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Why do we randomize?

Cornfield, “Principles of Research,” Journal of Chronic Diseases, 1959.
It makes possible, at the end of the trial, the answer to the ques-
tion “In how many experiments could a difference of this mag-
nitude have arisen by chance alone if the treatment truly has no
effect?” It may seem mysterious that a mathematician could ac-
tually predict the course of future experiments. All you have to
do is compute what would happen if a given set of numbers were
randomly allocated in all possible ways between the two groups.
Randomization allows this.
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At the initial session, we heard several speakers talk about the
importance of preserving the “integrity of randomization” during the
COVID crisis. What exactly does this mean, and why is it important?

The CONSORT document indicates that all clinical trials must report
the randomization procedure used and its impact on bias. It does not
mention inference. There are still many authors who don’t know what
a randomization procedure is, and try to satisfy this criterion by
writing ”randomization was done by EXCEL,” or some other package.

Most randomization procedures protect against subtle biases,
especially in large samples (Rosenberger and Lachin, 2016), so what
is the importance of specifying the randomization procedure? And
surely discontinuing a randomized patient due to contracting COVID
should not immediately interject bias by destroying the integrity of
randomization. Patients are unblinded due to SAEs all the time.

Are people really talking about unblinding rather than subverting
randomization? I find that people mix these concepts up all the time.

What is the point of specifying the randomization procedure and
protecting that procedure against all enemies, foreign and domestic?
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In the absence of using randomization as
a basis for inference, there really is no

point!
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Randomization as a Basis for Inference

The early clinical trialists were aware of the importance of
randomization-based inference, but had limited computer resources to
implement it. Nowadays, we can run a randomization test (or
“re-randomization test”) in seconds, just by modifying the program
used to generate the initial sequence.

Unfortunately, students are not generally taught randomization tests,
or even told that the usual population model does not apply to
clinical trials.

The absence of randomization-based inference from modern analyses
is the principal reason that randomization merits only a sentence or
two in medical journals.
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The Population Model

Population Model Invoked Model

Population A
Y ∼ G (y |θA)

Population B
Y ∼ G (y |θB)

Unspecified
Patient Population

↓ ↓ ↓
Sample

at Random
Sample

at Random
Undefined

Sampling Procedure
↓ ↓ ↓

nA patients
YAj ∼ G (y |θA)

nB patients
YBj ∼ G (y |θB) n patients

↓
Randomization

↓ ↓
nA patients

YAj ∼ G (y |θA)
nB patients

YBj ∼ G (y |θB)
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The Randomization Model

Eligible,
Consenting
Patients
from

Participating
Clinics

↓
↓

n patients

↓
↓

Randomization
↓ ↓

nA patients nB patients
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The Randomization Model

As stated by Lachin (1988, p. 296):

The invocation of a population model for the analysis of a clinical
trial becomes a matter of faith that is based upon assumptions
that are inherently untestable.

Fortunately, the use of randomization provides the basis for an
assumption-free statistical test of the equality of the treatments among
the n patients actually enrolled and studied. These are known as
randomization tests.
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Randomization Tests

The null hypothesis of a randomization test is that the assignment of
treatment A versus B had no effect on the responses of the n patients
randomized in the study. This randomization null hypothesis is very
different from a null hypothesis under a population model, which is
typically based on the equality of parameters from known distributions.
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Randomization Tests

The essential feature of a randomization test is that, under the
randomization null hypothesis, the set of observed responses is assumed to
be a set of deterministic values that are unaffected by treatment. That is,
under the null, each patient’s observed response is what would have been
observed regardless of whether treatment A or B had been assigned. Then
the observed difference between the treatment groups depends only on the
way in which the n patients were randomized.
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Randomization Tests

One then selects an appropriate measure of the treatment group
difference, or the treatment effect, which is used as the test statistic. The
test statistic is then computed for all possible permutations of the
randomization sequence. One then sums the probabilities of those
randomization sequences whose test statistic values are at least as extreme
as what was observed. This total is then the probability of obtaining a
result at least as extreme as the one that was observed, which, by
definition, is precisely the p-value of the test.
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Randomization Tests

The key components of the validity of randomization-based inference is
the randomization null hypothesis and the probability distribution induced
by the randomization procedure itself. Standard population-based ideas
such as the likelihood are replaced with the reference set induced by the
randomization procedure: all possible sequences and their associate
probabilities. Unlike in permutation testing, there is no assumption that
each sequence is equiprobable, and, in fact, we must use the actual
probabilities for the test to be valid. Randomization tests are not
permutation tests, where the data are presumed to arise from an
exchangeable population.
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Nonequiprobable Randomization Procedures

Examples of nonequiprobable randomization procedures:

Permuted block design filling blocks using the truncated binomial
design;

Permuted block designs where block sizes are randomly selected;

Restricted randomization procedures such as Efron’s biased coin
design, Wei’s urn design, Soares and Wu’s big stick design;

Response-adaptive randomization, where treatment assignment
probabilities are selected according to previous patient’s responses;

Covariate-adaptive randomization, where treatment assignment
probabilities are selected according to the degree of balance on certain
known covariates.
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Nonequiprobable Randomization Procedures

Table 1: Four Treatment Assignments under Random Allocation Rule (RAR) and
Truncated Binomial Design (TBD)

Randomization Sequence Data Permutation Probability
x1, x2, x3, x4 A B PRAR PTBD

AABB x1, x2 x3, x4 1/6 1/4
ABAB x1, x3 x2, x4 1/6 1/8
ABBA x1, x4 x2, x3 1/6 1/8
BAAB x2, x3 x1, x4 1/6 1/8
BABA x2, x4 x1, x3 1/6 1/8
BBAA x3, x4 x1, x2 1/6 1/4
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Randomization Tests

Under the randomization null hypothesis treatments and responses are
independent and all of these techniques can be analyzed using the same
randomization-based inference techniques with respect to the correct
reference set.

Note that, unlike in inference based on random sampling, I am completely
unconcerned about the choice of test statistic, as long as it compares
responses across treatment groups. I can use the difference of means or
proportions, or a linear rank test. The advantage of a linear rank test is
that it includes the Wilcoxon test, logrank test, and logrank test with
censoring as special cases. I am also not concerned with the distribution of
the chosen test, except with respect to the reference set.
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“The ABBA Example”

Table 2: Reference sets for computation of the exact randomization test from
complete randomization and Efron’s biased coin design (BCD) with p = 2/3. The
observed sequence is ABBA. The two-sided p-value for complete randomization is
0.25 and for the BCD is 0.30.

Sequence (l) Pr(L = l) complete Pr(L = l) BCD Sl
AAAA 0.0625 0.0185 145.0∗

AAAB 0.0625 0.0370 −33.3
AABA 0.0625 0.0370 46.7
AABB 0.0625 0.0741 10.0
ABAA 0.0625 0.0556 33.3
ABAB 0.0625 0.1111 0.0
ABBA 0.0625 0.1111 50.0∗

ABBB 0.0625 0.0556 46.7
BAAA 0.0625 0.0556 −46.7
BAAB 0.0625 0.1111 −50.0∗

BABA 0.0625 0.1111 0.0
BABB 0.0625 0.0556 −33.3
BBAA 0.0625 0.0741 −10.0
BBAB 0.0625 0.0370 −46.7
BBBA 0.0625 0.0370 33.3
BBBB 0.0625 0.0185 −145.0∗
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Monte Carlo Randomization Test or “Re-Randomization
Test”

For a set of observed responses x1, ..., xn and the treatment assignments
used in the trial t1, ..., tn, generated by a randomization procedure φj , we
compute a test statistic, which can be based on any treatment effect
difference, and call it Sobs.. Now we generate L randomization sequences
using Monte Carlo simulation. For each of these sequences, a new test
statistic, Sl , l = 1, ..., L, is computed from x1, ..., xn. The two-sided Monte
Carlo p-value estimator is then defined as

p̂u =

∑L
l=1 I (|Sl | ≥ |Sobs.|)

L
. (1)

For restricted randomization, the key component of this computation is
that disparate probabilities of sequences will be depicted by the frequency
of duplicate sequences sampled with replacement.
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How Large Does L Have to Be?

Whether or not Sl is extreme is distributed as Bernoulli with underlying
probability pu, and hence p̂u is unbiased with

MSE (p̂u) =
pu(1− pu)

L
.

Then establishing a bound MSE (p̂u) < ε implies that L > 1/4ε. For
ε = 0.0001, we have L > 2500 (Zhang and Rosenberger (2011)).

The value of ε may not be small enough to estimate very small p-values
accurately. Plamadeala and Rosenberger (2012) suggest finding L that
ensures P(|p̂u − pu| ≤ 0.1pu) = 0.99, for instance. It follows that
L ≈ (2.576/0.1)2(1− pu)/pu. Thus, to estimate a p–value as large as 0.04
with an error of 10% with 0.99 probability, the Monte Carlo sample size
must be L = 15, 924. If a smaller p-value is expected, L will be larger.

In any event, generating 20,000 randomization sequences takes only
seconds.
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Regression Modelling

It may be desired to test a covariate-adjusted treatment effect from a
regression model. While a regression model is usually developed under a
population model, it is straightforward to apply a randomization analysis
following the fit of a model. Conceptually the basic steps are to first fit a
model to baseline covariates, other than treatment group, since the test is
conducted under H0.

Then the residuals from the model can be viewed as a set of fixed
responses, regardless of which treatment is assigned. The model residuals
can then be employed in lieu of the responses as the basis for computing a
test statistic. This approach was first described by Gail, Tan, and
Piantadosi (1988). They used the asymptotic distribution of the
randomization test assuming treatment assignments are equiprobable.
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Regression Modelling

A major advantage of the randomization analysis of the residuals is that
the validity of the test in no way depends on the validity of the model
assumptions used to fit the model. Thus, if a simple normal errors model
is used as the basis for computing the residuals, then the validity of a t- or
F -test between groups depends on the homoscedastic normal errors
assumption. However, the randomization test comparing the randomly
assigned groups in no way depends on this assumption. Thus the
randomization test can be viewed as a robust test in situations where the
regression model may be misspecified, unless the residuals computed are
wrong due to extreme misspecification.
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Regression Modelling

Parhat, Rosenberger, and Diao (2014) directly compute the randomization
test by ranking the residuals and calculating the linear rank test, then
re-randomizing them. They also apply the technique to time-to-event data
using both the Cox proportional hazards model and the accelerated failure
time model, by ranking the martingale residuals. They find that the
randomization test preserves error rates better than tests based on the
population model, when the underlying model is misspecified. They have a
series of SAS macros that do this.
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Group Sequential Monitoring

From a group sequential standpoint, we set up a series of boundary values
d1, ..., dK over K interim inspections, and we establish a spending function
α(tk), 0 < t1 < t2 < · · · tK = 1 that “spends” a portion of the total α at
each tk , but preserves α(1) = α. At the kth inspection, we need to
compute the conditional probability distribution of the test statistic Sk ,
conditional on S1 <= d1, S2 <= d2, . . .Sk−1 <= dk−1.

The Monte Carlo randomization test procedure to do this is clear. We
generate sequences and keep only those that satisfy the condition
S1 <= d1,S2 <= d2, . . .Sk−1 <= dk−1, and then determine dk as a
quantile of the randomization distribution of Sk such that P(Sk > dk) is
the incremental alpha determined by α(t). The trial ends when the
observed test statistic Sk,obs. > dk . This is the approach of Plamadeala
and Rosenberger (2012). The paper also addressed the tricky issue of how
to define “information” when there is no concept of Fisher information in
the randomization-based formulation.
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The fully sequential approach has no analog, because n is then a random
variable, and the reference set for the randomization test must include all
variable length sequences that could have been realized. The only way to
do this is to condition on n, but the stopping rule includes information on
the treatment effect.

Interestingly, Armitage recognized this problem in his 1952 paper on
sequential analysis!
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Covariate-Adaptive Randomization

Covariate-adaptive randomization (sometimes known as minimization)
randomizes patients with a certain covariate profile according to the
degree of imbalance among treatment assignments for already randomized
patients with the same profile. The idea is that one can incorporate far
more covariates than is allowable using stratification. Taves (1974)
proposed a non-randomized minimization design that does not allow
randomization-based inference (except when there are ties). Pocock and
Simon (1975) used Efron’s biased coin design as a randomization
procedure within marginal covariate profiles. In fact, Simon (1979)
indicates how to use randomization-based inference following the
procedure.
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Covariate-Adaptive Randomization

It is possible, though cumbersome, to perform the appropriate ran-
domization test generated by a nondeterministic adaptive stratifi-
cation design. One assumes that the patient responses, covariate
values, and sequence of patient arrivals are all fixed. One then
simulates on a computer the assignment of treatments to patients
using the [Pocock-Simon procedure] and the treatment assign-
ment probabilities actually employed. Replication of the simula-
tion generates the approximate null distribution of the test statis-
tic adopted, and the significance level. One need not make the
questionable assumption that the sequence of patient arrivals is
random.
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Preserving Operating Characteristics Under Heterogeneity

One of the advantages of randomization tests is that they tend to
preserve the type I error rate when the population model is
misspecified.

To investigate this in small samples, we simulated 10,000 test
statistics (n = 50) under two models:
(1) Under H0, Z1, ...,Zn ∼ i.i.d. N(0, 1).

Under H1, treatment A has a mean shift of 1.
(2) Under H0, Z1, ...,Zn are subject to a drift over time, ranging linearly on

the interval (−2, 2] plus a N(0, 1) random variable.
Under H1, treatment A has a means shift of 1.
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Model (1) Model (2)

Randomization t-test Randomization t-test

Procedure Size Power Size Power Size Power Size Power

CR 0.05 0.87 0.05 0.93 0.05 0.57 0.05 0.60
RAR 0.04 0.93 0.04 0.93 0.05 0.61 0.04 0.60
TBD 0.05 0.93 0.05 0.93 0.05 0.35 0.18 0.57
Smith (ρ = 1) 0.05 0.91 0.05 0.93 0.05 0.66 0.02 0.62
BCD 0.04 0.92 0.05 0.93 0.05 0.78 0.01 0.64
PBD 0.05 0.93 0.04 0.93 0.05 0.88 0.00 0.65
RBD 0.05 0.93 0.04 0.93 0.05 0.90 0.00 0.65
BSD 0.05 0.93 0.05 0.93 0.05 0.83 0.00 0.61

W. F. Rosenberger Randomization Tests 26 / 34



Recent papers

Statistics in Medicine has published four recent papers in the Tutorial
section of the journal:
ROSENBERGER, W. F., USCHNER, D., and WANG, Y. (2019).
Randomization: the forgotten component of the randomized clinical trial.
Statist. Med. 38 1-30 (with discussion).
PROSCHAN, M. and DODD, L. E. (2019). Re-randomization tests in
clinical trials. Statist. Med. 38 2292-2302.
WANG, Y., ROSENBERGER, W. F., and USCHNER, D. (2019).
Randomization tests for multi-armed randomized clinical trials,” Statist.
Med. 39 494-509.
WANG, Y. and ROSENBERGER, W. F. (2020). Randomization-based
interval estimation in randomized clinical trials. Statist. Med., 39,
2843–2854.
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Some old papers:

All these ideas have their roots in papers by Anscombe and Armitage, and
Kempthorne knew how to do everything, except actually compute them!
Randomized clinical trials are perhaps the most perfectly suited
experiments ever invented to take advantage of these simple, powerful,
and type I error-preserving methods.

W. F. Rosenberger Randomization Tests 28 / 34



Q: If the analysis of a clinical trial is based on a randomization model
that does not in any way involve the notion of a population, how can
results of the trial be generalized to determine the best care for future
patients?

A: Berger (2000) argues that the difficulty in generalizing to a target
population is a weakness not of the randomization test, but of the
study design. If it were suspected by investigators that patient
experience in a particular clinical trial could not be generalized, there
would be no reason to conduct the clinical trial in the first place.
Thus we hope that the results of a randomized clinical trial will apply
to the general population as well as to the patients in the trial.
However, the study design only provides a formal assessment of the
latter, not the former. By ensuring validity of the treatment
comparison within the trial conducted, by limiting bias and ensuring
strict adherence to the protocol, it is more likely that a generalization
beyond the trial can be attained.
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Summary

Randomization has become a rote exercise that is nearly ignored in
practice.

Its basis for inference has been cited since the dawn of clinical trials
as one of the key advantages of its use.

Researchers in past decades have not been able to compute
randomization tests due to computational limitations.

The Monte Carlo formulation makes them available in seconds.

We have shown that randomization-based inference can be used for
virtually any primary outcome analysis encountered in clinical trials.
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Summary

Randomization tests are valid even under heterogenity, preserving the
type I error rate. This is not approximate, based on normal
approximations, Z-tests, or multivariate normal assumptions. Because
there are no Z-tests or assumptions.

The only invalidity of a randomization test will be due to bias in the
study.
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The validity of the generalization of the experimental conclusions
to a relevant population of interest relies on the design and proper
conduct of the trial rather than on the accuracy of a statistical
model of the population distribution. For example, the preserva-
tion of type I error rate may be viewed as a sufficient condition for
valid generalization from the specific trial participants to a larger
context. However, such a connotation cannot be invoked by the
preservation of type I error rate alone; rather, a statistically valid
conclusion may not be scientifically objective due to a biased ex-
periment. It is sometimes also believed that tests involving random
sampling from population distribution enables generalization to a
broader context, whereas randomization tests, in which patient
responses are regarded as arithmetic numbers, do not. Nonethe-
less, the population model only allows inference on the assumed
population parameters or characteristics. –Wang, Rosenberger,
Uschner, Stat. Med., 2019.
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Randomization Tests in the Time of COVID

COVID has upended clinical trials, and the most critical aspect is the
introduction of heterogeneity: if a trial has an unplanned interruption,
when it is restarted will the clinical trials population have the same
characteristics? COVID diagnoses interfere with heart, lung, and blood
functions. And recruitment may be limited to those who are at low risk.
These aspects increase heterogeneity. Randomization-based inference can
help because it retains operating characteristics under heterogeneity.

But the generalizability may be impacted.
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Randomization Matters

Thank you!
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