6.6 2.7 4.2 1.6 2.5 2.8 4.0 1.2 1.7 3.5 2.5 3.0 7.7

�1 .67 .10 .094 .11 .11 .14 .13 .11 .14 .14 .097 .10 .13 .064
sd(�1) .227 .008 .009 .009 .004 .007 .007 .007 .013 .007 .004 .010 .011 .007

jC1j 1 22 15 20 37 39 28 31 18 23 29 15 18 9
jC2j 1 11 11 6 4 5 7 6 10 10 5 7 7 7
N 5 44 54 43 62 70 59 58 59 63 60 53 42 37

Table 5: Results from �tting for software data. Values of the �'s are medians over the 100 iterations. jC1j
is the size of the largest cluster, jC2j the size of the second largest cluster. N is the total number of modules

which were modi�ed during that year.

Another potential indication of worsening modular structure would be if, as years passed, a
larger proportion of the nodes were inside the largest cluster. Alternatively, if the size of the
second largest cluster tended to decrease, it might indicate breakdown of the modularity from a
situation with two separated clusters to one where all �les need to communicate. For this data set,
the two years with the largest primary clusters are 1988 and 1989, arguing that at that time there
might have been beginnings of a problem but it has since gone away. Not surprisingly, the same
period contains the smallest secondary clusters. See Table 5.

It is of great interest to measure the extent to which �tted clusterings from di�erent years
match. Methods for doing this besides the one presented here exist, such as in Fowlkes and Mallows
(1983), which bases a measure on the conditional probability that two nodes are in the same cluster
according to one clustering, given that they are in the same cluster according to the other clustering.
Hubert and Arabie (1985) discuss measures attributed to Rand (1971) based on pairs of nodes
placed either in the same cluster or in di�erent clusters by both clusterings, as well as presenting
their own measures based on concordant and discordant triples of nodes.

In the absence of an algorithm which models all years' data simultaneously and allows clusterings
to evolve slowly over time, we can compare �tted values as follows. Pick a cluster C1 of nodes found
in one year, and a cluster C2 from another year, and construct the two-by-two table (Table 6) of
data from modules changed in both years. One can then compute the log-odds-ratio analogue
log(X11X22=X12X21), perhaps after �rst adding one to each cell to prevent in�nities and lessen the
impact of small clusters. It is also possible to standardize this quantity by dividing by (X�1

11 +X�1
12 +

X�1
21 +X�1

22)
1=2 (which can be computed using the delta method) to have a quantity asymptotically

comparable to the standard normal distribution. One can then generate measures of the degree of
agreement between two years' clusterings by choosing the C2 from the available clusters from the
second year which maximizes the statistic above.

In the current work I have computed such indices for each pair of years, and kept C1 �xed as
the largest cluster in the �rst year, optimizing over C2.

These computations show, �rst of all, that the indices for a pair of years tend to be large if the
years are close in time. See Figure 3. Another interesting feature is that pairs of years separated by

16

X11 = jfi : i 2 C1 \ C2gj X12 = jfi : i 2 C1nC2gj

X21 = jfi : i 2 C2nC1gj X22 = jfi : i 62 C1 [C2gj
'

Table 6: Two-by-two table useful for comparing clusterings from two di�erent years.

Years Apart

Cl
us

te
rin

g
Ag

re
em

en
t I

nd
ex

2 4 6 8 10

1

2

3

4

Figure 3: Strength of relationship between clusterings from pairs of years, as a function of the time between

the years. The curve is a smoothing spline with cross-validated number of degrees of freedom. Clusterings

are similar in consecutive years (x = 1), slightly less so with one or two intervening years, but also when data

are separated by eight to ten years, as the original modular structure made a bit of a comeback in recent

years.

eight to ten years also tend to have similar clusters. Collections of �les that were relevant between
1994 and 1995 were closely related to clusters in 1985 and 1986, although those clusters had been
less relevant in intervening years.

A clearer depiction of the return in 1994-5 to the design principles of 1985 can be obtained by
using the �xed clusters idea described in x5.1. Here we explore the hypothesis that the architecture
has drifted away from its original intention. We do this by estimating a clustering using 1985 data,
and �tting models to data from other years to see if this clustering is a good match to those data
as well.

The results are presented in Table 7, which gives the estimated values of �0 and �1 for each
year. The values of �1 can be interpreted as measures of how relevant the clustering is, with small
values meaning that the cluster is very relevant since links within clusters are then much stronger
than links across clusters. Not surprisingly, �1 is smallest in 1985, the year whose data generated

17

Year 85 86 87 88 89 90 91 92 93 94 95 96

�0 116 42 22 12 22 27 18 20 22 32 40 29
�1 .10 .35 .48 .86 .72 .62 .71 .66 .61 .42 .52 .67
sd(�1) .008 .033 .054 .068 .051 .060 .063 .067 .044 .040 .050 .053

Table 7: Results from �tting 1985 clusters to data from various years. Standard deviations computed from

last 40 out of 50 iterations.

the clusters. The 1985 clustering is still relatively closely related to the 1986 data, and its relevance
seems to disappear over the next two years, before eventually regaining some of its power in 1994-5.

In summary, we were not able to con�rm the visualization's suggestions that the quality of
modularization of the code has deteriorated. Decreasing values of ��11 through time would have
argued that modularity was worsening; if this is happening, it is not at all at an alarming rate. If
the largest cluster found by the algorithm had tended to be larger in later years, this might also
have indicated that the system was growing to resemble a collection of modules with no helpful
substructure. This also did not happen. Fitting the clusters from 1986 to data from subsequent
years suggested that the original design principles grew less important for a few years, but have
since recovered some of their importance. The di�erence in results between the visualization and
the modeling algorithm is partly due to the fact that the data that went into a year's visualization
included all changes up to and including that year, while the data that went into BEACON used
one year's data at a time.

7 Conclusions

We have introduced a model designed to identify clusters of objects in data which are strengths
of links between those objects, and indicated how to estimate the parameters of that model using
Markov chain Monte Carlo, a technique implemented in the tool BEACON. Simulation experiments
indicated that the algorithm was quite successful at recovering true cluster structures, except when
the importance of the clusters (as measured by the discrepancy between typical within-cluster links
and typical across-cluster links) is small. Simulation demonstrated other encouraging qualities
of the algorithm, including indications that local minima are not a particular problem, and that
the algorithm is to some extent robust to the distribution of the link strengths (although some
distributions make the problem unavoidably harder). Further strengths of this formulation are the
many convenient extensions: measuring the importance of known clusters, and identifying multiple
types of clustering mechanisms, particularly nested clusterings. This model is very well suited to
software modularity data, as illustrated by an example data analysis given here. We studied a
software system and showed that there is no reason to worry about the decline in its modularity,
contrary to the indications of a visualization of the data, which was run on cumulative, instead of
yearly, data. The model can also make contributions to the �eld of social networks, where it has
the potential to address important issues of estimation of blockmodels with minor modi�cations.

18

References

[1] Fowlkes, E. B., and Mallows, C. L., (1983), \A method for comparing two hierarchical clus-
terings," Journal of the American Statistical Association, 78, 553-569.

[2] Freeman, L., (1998), \Visualizing Social Networks," available on-line at
eclectic.ss.uci.edu/�lin/gallery.html.

[3] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B., (1995), Bayesian Data Analysis,

London: Chapman and Hall.

[4] Holland, P. W., and Leinhardt, S., (1981), \An exponential family of probability distributions
for directed graphs," Journal of the American Statistical Association, 76, 33-65.

[5] Hubert, L., and Arabie, P., (1985), \Comparing partitions," Journal of Classi�cation, 2, 193-
218.

[6] Hutchens, D. H., and Basili, V. R., (1985), \System structure analysis: clustering with data
bindings," IEEE Transactions on Software Engineering, SE-11(8), 749-757.

[7] Kruskal, J. B., and Wish, M., Multidimensional Scaling, Newbury Park, CA: Sage.

[8] Rand, W. M., (1971), \Objective criteria for evaluation of clustering methods," Journal of the

American Statistical Association, 66, 846-850.

[9] Tanner, M. A., (1993), Tools for Statistical Inference, New York: Springer-Verlag.

[10] Wasserman, S., and Anderson, C., (1987), \Stochastic a posteriori blockmodels: construction
and assessment," Social Networks, 9(1), 1-36.

[11] Wasserman, S., and Faust, K., (1994), Social Network Analysis: Methods and Applications

(Structural Analysis in the Social Sciences), Cambridge, UK: Cambridge University Press.

[12] Wasserman, S., and Galaskiewicz, J., eds., (1994), Advances in Social Network Analysis: Re-

search in the Social and Behavioral Sciences (Sage Focus Editions 171), Thousand Oaks, CA:
Sage.

[13] Wasserman, S., and Pattison, P. (1996), \Logit models and logistic regressions for social net-
works: I. An introduction to Markov graphs and p�," Psychometrika, 60, 401-426.

[14] Wills, G. J., (1998), \Nicheworks- Interactive visualization of very large graphs," Journal of

Computational and Graphical Statistics, to appear.

[15] Wong, G. Y., (1987), \Bayesian methods for directed graphs," Journal of the American Sta-

tistical Association, 82, 140-147.

19

