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DISCLOSURE RISK VS. DATA UTILITY: THE R-U CONFIDENTIALITY MAP 

EXECUTIVE SUMMARY 

Empirical analysis requires access to data. For data about important policy and management issues, 
information organizations (IOs) - such as government statistical agencies - are the conduit between data 
providers and data users. However, data confidentiality is a concern for IOs as they work to disseminate 
products based on collected data that contribute legitimate information to their clients - e.g., government 
policy makers, individuals, firms, non-governmental organizations, the media, and interest groups. 
Dissemination can compromise the pledged confidentiality of the data if a data snooper - anyone with 
legitimate access to the data product and whose goals and methods in the use of the data are not 
consonant with the mission of the agency - is able to gain illegitimate information about a respondent. 

Ensuring confidentiality is not a simple task as removal of apparent identifiers like name, social security 
number, email address, etc. is not adequate to lower disclosure risk to an acceptable level. The key reason 
being that, today, a data snooper can get inexpensive access to databases with names attached to records. 
Having this external information, the data snooper can employ linkage techniques, and with such a linkage, 
the record would be reidentified. To publicly disseminate a data product safe from attack by a data 
snooper, an IO must go beyond deidentification; it must restrict the data by employing a disclosure 
limitation method. 

IOs must manage the not easily resolved tension between ensuring confidentiality and providing access, 
such that disseminated data products that have both: 

1. high data utility U, so faithful in critical ways to the original data (analytically valid data), and 

2. low disclosure risk R, so confidentiality is protected (safe data). 

This article looks systematically at the simultaneous impact on disclosure risk and data utility of 
implementing disclosure limitation techniques and choosing their parameter values. This article introduces 
and exploits the R-U confidentiality map and applies it in some important contexts to provide a quantified 
link between R and U directly through the parameters of the disclosure limitation procedure. With an 
explicit representation of how the parameters of the disclosure limitation procedure affect R and U, the 
tradeoff between disclosure risk and data utility is apparent.  

R-U Confidentiality Map 

In its most basic form, an R-U confidentiality map is the set of paired values, (R, U), of disclosure risk and 
data utility that correspond to various strategies for data release. Typically, these strategies implement a 
disclosure limitation procedure. Such procedures are determined by parameters, for instance, the 
magnitude of the error variance λ2 for noise addition. As λ2 is changed, a curve is mapped in the R-U plane. 
Visually, the R-U confidentiality map portrays the tradeoff between disclosure risk and data utility as λ2 
increases, and so more extensive masking is imposed. 
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Present practice by IOs in assessing tradeoffs between disclosure risk and data utility is primarily heuristic. 
Recommendation 6.2 of the National Academy of Sciences Panel on Confidentiality and Data Access 
(Duncan, Jabine and de Wolf 1993) advises the development of theoretical foundations for such 
determinations. The idea is to view the actors as decision makers, who take actions in light of their 
perceptions of probabilities and consequences: 

1. The data snooper can choose (or not) to make identifications and draw inferences on the basis of 
the released data product, and 

2. The IO chooses a statistical disclosure limitation method to deter the data snooper. 

From this perspective, disclosure risk depends on the decision structure - probabilities and utilities of 
consequences - of the data snooper and IO. 

R-U Confidentiality Map for Additive Noise 

The article further demonstrates how an R-U confidentiality map can be constructed to examine the 
impact of a disclosure limitation procedure that has received substantial attention - additive noise - by 
considering three different knowledge states, depending on the group to which the data snooper can 
isolate the target: 

1. Population. The target τ has the same distribution as the Xi; 

2. Sample. The target τ is one of the Xi’s, (i.e., is in the sample); or 

3. Record. The target τ is not only in the sample, but the data snooper has enough external 
information to be able to identify (link to) the specific masked record corresponding to Xi. 

A Database-Specific Approach: Constructing an Empirical R-U Confidentiality Map 
Finally this article demonstrates how an organization can produce and make use of an R-U confidentiality 
map for a particular database. Using a real-life example of both practical size and realistic complexity, the 
demonstration details how this empirical R-U confidentiality map can be used to: 

• inform the IO about whether or not proposed disclosure limitation methods are adequate in 
lowering disclosure risk and maintaining data utility, 

• facilitate comparisons between various disclosure limitation methods, and 

• examine the risk of particular types of data snooper knowledge. 

Overall, this paper gives a framework for the determination of the parameter values of a disclosure 
limitation procedure and for the comparison of disclosure limitation procedures. The framework focuses on 
the tradeoff between data utility and disclosure risk, permitting the agency to consider the tradeoffs 
between providing more useful data to users and lowering the risk to confidentiality. 

 
 



Disclosure Risk vs Data Utility 

5 

national institute of statistical sciences 
TECHNICAL REPORT 

DISCLOSURE RISK VS DATA UTILITY: 

THE R-U CONFIDENTIALITY MAP1 

I. DISCLOSURE RISK vs DATA UTILITY:  THE R-U CONFIDENTIALITY MAP 

Information organizations (IOs) must provide data products that are both useful and have low risk of 
confidentiality disclosure. Recognizing that deidentification of data is generally inadequate to protect their 
confidentiality against attack by a data snooper, concerned IOs can apply disclosure limitation techniques 
to the original data. Desirably, the resulting restricted data have both high data utility U to users 
(analytically valid data) and low disclosure risk R (safe data). This article shows the promise of the R-U 
confidentiality map, a chart that traces the impact on R and U of changes in the parameters of a disclosure 
limitation procedure. Theory for the R-U confidentiality map is developed for additive noise applied to 
univariate data under various scenarios of data snooper attack. These scenarios are predicated on different 
knowledge states for the data snooper. A demonstration is provided of how to implement the theory for a 
real database. Through simulation methods, this leads to an empirical R-U confidentiality map. Application 
is made to data from a National Center for Education Statistics (NCES) survey, the Schools and Staffing 
Survey (SASS). 

(Additive Noise; Confidentiality; Disclosure Limitation; Data Snooper; Data Utility; Disclosure Risk; Record-
Specific Risk; Restricted Data; R-U Confidentiality Map) 

II. INTRODUCTION:  THE INFORMATION ORGANIZATION’S CONFIDENTIALITY 
PROBLEM 

Empirical analysis requires access to data. For data about important policy and management issues, 
information organizations (IOs) - such as government statistical agencies - are the conduit between data 
providers and data users. Potentially blocking flow is the fact that data collected by an IO from respondents 
(units of data collection, e.g., individuals, households, establishments, etc.) are subject to pledges of 
confidentiality (Marsh, Dale and Skinner 1994). Confidentiality arises both from ethical concerns about the 
autonomy of the respondent and pragmatic concerns about quality and quantity of response. Pledges may 
be either implicit or explicit, and in some cases are specified by regulation or legal statute, such as the 
European Union’s Data Protection Directive. (For the general issues, see Duncan, Jabine and de Wolf 1993). 

Here are some examples of how confidentiality is a concern for a variety of information organizations: 

1. The Health and Retirement Study, conducted by the University of Michigan under funding from the 
National Institute on Aging, promises, “All answers are treated as strictly confidential.” 

 
1 A Los Alamos National Laboratory Technical Report, LA-UR-01-6428. 
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2. Title 13 of the U.S. Code requires that the U.S. Census Bureau disseminate no data product from 
which specific information about any particular respondent can be derived. 

3. For the National Center for Education Statistics (NCES), the National Education Statistics Act of 1994 
prohibits these activities: 

• Using any individually identifiable information for any purpose other than statistical, 

• Producing any publication in which data furnished by any particular individual can be identified, or 

• Permitting any person not authorized by the NCES Commissioner to examine any individual data 
or reports. 

4. The HIPAA Privacy Rule took effect on April 14, 2001. Within two years from that date, this 
regulation obligates most covered entities (health plans, health care clearinghouses, and health 
care providers) to protect the confidentiality of health care information that exists in electronic 
form. The Privacy Rule dramatically expands the class of IOs that are subject to federal legal 
requirements of confidentiality. 

To some extent, the confidentiality promised by an IO is necessarily at risk. An IO cannot simply erect 
firewalls around its data, because the IO has a mandate to disseminate products based on these data. This 
mandate is based on an awareness that their data products contribute legitimate information to their 
clients. In a democratic and free market society, the client base of many IOs is broad. Statistical agencies, 
for example, not only provide data to guide government policy making, but they also provide data products 
to individuals, firms, non-governmental organizations, the media, and interest groups. As a most desirable 
result, public policy debate and decentralized economic decision making are informed. On the other hand, 
unintended consequences of dissemination can occur if the released information allows the confidentiality 
pledge to be compromised by a data snooper. The term data snooper refers to anyone with legitimate 
access to the data product and whose goals and methods in the use of the data are not consonant with the 
mission of the agency. Thus, a hacker who tries to break into a protected computer system is not a data 
snooper. Nor is a researcher who uses exploratory data analysis to discover statistical relationships. Other 
terms in the literature for “data snooper” include “data spy,” “intruder,” or “attacker.” Compromise of 
confidentiality by a data snooper constitutes a statistical confidentiality disclosure (Elliot and Dale 1999). 
Such a compromise occurs when the data dissemination permits a data snooper to gain illegitimate 
information about a respondent. 

Ensuring confidentiality is not a simple task. For most of the census or survey data collected by statistical 
agencies, deidentification - removal of apparent identifiers like name, social security number, email 
address, etc. (although an obvious first step) - is not adequate to lower disclosure risk to an acceptable level 
(Paass 1988, Winkler 1998). Also, most health care information, such as hospital discharge data, cannot be 
anonymized through deidentification. The key reason that removing identifiers does not assure sufficient 
anonymity of respondents is that, today, a data snooper can get inexpensive access to databases with 
names attached to records. Marketing and credit information databases and voter registration lists are 
exemplars. Having this external information, the data snooper can employ sophisticated, but readily 
available, record linkage techniques. The resultant attempts to link an identified record from the public 
database to a deidentified record provided by the IO are often successful (Winkler 1998). With such a 
linkage, the record would be reidentified. 
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To publicly disseminate a data product safe from attack by a data snooper, an IO must go beyond 
deidentification; it must restrict the data by employing a disclosure limitation method. An easily interpreted 
and implemented method is to coarsen the data, essentially creating bins and counting the number of 
occurrences in the data. For example, recode income in increments of $5,000 and release a table giving, 
say, how many earned between $60,000 and $65,000. Coarsening provides a good example of an approach 
that while effective in lowering disclosure risk also lowers the data’s utility. By fuzzing the target of a record 
linkage, such coarsening clearly makes reidentification through record linkage less likely. On the other 
hand, data utility becomes a problem with this coarsening to tabular form because releasing such tables no 
longer satisfies many users of statistical data. Coarsen gender, for instance, and you’ve lost the attribute 
entirely. Those data users who command the latest computer technology and who can make the most 
important research and policy contributions typically need data that are more distinguished. To be able to 
assess alternative disclosure limitation methods, we first need a framework for assessing how good a 
disclosure limitation procedure is. 

In fulfilling their stewardship responsibilities, information organizations must manage the not easily 
resolved tension between ensuring confidentiality and providing access (Duncan, Jabine and de Wolf 1993, 
Kooiman, Nobel and Willenborg 1999, Marsh et al. 1991). Resolving this tension requires policies under 
which an IO can disseminate data products that have both: 

1. high data utility U, so faithful in critical ways to the original data (analytically valid data), and 

2. low disclosure risk R, so confidentiality is protected (safe data). 

Statistical disclosure limitation techniques (Chowdhury et al. 1999; Duncan and Lambert 1986; Zayatz et al. 
1999) provide classes of transformations that lower disclosure risk. Complicating the IO’s task is the 
cornucopia of available statistical disclosure limitation methods, each with different impacts on data utility 
and disclosure risk. Major methods include suppressing attributes, swapping attributes, releasing only a 
sample of the population, topcoding, adding noise, various forms of aggregation, and cell suppression. 
General references to the literature in disclosure limitation include Duncan (2001), Duncan, Jabine and de 
Wolf (1993), Eurostat (1996), Fienberg (1994, 1997), Jabine (1993b), Mackie and Bradburn (2000), and 
Willenborg and de Waal (1996). 

This article looks systematically at the simultaneous impact on disclosure risk and data utility of 
implementing disclosure limitation techniques and choosing their parameter values. A measure of 
statistical disclosure risk, R, is a numerical assessment of the risk of unintended disclosures following 
dissemination of the data. A measure of data utility, U, is a numerical assessment of the usefulness of the 
released data for legitimate purposes. Illustrative results using particular specifications for R and U are 
developed. In the next section, we introduce and exploit the R-U confidentiality map, the rudiments of 
which were presented by Duncan and Fienberg (1999) and further explored for categorical data by Duncan 
et al. (2001). By fully developing the concept of an R-U confidentiality map and applying it in some 
important contexts, this article provides a quantified link between R and U directly through the parameters 
of the disclosure limitation procedure. With an explicit representation of how the parameters of the 
disclosure limitation procedure affect R and U, the tradeoff between disclosure risk and data utility is 
apparent. With the R-U confidentiality map, information organizations have a workable new tool to frame 
decision making about data dissemination under disclosure limitation. 
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III. R-U CONFIDENTIALITY MAP 

In its most basic form, an R-U confidentiality map is the set of paired values, (R, U), of disclosure risk and 
data utility that correspond to various strategies for data release. Typically, these strategies implement a 
disclosure limitation procedure, like masking through the addition of random error. Such procedures are 
determined by parameters, for instance, the magnitude of the error variance λ2 for noise addition. As λ2 is 
changed, a curve is mapped in the R-U plane. Visually, the R-U confidentiality map portrays the tradeoff 
between disclosure risk and data utility as λ2 increases, and so more extensive masking is imposed. 

Consider now an example of how a confidentiality problem can be recast in the form of the R-U 
confidentiality map. Take the disclosure risk R to be assessed as the percentage of records that can be 
correctly reidentified using record linkage software. As described in Moore (1996), Winkler and Kim carried 
out a simulation experiment using Kim’s (1986) method for adding noise to multivariate data. The records 
are perturbed so that the variance-covariance matrix is inflated by a factor of 1+λ2. They used the original 
database as a most conservative proxy for any external database that the data snooper may have. From the 
original database of 64,998 records of the Public Use File of the 1993 Annual Housing Survey, they 
extracted a target set of 771 records that had unusual categorical combinations. Then, using the procedure 
of Paass and Wasuchkuhn (1985), they sought to link them to particular ones of the 64,998 perturbed 
records. To develop an illustration of an R-U confidentiality map, we take the data user to estimate a mean 
with the data utility of the perturbed data as 1/ (1+λ2), which is proportional to the reciprocal of the 
variance of the sample mean of the perturbed data. We define the disclosure risk to be the expected 
proportion of the 771 records that can be correctly reidentified. This quantity was estimated in the Kim and 
Winkler experiment. The resulting R-U confidentiality map is as Figure 1. 

 

Note the following for Figure 1. First, the map is not completely smooth because of empirical variation in 
the number of correct reidentifications. Second, working from the right of the map, the points correspond 
to the disclosure-limitation parameter λ2 increasing from 0.0049 to 0.2333, and then jumping for the last 
point to 9. Thus, the disclosure risk drops only slightly for very substantial increases in the added noise 
parameter λ2, while data utility plummets. This suggests that there is little value in having λ2 increase 
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beyond about 0.2 for these data. Third, this R-U confidentiality map illustrates a conservative case for two 
reasons: (1) the method of Paass and Wauschkuhn (1985) is near a worst case scenario for what external 
database a data snooper can use for record linkage, and (2) the target values were chosen to have unusual 
attribute values, which presumably makes them easier to reidentify. 

Data utility is a familiar concept to statisticians and empirical researchers. It has been recognized as a 
consideration in disclosure limitation by a few others (e.g., Kim 1986, Marsh et al. 1991, and Skinner 1990). 
Kamlet, Klepper and Frank (1985) give examples that show how disclosure limitation techniques can 
seriously alter relationships. Agarwal and Srikant (2000) develop a metric for data utility based on the width 
of the 95% prediction interval. We explore some additional possibilities here. On the other hand, disclosure 
risk is less familiar and so we next investigate this concept in some generality. 

Present practice by IOs in assessing tradeoffs between disclosure risk and data utility is primarily heuristic. 
Recommendation 6.2 of the National Academy of Sciences Panel on Confidentiality and Data Access 
(Duncan, Jabine and de Wolf 1993) advises the development of theoretical foundations for such 
determinations. Approaches to disclosure risk based on a decision-theoretic characterization of the data 
snooper are developed by Duncan and Lambert (1986, 1989), Lambert (1993), Little (1993), Mokken et al. 
(1992) and, more fully, for both the data snooper and the IO by Trottini (2001). The idea is to view the 
actors as decision makers, who take actions in light of their perceptions of probabilities and consequences: 

1. The data snooper can choose (or not) to make identifications and draw inferences on the basis of 
the released data product, and 

2. The IO chooses a statistical disclosure limitation method to deter the data snooper. 

From this perspective, disclosure risk depends on the decision structure - probabilities and utilities of 
consequences - of the data snooper and IO. There are, however, two important complications from the 
usual decision model: (1) the IO has only its own perceptions of the decision structure of the data snooper, 
and (2) the IO must cope with multiple data snoopers. The solution to (2) is general - protect against the 
worst. The solution to (1) is also general - put yourself in the shoes of the data snooper. Implementing both 
of these solutions reduces the problem back to the decision structure of a single individual. 

Disclosure risk is viewed from the perspective of the IO. Most generally, it has three components: 

1. The ease with which the data snooper can make inferences about a target value τ based on the 
released data product, 

2. The consequences to the data snooper of own inferences - none, correct or incorrect, and 

3. The consequences to the IO of inferences by the data snooper. 

Once the form of the data utility U and the disclosure risk R have been appropriately specified, our task is 
to determine how R and U are related to the parameter values of the disclosure limitation methods under 
consideration. This gives us the R-U confidentiality map. We next do this for additive noise. 

IV. R-U CONFIDENTIALITY MAP FOR ADDITIVE NOISE 

In this section, we demonstrate how an R-U confidentiality map can be constructed to examine the impact 
of a disclosure limitation procedure that has received substantial attention - additive noise (e.g., Kim and 
Winkler 1995; Duncan and Mukherjee 2000). For purpose of illustration, we take the data to be a random 



Disclosure Risk vs Data Utility 

10 

(1) 

sample X1, …, Xn from a univariate population with mean µ and standard deviation σ, the data utility U to 
be the reciprocal of the data user's mean squared error in estimating the population mean µ, and the 
disclosure risk R to be the reciprocal of the mean squared error the data snooper can achieve in inferring 
the value of a target value τ for an individual entity. In practice, the form of R and U should be tailored to 
the particular situation at hand. In developing measures of the disclosure risk R, we consider three 
different knowledge states, depending on the group to which the data snooper can isolate the target: 

1. Population. The target τ has the same distribution as the Xi; 

2. Sample. The target τ is one of the Xi’s, (i.e., is in the sample); or 

3. Record. The target τ is not only in the sample, but the data snooper has enough external 
information to be able to identify (link to) the specific masked record corresponding to Xi. 

The first case is most appropriate when the data are a small sampling fraction from a population and the 
data snooper cannot be sure that the target entity is in the sample. The second case where the data 
snooper can isolate the target to the sample is most appropriate when the data are a census or a near 
census. The third case is most appropriate when the data snooper has extensive external information that 
would permit record linkage to identify record i as the target. Results will be developed and discussed for 
all three states of knowledge of the snooper and under various goals of the data snooper, i.e., to 
compromise a specific entity or a fishing expedition for any entity. In Section 4.1, we examine the three 
states of knowledge above and the data snooper takes the target τ to be not atypical of the data. In Section 
4.2, we examine parallel states of knowledge where the data snooper knows in addition that the target τ is 
at a certain percentile point. In Section 4.3, we instead take the data snooper to know that the target τ is an 
extreme value. 

4.1 Target Typical of Data 

For the realized values, x1, …, xn, the masked data has the additive noise form, 

Yi = xi+ εi, εi ~ iid (0,  λ2 ), i = 1,…, n·. 

Data Utility: The data user estimates the population mean µ using µ̂ = Ȳ, the sample mean of the masked 
has the additive noise form, 

Yi = xi + εi,εi ~ iid (0, λ2
 ), i = 1,…, n.. 

Data Utility: The data user estimates the population mean µ using 

µ̂ = Ȳ, the sample mean of the masked data. Therefore, Ε (µ̂     ) = µ, Var(µ̂     ) =   
  

(σ 2 + λ2) ; and the data utility is 

 

 

Disclosure Risk:  The first two states of knowledge of the data snooper, assuming the snooper’s goal is to 
compromise a specific entity, have the same disclosure risk. In both states the data snooper is simply after a 

specific target value τ and will use τˆ = Y as the estimator for τ. This gives risk of 

 

1 
n 
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ˆ 

(2) 

(3) 

(4) 

(n+1)σ 2
 +  λ 2  

Given the risk specified by Equation (1), the IO can determine what entities lead to the maximum risk 

across either the sample or the entire population. Since R is maximized for τ = µ, the IO can decide 
whether disclosure of attribute values near the mean pose serious consequences. If, instead, the IO felt 
that less typical values were of more concern, the IO can consider targets at the population average value 

for (µ - τ )2, which is σ 2.  This gives a disclosure risk of  

With similar motivation, the IO can consider a sample average value for (µ - τ )2. This gives a disclosure risk of 

 

 
 
The third state of knowledge for the data snooper is the worst case with respect to maximum risk. In this 
state, the snooper is able to identify the masked record that corresponds exactly to the target τ. Here, if 
the snooper uses τˆ = Yi = τ + εi , the risk would be  
 

Whatever the knowledge state of the data snooper, the disclosure risk without data masking is found by 

setting λ2 = 0.  Note that R is infinite if the data snooper can link τ  with certainty to a particular record i 
and no noise has been introduced. Thus, in circumstances where record linkage is feasible, release of the 
original data would have substantial disclosure risk and pose too much of a threat to confidentiality. Before 
release, the data would have to be masked. 

Is the data snooper always better off, when knowing the target’s index i, using τ = Y1 to assess the target 
value τ = xi? Comparing Equations (2) and (4), we see that the data snooper actually gains by using Ȳ 
whenever the value of the error variance,                          Thus, by adding sufficient noise - of the magnitude 
of the population variance σ2, the IO can reduce the advantage the data snooper has through record 
linkage. 

Displayed in Figure 2 is an R-U confidentiality map for two risk measures in this example. The figure 
displays the impact on data utility and disclosure risk for changes in the disclosure limitation parameter λ2, 
under both the assumption that the data snooper knows the index of the target (Equation (4)) and the 
assumption that the data snooper does not (Equation (2)). For illustration, when the data snooper knows 
the target’s index and the maximum tolerable disclosure risk is 5, the optimal value for the variance of the 
noise addition is λ2 = 0.21, yielding a data utility of 165. If the data snooper does not know the target’s 
index, the disclosure risk is low enough that no noise addition is necessary. This comparison under the two 
knowledge states shows how valuable policies are that make it difficult for a data snooper to know the 
index of a target. For example, if the data are a sample from some population, even an exact match on  
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record linkage with some external database with identifiers is insufficient to guarantee that the linked 
record corresponds to the target individual. Thus sampling gives some confidentiality protection. 

4.2 Target at a Percentile Point 

Let's think like a data snooper and recognize the fact that extreme or outlying data values may present 
better - that is, more easily compromised - targets. For the agency, this vulnerability is doubly serious 
because targets with atypical values often pose more serious consequences. For such targets, the snooper 
can use estimators of a specified percentile point or estimators of an extreme value for the target’s 
attribute value. In this section, we explore the percentile case and in the next section we explore the 
extreme value case. 

For the percentile case, consider two states of knowledge for the data snooper: 

1. Population knowledge. τ is the pth population percentile point; or 
2. Record knowledge. τ is known to be in the sample and to be the pth sample percentile point. 

We establish notation and structure:  Let X1, X2,….,Xn ~ iid(µ, σ2), with the data being the realizations 
x1,…,xn.  Denote the pth population percentile point as ξXp = µ +ɭXpσ, so that FX (ξXp) = P(X ≤ µ + ɭXpσ) = p.  
Apply independent noise addition, as before, with the released values Yi = xi +εi, εI ~ iid (0, λ2), i = 1, . . ., 
n. Finally, denote the pth population percentile point of the masked data as                                     so that 

 

We assume the data snooper uses an obvious strategy of                     Y(np), as the attack estimator for either 
the population or sample percentile, depending on the state of knowledge above. This estimator is biased 
when the data has been altered by additive noise, but without additional knowledge of the details of the 
model, the snooper cannot reduce the bias of his estimate (Stefanski and Bay 1996). Consider a value of p 
so that np is an integer. With a strict monotonicity assumption on the distribution function FX(x), the 
percentile estimator has the asymptotic distribution (see Mood, Graybill, and Boes, 1963, p. 257),  
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(5) 

(6) 

(7) 

If the data snooper’s state of knowledge is that τ is the pth population percentile, then the disclosure risk is 

 

From this formula, we can see circumstances under which the IO can adequately lower its disclosure risk by 
setting λ2 sufficiently large. The dual of R low is that the mean squared error for the data snooper is high. 
The IO can then anticipate that the data snooper will be deterred from making an attribution for the value 
of τ based on the estimator,       Alternatively, however, the data snooper might employ a different 
estimator. Alternative estimators could be based on the data snooper either knowing the value of λ or not. 
If the data snooper knew the value of λ, the snooper could make an adjustment for the bias in        The data 
snooper has two possible sources of information about the value of λ: (1) the IO could have revealed the 
value it used in masking, or (2) based on experience with similar data, the snooper may have a strong prior 
belief about σ and so can back out an estimate of λ from the sample variance of the masked data.  Because 
of (1) the IO has to realize that publicly releasing its value of λ could have a detrimental effect on 
disclosure risk (although it may also have a positive effect on data utility). If circumstances require concern 
for (2), the IO may need to consider disclosure limitation methods other than additive noise. Without 
knowing the value of λ, the data snooper might consider Ȳ as an alternative estimator of the target value τ, 
essentially admitting that the agency’s use of additive noise has made inoperative direct use of the 
knowledge that the target is at a particular percentile point. Comparing Equations (2) and (5) gives 
circumstances when the data snooper should switch to Ȳ. 

Consider the second state of knowledge where the snooper knows that the target is the sample pth 
percentile point, τ = x(np).  Still using                        the disclosure risk is  

Equation (6) yields no insight into how disclosure risk behaves over the range of p. Restating Equation (6) as 

 

we see that the disclosure risk R is maximized when the npth masked value corresponds exactly to the npth 
original data point, or                            .  In this case, R=1/λ2. This is equivalent to the case where the data 
snooper is able to link exactly to the target’s masked value (see Equation (4)), which is most likely to be true 
with a target in the extremes (e.g., large p) because data tend to spread apart more in the tails of common 
unbounded distributions. Thus, the IO would need large values of λ2 to misalign the ordering of the 
extremes for the masked sample versus the unmasked sample. 

To demonstrate the use of the R-U confidentiality map framework for percentile estimation attacks 
(Equation (5)) versus mean attacks (Equation (2)) and direct record linkage (Equation (4)), we need to make 
some additional distributional assumptions. We assume Xi and εt are normally distributed.  Then,  
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(8) 

where zp is the pth percentile of a standard normal distribution and ϕ (⋅) is the standard normal density 
function. Equation (5) becomes 

 

 

 

Figure 3 displays the impact on data utility and disclosure risk for changes in the disclosure limitation 
parameter λ2, under the assumption that the data snooper knows that the 99th population percentile is the 
target (Equation (8)), only knows the target is from the same population as the sample (Equation (2)), and 
knows how to link the masked value to the target (Equation (4)). Note that the R-U confidentiality maps 
under the different knowledge states for the data snooper cross. Knowing that the target is at the 99th 
percentile is of little value to the data snooper if substantial noise is added to the data, but is of great value 
if little noise is added to the data. 

4.3 Target at an Extreme 

Suppose the data snooper knows that a target is one of the extreme values in the released data: it is either 
the largest or smallest in a file. As in the previous section, let X1, . . ., Xn ~ N(μ, σ2) with realizations x1, . . ., 
xn.  Mask through Yi = xi +εi , εi ~ N(0, λ2), independently.  If the snooper knows that the target is the 
maximum in the sample, a natural attack estimator would be             .     The risk is then the reciprocal of 

 

where μy (n) is the mean of the maximum order statistic Y(n). For any finite n, this expression can be 
evaluated using a table of moments of normal order statistics. For large samples, we can appeal to the 
classic results of Fisher and Tippett (1928) to show that in large samples, 
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(10) 

 

Similar results can be derived for other extreme values, such as the minimum, or even the rth largest or 
smallest for small r. 

To demonstrate the R-U confidentiality map for this example we will substitute x(n) ≈ μ + σKn1 into Equation 
(9).  This gives us a risk of 

. 

Note the similarity between Equation (10) and Equation (8); both numerators are linear combinations of σ2 
+ λ2, which is the variance of a masked observation, and                               which measures the discrepancy 
between the standard deviation of a masked observation and the standard deviation of an original 
observation.  Note also that for large samples, the disclosure risk given by Equation (10) - so the target is an 
extreme - goes to zero, while the disclosure risk given by Equation (8) - so the target is a percentile point - 
goes to a positive value. 
 

 

Displayed in Figure 4 is an R-U confidentiality map for the impact on data utility and disclosure risk of the 
disclosure limitation parameter λ2, under the assumption that the data snooper knows the target is the 
maximum in the sample (Equation (10)), knows the 99th population percentile is the target (Equation (8)), 
only knows the target is from the same population as the sample (Equation (2)), and knows how to link the 
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masked value to the target (Equation (4)). Note that knowing that the target is an extreme benefits the data 
snooper less than knowing that the target is at a percentile point or knowing the index of the target. 

V. A DATABASE-SPECIFIC APPROACH:  CONSTRUCTING AN EMPIRICAL R-U 
CONFIDENTIALITY MAP 

The previous sections developed the general theory of the R-U confidentiality map and showed how it 
provides qualitative insights for classes of disclosure limitation procedures. In this section we show how an 
organization can produce and make use of an R-U confidentiality map for a particular database. Using a 
real-life example of both practical size and realistic complexity, we detail how this empirical R-U 
confidentiality map can be used to: 

• inform the IO about whether or not proposed disclosure limitation methods are adequate in 
lowering disclosure risk and maintaining data utility, 

• facilitate comparisons between various disclosure limitation methods, and 

• examine the risk of particular types of data snooper knowledge. 

Analytical methods, such as those developed in the previous sections, can be used to investigate general 
properties of disclosure limitation methods and snooper strategies. In practice, nonetheless, the 
probabilistic structure underlying the analytic development may not be fully adequate to depict 
consequential features of the actual data. Also, it may be difficult to derive the impact of disclosure 
limitation methods on disclosure risk and data utility. The empirical approach laid out in this section can, 
therefore, be helpful to an agency considering how to disseminate data products from a specific database. 

To illustrate the empirical approach, we use data from a survey by the NCES - the Teacher Followup Survey 
(TFS) of 1994-95.  The attribute we examine is total household income (identified as TFS376 in the survey 
documentation).  The data were obtained from a sample of teachers, first interviewed in 1993-94 under the 
School and Staffing Survey (SASS).  The SASS and TFS were part of a series of surveys conducted by the 
U.S. Bureau of the Census for NCES to provide a description of the nation’s public and private schools.  The 
goal of the TFS was to investigate attrition rates for teachers, and to elicit characteristics and attitudes of 
leavers and non-leavers from the profession. 

In our illustration, the IO needs to assess the utility of the data for estimation of the mean household 
income μx of the population of part-time private school teachers.  Summary statistics of the data for 
household income are shown in Table 1 (the value of the sample size n is considered confidential by 
NCES). 

Table 1. Summary Statistics for the 1993-94 Teacher Followup Survey (TFS376): 
Household Income of Part-Time Private School Teachers 

n Sample Mean Sample SD Min 1st %-ile 10th %-ile 90th %-ile 99th %-ile Max 

NA $20.1K $13.3K $2K $2K $7.2K $35K $70K $95.2K 
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(11) 

(12) 

(13) 

The goal of the data snooper is to infer the household income of a particular target record.  The IO is 
studying normal noise addition as a disclosure limitation method. However, since income is bounded below 
by 0, the IO truncates the value of the masked variable at 0. Thus, the actual household income for the ith 
record, xi, is reported in the released file as 

Yi = max(0, xi + εi), 

where ει ∼ Ν(0, λ2) for each i.  Because the masking in Section 3 did not include truncation, the expressions 
for data utility and disclosure risk presented there are not directly applicable.  Nevertheless, we can show 
that the agency can construct an R-U map for this method - or, indeed, any proposed method of disclosure 
limitation - by obtaining R and U empirically. 

To obtain the empirical R-U confidentiality map in the present example, the agency can use the form of 
model specified by Equation (11) to simulate the masking process. For each of a range of values of λ2, the 
agency can generate a number, say M, of masked datasets. From these simulated datasets, the agency can 
estimate the disclosure risk                                and the data utility  

We conducted such a simulation with M = 200 and several values of λ2 ranging from 5 percent to 100 
percent of the sample variance, so 0.05       to 1.0      .  We examined several different types of targets and 
two different strategies based on assumptions about the knowledge of the data snooper. The target types 
were τ = maximum, minimum, and pth sample percentile for p = 0.01, 0.10, 0.90, and 0.99. For the data 
snooper, the strategies based on two record knowledge states were: 

1. Index knowledge:     = Yt, where t is the index of the record in the unmasked sample which 
corresponds to the largest, smallest, or pth sample percentile, and 

2. Position knowledge:  

Under the first strategy, the data snooper uses knowledge of the index of the target; it is the same as the 
case where the data snooper has enough external information to be able to identify (link to) a specific 
masked record. Under the second strategy, the data snooper uses own knowledge of the position of the 
target in the unmasked data to assess an attribute value from the masked data. 

Our estimate of the snooper’s MSE E(τ −   )2 is, for each value of λ2, 

 

where   m is the snooper’s prediction of the target in replicate m (m=1, …, M=200). In Section 4.1, the data 
user’s utility was taken to be U = 1/ E(Y – μx)2 = n/(σ2 + λ2).  In this case, the truncation of the variable at 
the natural bound of 0 introduces a bias and reduces the variance so that this expression for the user’s 
MSE, E(Y – μx)2, is no longer accurate. Instead, we have 

 

which can be estimated for each value of λ2 by 
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1≤i≤n  

 

Figure 5 shows the empirical R-U confidentiality map for the case in which the data snooper knows the 
target to be the maximum or the minimum in the sample.  The risk threshold has been set at 4.0E-08, 
which can be regarded as an average tolerable error of no more than $5K (since 1/50002 = 4.0E-08).  If the 
snooper uses    = min(Yi), then there is no value of λ2 that will produce a risk this low. This is because 
truncation of the masked income value at 0 limits the magnitude of the downside error to $2K, which has 
an associated risk value well below the allowable $5K.  By contrast, if the target were known to be the 
maximum, then a choice of λ2 = 0.12       is sufficient to meet the threshold. This would lead to a data utility 
for the analyst of about 8.9E-07, or an efficiency of 8.9/10.0 = 89%, when compared to the unmasked. 

Figure 6 is an empirical R-U confidentiality map that compares the disclosure risk for changes in the 
disclosure limitation parameter λ2, under different kinds of knowledge the snooper might have about the 
same record. In particular, it shows the risk for the cases when the data snooper knows the target is the 
99th sample percentile ($70K in for this sample) and when the snooper can link the masked value to the 
target.  This map illustrates that the disclosure risk from knowledge of the percentile is greater than that 
from knowledge of the index of the record.  This ordering was true for all of the targets in this example. 
Thus, an adequate masking strategy must depend on what knowledge the snooper is likely to have about 
the target record. 
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Finally, Figure 7 shows how an empirical R-U confidentiality map might be used to help the agency 
compare two alternative masking strategies.  “Equal variance masking” is the one implemented as shown in 
Equation (11).  In “unequal variance masking,” the variance of the noise is doubled for sensitive data, which 
in this case is defined as income values exceeding $35K.  Here we see that if the goal were to protect 
against this percentile knowledge and maintain the maximum disclosure risk specified, we could do so with 
unequal variance masking and keep higher data utility.  Of course, in practice an agency must be prepared 
to protect against a variety of snooper targets and strategies, so the decision about the type of masking to 
use could not be made based on a single R-U confidentiality map.  Nonetheless, these maps do provide a 
tool for addressing the problem. 
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VI. CONCLUSIONS 

This work addresses the need that information organizations have to disseminate useful data while keeping 
low the risk of statistical confidentiality disclosure. Recognizing that deidentification of data is inadequate 
to protect confidentiality against attack by a data snooper, agencies restrict the data they release to 
general data users. Typically, these restricted data procedures have involved transformation or masking of 
the original, collected data through such devices as adding noise, topcoding, data swapping, and recoding. 
This paper gives a framework for the determination of the parameter values of a disclosure limitation 
procedure and for the comparison of disclosure limitation procedures. The framework focuses on the 
tradeoff between data utility and disclosure risk. Examples are provided which illustrate the concepts by 
putting forth quantitative measures of both data utility and disclosure risk. These measures permit the 
agency to consider the tradeoffs between providing more useful data to users and lowering the risk to 
confidentiality. For work with a particular database, we have shown how to use simulation methods to 
develop an empirical R-U confidentiality map. Applications were made to survey data from the National 
Center for Education Statistics. 
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