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COMPARING REGRESSION COEFFICIENTS BETWEEN MODELS 

EXECUTIVE SUMMARY 

One of the most common statistical procedures in quantitative social science research is to examine the 
association between a key predictor, X, and an outcome, Y, before and after adjusting for another 
predictor, Z. If the absolute value of that coefficient is reduced after adding Z, they infer that Z explains, 
at least in part, the relationship between X and Y. The general issue at hand, then, is "comparing 
regression coefficients between models." The inferential issues involved in such comparisons have 
arisen frequently in data analyses contracted by the National Center for Educational Statistics (NCES). 
Concerned about the possible subjectivity associated with comparisons using the "eyeball" method, 
NCES charged the National Institute of Statistical Sciences (NISS) with convening a panel of technical 
experts to consult with NCES on advice for contractors analyzing NCES data. 

The panel met in-person at NISS in October, 1996, to consider these issues, and a sub-group of 
participants volunteered to serve on a Task Force to write this report. The report is restricted to the case 
of a continuous or approximately continuous outcome as a first step in establishing standards. The 
procedures recommended apply when there is no statistical interaction between X and Z. Examples are 
used to illustrate how to test for such interactions and how to compare coefficients across models when 
no such interactions are found. 
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NATIONAL INSTITUTE OF STATISTICAL SCIENCES TECHNICAL TASK FORCE REPORT 

PREFACE 

The inferential issues involved in "comparing regression coefficients between models" have arisen 
frequently in data analyses contracted by the National Center for Educational Statistics (NCES). 
Concerned about the possible subjectivity associated with comparisons using the "eyeball" method, 
NCES charged the National Institute of Statistical Sciences (NISS) with convening a panel of technical 
experts to consult with NCES on advice for contractors analyzing NCES data. 

The panel met in-person at NISS in October, 1996, to consider these issues, and a sub-group of panel 
participants volunteered to serve on a Task Force to write this report. 
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COMPARING REGRESSION COEFFICIENTS BETWEEN 

MODELS: CONCEPTS AND ILLUSTRATIVE EXAMPLES 

Statement of the Problem 

One of the most common statistical procedures in quantitative social science research is to examine the 
association between a key predictor, X, and an outcome, Y, before and after adjusting for another 
predictor, Z.  In some cases X represents a quasi-experimental treatment, Z is a pre-treatment covariate, 
and the aim is to estimate the extent to which the covariate accounts for the unadjusted difference 
between treatments. In other cases, X is an exogenous variable known to be associated with the Y and the 
question is whether this association is "explained" by an endogenous Z viewed as mediating the X, Y 
relationship. In practice, most investigators simply "eyeball" the regression coefficient for X before and 
after adding Z.  If the absolute value of that coefficient is reduced after adding Z, they infer that Z explains, 
at least in part, the relationship between X and Y.  Clogg, Petkova, and Haritou (1995) and Allison (1995) 
advised researchers to take a more rigorous approach to this problem by computing standard errors, tests, 
and confidence intervals for the difference in the X, Y coefficient associated with adding Z.  The general 
issue at hand, then, is "comparing regression coefficients between models." 

Not surprisingly, the inferential issues involved in such comparisons have arisen frequently in data analyses 
contracted by the National Center for Educational Statistics (NCES). Concerned about the possible 
subjectivity associated with comparisons using the "eyeball" method, Susan Ahmed, Chief Statistician at 
NCES, asked the National Institute of Statistical Sciences (NISS) to consult with NCES on advice for 
contractors analyzing NCES data. Under the leadership of Ingram Olkin, a meeting was convened at NISS in 
October, 1996, to consider these issues, and a sub-group of participants volunteered to serve on a Task 
Force to write this report. The report is restricted to the case of a continuous or approximately continuous 
outcome as a first step in establishing standards. The procedures we recommend apply when there is no 
statistical interaction between X and Z.  We illustrate by example how to test for such interactions and 
how to compare coefficients across models when no such interactions are found. 

A Simple Example 

In general, there can be one or more X variables whose relationship to Y might be "explained" by one or 
more Zs. However, the basic logic of the problem becomes clear in the simple case in which there is one 
continuous outcome variable, Y, a binary predictor X (taking on a value of 1 if a case is in group 1 and 0 if 
not), and a single covariate, Z.  One might consider X to be either fixed or random, but we assume both Z 
and Y are random. Two regressions are estimated. First, we estimate a regression with Y as the outcome 
and X as the sole predictor: 

Yi  = α + βyxXi  + ei .  
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(4)  

(3)  

(2)  

Next, we estimate a regression with Y as the outcome, but now we include both X and Z as predictors: 

Yi  = α* + βyx . zXi  + γZi  + ei   

Both regressions will often be estimated under ordinary least squares (OLS), often with provisions to ensure 
that the standard errors take into account important features of the sampling design and possible 
heteroscedasticity in the errors. 

The assumption of homogeneity of regression. A key assumption for the procedures described so far is that 
the regression coefficient for Z as a predictor of Y is identical within each of the two groups defined by the 
two values of X. The present report is organized around three issues: 1) how to assess the assumption of 
equality of slopes; 2) how to proceed when the assumption is reasonable; and 3) how to proceed when it is 
not. 

1. Checking the assumption of equal slopes.  Standard textbooks provide a test of homogeneity of 
regression. One creates an interaction term, the product of X and Z, adds that as a predictor, and tests 
the significance of the slope associated with that interaction. Of course, in large samples there will be a 
tendency to reject the hypothesis of homogeneity even when the difference between· the slopes is 
small. Thus, it will make sense to compute a confidence interval for the difference between the two 
slopes (which is the regression coefficient associated with the interaction term) and to assess the size 
of the difference between the slopes. 

2. The case of parallel lines.  When the data suggest that the two slopes are approximately equal, the 
problem at hand is to obtain a test and, more importantly, a confidence interval for the difference 
between the coefficients for X in the two models, that is, for 

δ = βyx – βyx.z 

The OLS estimators in this simple example are 

βyx = Ȳ1 – Ȳ0 

βyx.z = Ȳ1 – Ȳ0 – ŷ (Z1 – Z0) 

δ = ŷ (Z1 – Z0) 

 

These quantities are illustrated in Figure 1, a familiar display for those who have studied the analysis of 
covariance.  The figure shows the regression lines for predicting Y from Z within groups 0 and 1.  The 
estimated mean difference between groups, controlling Z, is the distance between the two regression lines. 
Note that there is a positive relationship between Z and Y and that group 1's mean covariate value, Z1 , is 
larger than group 0's mean covariate value, Z0.  Therefore, the adjusted mean difference, βyx.z = Y1 – Y0 - ŷ 
(Z1 – Z0) is smaller than the unadjusted mean difference, βyx = Y1 – Y0.  The magnitude of the adjustment is 
δ = ŷ (Z1 – Z0).  If the figure were redrawn with nonparallel lines, the adjusted mean difference would vary 
as a function of Z as would the magnitude of the adjustment. Statistical inference would be correspondingly 
more complex. 

Insert Figure 1 About Here
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The population quantity of interest here may be conceived in different ways. For most NCES purposes, our 
view is that this quantity is 

δ  = γ (μ z 1  – μ z 0) .  

Here μz 1 , μz 0  are the population means of Z for groups 1 and 0, respectively. In some cases these means 
may be known from the census, in which case inference will be quite simple. More generally, however, we 
recommend estimating the sampling variance of δ using Equation 7 of Allison (1995), with "design-
consistent" sampling variances substituted for the usual OLS variances in that formula when necessary.1  
This sampling variance is the basis for an asymptotic unit normal test and confidence interval for δ. We shall 
illustrate this approach and its multivariate generalization below. 

3. Non-parallel lines within groups. When the slopes are unequal, inference is conceptually more difficult. 
If the data suggest that the slopes are negligibly different, then the researcher may wish to use the 
procedure described above for parallel slopes. For example, one might assess the mean difference 
between the two groups when evaluated at selected points in the distribution of Z within the two 
groups. If this difference were negligible, one might proceed cautiously as described above. 

When the difference between slopes is non-negligible, we suggest consulting the literature stemming from 
the Johnson-Neyman technique {Johnson and Neyman, 1936; see also Walker and Lev·, 1953; Rogosa, 
1980) and as well as work by Oaxaca and others (Oaxaca and Ransom, 1994; Beaton, 1988). Essentially, 
these approaches involve evaluating the difference between groups at selected values of Z; and/or 
decomposing inequality between groups as a function of inequality between covariate means and 
inequality between group slopes. 

In the case of non-parallel slopes, we do not recommend pursuing inferences about changes in the 
coefficient for X associated with the inclusion of Z as a covariate. 

The Illustrative Data 

To illustrate the procedures we recommend, we seek to compare all Catholic schools and a random sample 
of public schools from the base year (1980) sample of the High School and Beyond survey. The variables are 
all measured at the school level. 

The outcome, Y, is "DISCLIM," the disciplinary climate of the school, a standardized composite of items 
indicating frequency of fighting, class cutting, tardiness, suspensions, etc. (see Lee and Bryk, 1989, for 
details). High values indicate a disorderly climate. 

The predictors are "SECTOR," "MEANSES," and "PROP ACADEMIC:" 

SECTOR is coded 1 for Catholic schools, 0 for public schools. 

MEANSES is the mean socioeconomic status of sampled students (centered about its grand mean). The 
typical sample size is 45-60 per school, and the students constitute a simple random sample from the 
school, so the sample mean is a reasonably good estimate of the mean SES of all students in the school. 
Student SES is a composite of income, parent education, and parent occupation. 

PROP ACADEMIC is the is the proportion of kids in the academic track in the given school. 

 
1 By "design-consistent," we mean that the variances are estimated via procedures that take into account the stratified and 
clustered character of the design producing the data as well as the measurement properties of Y. 
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Table 1 provides a description of the sample. 

Table 1:  Description of the Analytic Sample 

Variable Name Sample Size Mean Standard Deviation 

DISCLIM 160 -.015 .977 

SECTOR 160 .438 .498 

MEANSES 160 .000 .414 

PROP ACADEMIC 160 .514 .256 

Example 1:  The Case of a Single X and a Single Z 

We begin with the example already discussed. We have a single outcome, Y = DISCLIM, a single binary 
predictor, X = SECTOR, and a single Z = MEANSES. The substantive question is whether the manifest mean 
difference in DISCLIM between public and Catholic schools reflects, at least to some degree, the relatively 
advantaged MEANSES of the Catholic schools. Thus, we might estimate a model in which SECTOR predicts 
DISCLIM and a second model in which SECTOR and MEANSES predict DISCLIM. We then might ask whether 
the SECTOR coefficient is significantly reduced after adding MEANSES. However, we must first examine the 
implicit assumption that SECTOR and MEANSES do not interact.2 

1. Is there an interaction between X and Z?  We begin by estimating the regression 

Yi = α+ + β+ (SECTOR) i + γ+ (MEANSES) i 

+ ω (SECTOR) * (MEANSES) i + ei 

leading to the estimated coefficients, standard errors, and t-ratios reported in Table 2. 

Table 2:  Testing the MEANSES-by-SECTOR Interaction 

Predictor Coef SE t-ratio p 

Constant 0.573 0.076 7.52 .00 
SECTOR -1.317 0.117 -11.26 .00 
MEANSES -0.184 0.190 -0.97 .33 
SECTOR*MEANSES -0.166 0.282 -0.59 .56 

 

Given t = -.59, p = .56 associated with the interaction between sector and MEANSES, we conclude that there 
is no evidence against the parallelism assumption.3 

2 Estimating the model without Z. We now estimate the model 

Yi  = α + β y x  (SECTOR)  i  + ei  

leading to the result reported in Table 3. 

 
2 Scatter plots and residual analyses for each group indicated the approximate linearity of the estimated relationships and the 
relatively "well-behaved'' character of residuals. 
3 We caution the reader that it will often be important to center one or both of the predictors and to construct the interaction term 
by multiplying these centered predictors. Use of the centered predictors and the resulting product term will minimize collinearity 
among the predictors. 
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Table 3:  Model Estimates for X = SECTOR, without Z 

Predictor Coef SE t-ratio p 

Constant 0.597 0.073 8.23 .00 
SECTOR -1.399 0.110 -12.76 .00 

 
Note that in the model with SECTOR as a dummy variable the regression coefficient for SECTOR is simply 
the mean difference between sectors on disclim.  Thus, we see that Catholic schools have more orderly 
disciplinary climates than do public schools, β = -1.399, t = -12.76.  The question is whether the high 
MEANSES of the Catholic schools can at least partially account for this difference. We therefore estimate 
the model 

Yi = α* + βyx.z (SECTOR)i + γ (MEANSES)i + ei 

leading to the results reported in Table 4. 

Table 4:  Model Estimates for X = SECTOR, including Z = MEANSES 

Predictor Coef SE t-ration p 

Constant 0.563 0.074 7.59 .00 
SECTOR -1.322 0.116 -11.36 .00 
MEANSES -0.260 0.140 -1.86 .07 

Clearly the "SECTOR coefficient" remains significantly less than zero. But is it now smaller than before 
controlling MEANSES? The estimated mean difference between coefficients for SECTOR across the two 
models is -1.399 - (-1.322) = -.077, but such a seemingly small difference may be attributable to chance. 
Moreover, a small estimate does not by itself rule out a large difference between the population 
coefficients. We need a confidence interval for this difference, and for that we need a standard error 
estimate. To compute the standard error estimate, we must first fit the regression of Z on X. Thus we 
estimate 

(meanses)i = θ + βzx (sector)i + ui 

leading to the model estimates reported in Table 5. 

Table 5:  Estimated Regression of Z = MEANSES on X = SECTOR 

Predictor Coef SE t-ratio p 

Constant -0.130 0.041 -3.17 0.002 
SECTOR 0.296 0.062 4.78 0.000 

As mentioned, these results suggest strongly that Catholic schools have higher MEANSES than do public 
schools on average. We now have all of the quantities needed to estimate the sampling variance of the 
difference between coefficients across models. 
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^  ^  ^  ^  

^  ^  
2  

For an estimator θ of θ, let s(θ) denote the estimated standard error of θ. Then, applying Equation 7 of 
Allison (1995), we have 

d = δ = βyx - βyx.z = -1.399 - (-1.322) = - .077 

s2 (d) = s2 (γ) βzx + γ2 s2 (βzx) 

= (.1399) 2*(0.296) 2 + (-.260) 2*(0.619) 2 = .00197. 

Using the standard error of (. 00197) ½  = . 0444, we can compute a confidence interval for δ, for example 

95% CI (δ) = [-.077 - (1.96) * (.044) , -.077 + (1.96) * (.044)] 

= (-.163, .009). 

All plausible values of the difference δ are small relative to the initial estimate of the SECTOR coefficient of 
-1.399, although the null hypothesis of no difference would be rejected by a one-tail test at the five percent 
level of significance, t = -.077/.044 = -1.75. 

Example 2:  The Case of One X and Two Zs 

The example above is strictly univariate: there is a single X and a single Z. We now consider the first of two 
multivariate cases. Our interest remains focused on the mean difference between Catholic and public 
schools in DISCLIM. However, we now ask whether this relationship can be somehow "explained" by two 
variables Z1 = MEANSES and Z2 = PROP ACADEMIC, that is, the proportion of students in the school in the 
academic track. It may be that Catholic schools have more favorable DISCLIM not only because they have 
higher MEANSES but also because more of their students are assigned to the academic track, based on the 
assumption that DISCLIM is generally more favorable within the academic track than the non-academic 
track. The logic, then, is to compare a model with only SECTOR as a predictor to a model in which SECTOR, 
MEANSES, and PROP ACADEMIC are predictors. However, such a model comparison assumes no 
interactions involving SECTOR. We therefore consider the interactions first. 

1. Are any interactions with SECTOR needed in the model?  To answer this question, we estimate a model 
with all two-way interactions and the three-way interaction (Table 6) and a second model without the 
interactions (Table 7).4 

Table 6:  Estimated Regression with Interactions 

Predictor Coef SE t-ratio p 

Constant 0.036 0.078 0.46 .65 
X = SECTOR -1.036 0.156 -6.66 .00 
Z1 = MEANSES 0.012 0.172 0.07 .95 
Z2 = P. ACAD. -0.674 0.465 -1.45 .15 
X by Z1 0.162 0.424 0.38 .70 
X by Z2 -0.342 0.717 -0.48 .63 
Z1 by Z1 -0.274 0.743 -0.37 .71 
X by Z1 by Z2 -1.665 2.197 -0.76 .45 

R2 = 54.4% 

 
4 0ur primary concern is whether interactions exist involving X = SECTOR. Specifically, we are concerned about the two-way 
interactions (between MEANSES and SECTOR and between PROP ACADEMIC and SECTOR) and the three-way interaction. We also 
include the two-way interaction between MEANSES and PROP ACADEMIC to ensure that the interactions of interest to us are 
estimated without bias. 
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Analysis of Variance 

SOURCE DF SS MS F p 
Regression 7 82.486 11.784 25.85 .00 
Error 152 69.277 0.456   

 
Table 7:  Estimated Regression Without Interactions 

Predictor Coef SE t-ratio P 
Constant 0.940 0.157 5.99 .00 
SECTOR -1.077 0.146 -7.40 .00 
MEANSES 0.014 0.170 0.08 .94 
P. ACAD. -0.942 0.348 -2.71 .01 

R2 = 54.0% 

Analysis of Variance 

SOURCE DF SS MS F p 
Regression 3 81.927 27.309 61.00 .00 
Error 156 69.837 0.448   
Total 159 151.763    

 

The univariate t-tests for the three interactions involving X = SECTOR in Table 6 are non-significant. 
However, a more appropriate test is the omnibus F test, where 

 
Here f is compared to the percentiles of the F distribution with df = 4, 153, showing no evidence against the 
null hypothesis that all interactions are null. Thus, we proceed to the model comparison test. Note that if 
the omnibus null hypothesis on the interactions were rejected, we would examine interactions involving X 
using post hoc procedures.5 

2. How do the coefficients for SECTOR differ, before and after adding MEANSES and PROP ACADEMIC? A 
comparison of results between Table 3 (which has SECTOR predicting DISCLIM) and Table 7 (where 
SECTOR, MEANSES, and PROP ACADEMIC predict DISCLIM) shows that the difference between the two 
coefficient estimates for SECTOR is d = -1.399 - (-1.077) = - .322. To compute a confidence interval or 
test, we need to compute the estimated variance of d. To compute this, it is convenient to write the 
two models in matrix notation. 

 
5 Alternatively, one might test the three-way interaction first. Finding it null, one might then compare two models, one with two-
way interaction effects involving X and one without those interactions. A model comparison F-test could then assess the 
interactions involving X. 
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(15)  

(16)  

(17)  

(18)  

The model without the Zs may be written as 

Yi  = α +  β y xX i  + ei,  

= (1 Xi) �
𝛼𝛼
β𝑦𝑦𝑦𝑦

�  + ei , 

where Xi = SECTOR for school i. In full matrix notation, Equation 13 becomes Y  = XB y x  + ℮  

 

The model with the Zs is 

Y i  =  α *  +  β y x . z X i  +  γ 1 Z 1 i  +  γ 2 Z 2 i  +  ℮* i
* 

=  (1  X i )  � 𝛼𝛼 ∗
β𝑦𝑦𝑦𝑦.𝑧𝑧

� + (Z1 i  Z 2 i)  �𝛾𝛾1𝛾𝛾2� ℮ i
* 

where 𝑍𝑍1𝑖𝑖  = MEAN SES and 𝑍𝑍2𝑖𝑖  = PROP ACADEMIC for school i.  In full, "no-subscript" matrix notation, 
Equation 15 becomes 

𝑌𝑌 = 𝑋𝑋𝐁𝐁𝑦𝑦𝑦𝑦.𝑧𝑧  +  𝑍𝑍Г +  ℮ ∗ 

In order to compute the needed variance-covariance matrix of estimated differences, however, we must 
compute another pair of regressions, that is, the regression of MEANSES and of PROP ACADEMIC on 
SECTOR. The model is 

Z1 i  = θ1  + β z 1 xX i  + u 1 i  

Z2 1  = θ2  + β z 2 xX i  + u 2 i  

or 

 
In full matrix notation we have 

Z = XBzx + u. 

Tables 8 and 9 provide the results of these regressions. 

Table 8:  Estimated Regression of Z1 on X 

Predictor Coef SE t-ratio p 

Constant -0.130 0.041 -3.17 .00 
SECTOR 0.296 0.062 4.78 .00 

s = 0.3882                R-sq = 12.6%                 R-sq (adj) = 12.1% 

Analysis of Variance 

SOURCE DF SS MS F p 
Regression 1 3.441 3.441 22.83 .00 
Error 158 23.808 0.151   
Total 159 27.248    
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Table 9:  Estimated Regression of Z2 on X 

Predictor Coef SE t-ratio p 

Constant 0.363 0.020 18.11 .00 
SECTOR 0.346 0.030 11.42 .00 

s = 0.1900 R-sq = 45.2% R-sq (adj) = 44.9%

Analysis of Variance 

SOURCE DF SS MS F p 
Regression 1 4.707 4.707 130.38 .00 
Error 158 5.705 0.036 
Total 159 10.413 

The two regression outputs provide estimates of the standard deviations of the residuals. To get the 
covariance, we can save the residuals and compute their correlation, from which the covariance follows. In 
this case the correlation of the residuals is r = .593, and, thus, their covariance is 
(0.3882)*(0.1900)*(0.593)=0.04374. 

Define δ = (δ0 , δ1 ) T = Byx - Byx.z and d as the estimate of δ. To compute the variance of d, we apply Allison's 
(1995) Equation A106: 

Sample estimates are substituted for unknown population quantities in Equation 20. Many statistical 
packages will print out the inverse of the XTX matrix. We obtain 

6 One generally seeks to retain as many decimal places as possible in these computations. Hence, the numbers in Equation 6 are 
not rounded as in the Tables. 

We now compute a 95% confidence interval for the difference in the coefficient for SECTOR before and 
after controlling for the two Zs: 

95% CI(δ) = [-.322 - (1.96) * (.0106) ½, -.322 + (1.96) * (.0106) ½] 

= (-.524, -.120). 

Based on the confidence interval (Equation 22), values of o very near zero are not plausible, though the 
range of plausible values is quite large relative to the value of this difference. 
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Example 3: The Case of Two Xs and One Zs 

In the last example, we had a single X, and the task was to determine the extent to which two Zs could 
account for the relationship between X and Y. The logic extends to the case of a single X and multiple Zs. 
Now we consider the case of two Xs and a single Z. The task is to determine the extent to which the 
relationships between each X and Y can be explained by adding Z. Of course the logic will extend to the 
case of multiple Zs. 

In the context of our illustrative data, our interest focuses on explanatory variables X1 = SECTOR and X2 = 
MEANSES. We ask whether the relationships between these Xs and Y can, in part, be "explained" by Z = 
PROP ACADEMIC, that is, the proportion of students in the school in the academic track. It may be that 
Catholic schools have more favorable DISCLIM because more of their students are assigned to the academic 
track, based on the assumptions that DISCLIM is generally more favorable within the academic track than 
the non-academic track. It also may be that any relationship between the social composition of the school, 
as indicated by MEANSES, and DISCLIM, is also attributable to the proportion of students in the academic 
track. The reasoning here is that schools with more advantaged compositions will tend to assign more 
students to the academic track than will schools with less advantaged compositions, and, for that reason, 
those "high-MEANSES" schools will enjoy comparatively favorable DISCLIM. The logic, then, is to compare a 
model with SECTOR and MEANSES as predictors to a model in which SECTOR, MEANSES, and PROP 
ACADEMIC are predictors. However, such a model comparison assumes no interactions between Z and 
each X. We therefore consider the interactions first. 

1. Are any two-way interactions needed in the model?  Although the X1 by X2 interaction is not of central 
interest, we include it in the model to avoid possible bias of other estimates. The model therefore 
includes all two-way interactions. Results are in Table 10. 

Table 10:  Estimated Regression with Two-Way Interactions 

Predictor Coef SE t-ratio p 

Constant 0.880 0.226 3.90 .00 
X1 = SECTOR -1.073 0.147 -7.28 .00 
X2 = MEANSES -0.068 0.246 -0.28 .78 
Z = P. ACAD. -0.745 0.532 -1.40 .16 
X1 by X2 0.184 0.422 0.44 .66 
X1 by Z -0.338 0.716 -0.417 .64 
X2 by Z -0.410 0.719 -0.57 .57 

R2 = 54.2% 

Analysis of Variance 

SOURCE DF SS MS F p 

Regression 6 82.224 13.704 30.15 .00 
  Error 153 69.539 0.455   
  Total 159 151.763    

The univariate t-tests for the interactions in Table 11 are non-significant. However, a more appropriate test 
is the omnibus F test, where we compare the fit of the model with the interactions to the fit of the model 
without them (see Table 7): 
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(25)  

(26)  

(27) 

 
Here f is compared to the percentiles of the F distribution with df = 3, 153, showing no evidence against 
the null hypothesis that the three interactions are null. 

A note on interactions involving continuous X.  In this example, X2 = MEANSES is continuous. Our test of 
the significance of X2 * Z is a test of the linear-by-linear interaction. To retain the null hypothesis does not 
imply that the association between Z and Y is equal at every value of X2 because the interaction may have 
a non-linear character. For example, it may be that the association between Z and Y is positive at high and 
low values of X2 but not at moderate values of X2.  Further exploratory analyses are generally warranted. 
With this caveat in mind, we proceed to compare coefficients for X1 and X2 , before and after including Z. 

2. How do the coefficients for SECTOR and MEANSES compare, before and after adjusting for PROP 
ACADEMIC? A comparison of results between Table 4 (which has SECTOR and MEANSES predicting 
DISCLIM) and Table 7 (where SECTOR, MEANSES, and PROP ACADEMIC predict DISCLIM) provide point 
estimates of the difference between models in coefficients for SECTOR and MEANSES. For SECTOR, the 
difference is -1.322 - (-1.077) = -0.245. For MEANSES, the difference is -0.260 - (0.014) = -0.273. 
However, the point estimates alone can be misleading. To compute confidence regions and tests, we 
need to compute the variance-covariance matrix of the estimates. To compute those, it is convenient to 
represent the two models in matrix notation. 

The model without Z may be written as 

where X1i = SECTOR and X2i = MEANSES for school i. In full matrix notation, Equation 24 becomes 

The model with Z is 

 
where Zi = PROP ACADEMIC for school i.  In full, "no-subscript" matrix notation, Equation 26 becomes 

Y  = XB y z . x  + ZΓ  + e * .  
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In order to compute the needed variance-covariance matrix of estimated differences, however, we must 
compute another regression, that is, the regression of Z = PROP ACADEMIC on X1 = SECTOR and X2 = 
MEANSES. The model is 

 
or, in full matrix notation, 

Z  = XB z x  + u  

Table 11 provides the results of this regression. 

Table 11:  Estimated Regression of Z on X1 and X2 

Predictor Coef SE t-ratio p 

Constant 0.400 0.017 23.99 .00 
SECTOR 0.260 0.026 9.93 .00 
MEANSES 0.290 0.031 9.22 .00 

R2 = 64.5% 

Analysis of Variance 

SOURCE DF SS MS F p 
Regression 2 6.712 3.356 142.40 .00 
Error 157 3.700 0.024   
Total 159 10.4118    

The results in Table 11 give evidence that SECTOR and MEANSES are related to PROP ACADEMIC. Thus, it is 
plausible that PROP ACADEMIC might "mediate" relationship between these two predictors and DISCLIM.  
Define δ = (δ0, δ1, δ2) T = Byx - Byx.z and d as the estimate of δ.  To compute the variance-covariance matrix 
of the differences between coefficients across models, we again apply Allison's (1995) Equation A10: 

 

Substituting from Tables 7 and 12 enables us to evaluate Equation 30: 
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The variance-covariance matrix computed in Equation 31 can be used to compute confidence regions and 
tests, for example confidence intervals for the difference in coefficients associated with SECTOR and 
MEANSES after adding PROP ACADEMIC: 

95% CI(δ 1)  = -.273 ± (2.27) ⁕  ( .0088)1 / 2  

= (-.458, -.032)  

95% CI(δ 2)  = -.245 ± (2.27) ⁕  ( .011)1 / 2  

= (-.517, -.024).  

Here 2.27 is the critical value of the Bonferroni-adjusted t at the five percent level of significance. 

Limitations and Future Work Needed 

All of the results presented here are based on the standard linear model assumptions regarding the 
distribution of Y given X and Z. These results, as illustrated, can be obtained using standard output of the 
commonly-used regression packages. In the case of a single X and a single Z (Example 1), the computation 
of the standard error using Allison's Equation 7 can readily be adapted to incorporate standard error 
estimates based on relaxed assumptions. Thus, Var(β x y . z)  and Var(γ )  used above in Equation 10 could be 
estimated via the bootstrap (Efron, 1982), via a robust "Huber-corrected" standard error (c.f. Zeger, Liang, 
& Albert, 1988), or via a design-consistent estimate based on a jackknife or a Taylor-series method. 

In the multivariate cases (Examples 2 and 3), we used Allison's Equation A10. This applies only under the 
standard linear model assumptions of the conditional independence and homoscedasticity of the residuals 
given X and Z. Allison's Equation A6 provides a more generally applicable but computationally more 
difficult formula. Raudenbush and Sampson (1996) provide methods that handle the standard linear model 
case but extend to multilevel designs and latent variables. The required assumption is that Y and Z are 
multivariate normal given X. All of the estimators we have discussed are consistent. Though little is known 
about their small-sample properties, the large-sample approximations we have used will be appropriate in 
most analyses conducted using NCES data sets, which appear uniformly to be based on large samples. 

Finally, we have restricted our interest to continuous outcomes. Generally applicable methods for 
dichotomous data, count data, or waiting times, perhaps under the rubric of a generalized linear model, 
await further research. Clogg et al. (1995) provide a good start by providing methods that apply when X 
and Z are considered fixed rather than random. 
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