# Institute of Education Sciences <br> National Center for Education Statistics 

# NATIONAL INSTITUTE OF STATISTICAL SCIENCES 

WHITE PAPER

## PROJECTIONS of <br> EDUCATION STATISTICS: PRESENTATION AND METHODOLOGY

## TABLE OF CONTENTS

Executive Summary .....  3
I. Presentation of Projections ..... 4
1.1 Graphics ..... 4
1.1.1 Principal Items ..... 4
1.1.2 Additional Items ..... 7
1.2 Maps ..... 11
1.3 Tables ..... 11
1.3.1 Principal Items ..... 11
1.3.2 Minor Items ..... 13
1.4 Interactivity ..... 16
II. Projection Methodology ..... 19
2.1 Modeling Approach ..... 19
2.2 Description of the Methodology in Appendix A of Hussar and Bailey (2008) ..... 22
2.3 Improving the Methodology ..... 24
III. Other Issues ..... 25
Appendix A: References ..... 27
Appendix B: Figures from Hussar and Bailey (2008) ..... 28
Appendix C: Author ..... 37

# NATIONAL INSTITUTE OF STATISTICAL SCIENCES 

WHITE PAPER

# PROJECTIONS of EDUCATION STATISTICS: PRESENTATION AND METHODOLOGY 

EXECUTIVE SUMMARY

This white paper is an extended review of NCES' annually issued report containing projections, exemplified by Hussar and Bailey (2008), from methodological (§3) as well as presentation (§2) perspectives.

While the paper contains criticisms, they are meant to be constructive, and are in no sense criticisms of the authors. Especially in the discussion of presentation, every criticism is accompanied by at least one suggested alternative. ${ }^{1}$ None of these alternatives would be difficult to implement, except to the extent that some of them may conflict with the NCES statistical standards (National Center for Education Statistics, 2004).

The discussion of projection methodology, by contrast, is critical without detailed consideration of alternatives. This reflects the magnitude of the effort that would be needed to develop new methodology, which is discussed in §3.3.

One very broadly applicable comment is important for both current and future editions. Although Hussar and Bailey (2008) is explicit about omissions, the collective effect of these omissions is large and increasing. Examples noted in Hussar and Bailey (2008) include home schooling (page 1) and high school completers by means other than diplomas granted by school authorities (page 11), postsecondary enrollment in non-degree-granting institutions (implicitly on page 9) and possibly others. Additional examples that may not be addressed include distance learning and US citizens enrolled in institutions outside the US. ${ }^{2}$ It would be very valuable to list these omissions in one prominent place. More importantly, in the longer run NCES should devote effort to addressing them, since otherwise the information in successors to Hussar and Bailey (2008) will be increasingly incomplete.

[^0]
# NATIONAL INSTITUTE OF STATISTICAL SCIENCES 

## WHITE PAPER

## Projections of Education Statistics: Presentation and Methodology

## I. PRESENTATION of PROJECTIONS

Hussar and Bailey (2008) is very complete, and appears to contain relatively few outright errors. ${ }^{3}$ It is not, however, an especially user-friendly document. A relatively small number of changes would increase both the amount of information conveyed to readers and the clarity with which that information is transmitted. We describe these changes, none of which is esoteric, in this section. All of this section other than §2.4 addresses presentation of projections in a printed document. Some opportunities associated with interactive, web-based presentation are discussed in §2.4. 1997). Wilkinson’s Grammar of Graphics (Wilkinson, 2005) does underlie many of the comments.

### 1.1 Graphics

This section is intended to be extremely concrete. Therefore, there are no mentions of the extremely intriguing and important but often somewhat philosophical tenets of Tufte (Tufte, 1983, 1990, 1997). Wilkinson's Grammar of Graphics (Wilkinson, 2005) does underlie many of the comments.

### 1.1.1 Principal Items

A dramatic improvement to presentation would be to replace vertical bar charts by horizontal bar charts. For concreteness, consider Figure A of Hussar and Bailey (2008), ${ }^{4}$ which is inefficient because the width of the bars there is determined by the need to put numbers above them. Consider instead Figure 1, which is a horizontal version; by comparison with Figure A of Hussar and Bailey (2008),

1. The expanded physical scale makes comparisons easier.
2. The horizontal version reveals more about small values. See also discussion of the disparate scales issue below.
3. The horizontal version includes both actual values and percentage changes from one time period to the next.
4. Year labels are explicit.

Note that Figure 1 contains low-key vertical lines, beneath all other graphical elements, that carry the numerical scale associated with the $x$-axis through the entire chart. These are much easier to follow than the tick marks in Figure A of Hussar and Bailey (2008).

[^1]In regard to the general comment in §1, it appears (cf. page 1 of Hussar and Bailey (2008)) that 1992 and 2005 values in Figure A include home-schooled students, but that 2017 projections do not. It is not even clear that the statement on page 1 is correct, since projected enrollments exceed current ones by reasonable numbers. Figure $A$ is deceptive if home-schooled students are in only two of the three sets of values.

A pervasive issue in Hussar and Bailey (2008) is the treatment of totals. In Figure 1, the "Total" bars are the sums of the "PK-8" and " $9-12$ " bars. At some level, this is perfectly clear, but at the same time, the principle that it be clearly indicated when some elements of a chart are derived from others is violated. Figure 2 removes this problem by means of a bi-directional ("back-to-back") bar chart. There, PK-8 enrollments are to the left of the light gray vertical line at "Enrollment = 0" and 9-12 enrollments to the right. By comparison with Figure 1, Figure 2 is superior in three senses:

- It makes explicitly clear that "Total" is the sum of PK-8 and 9-12.
- It conveys the same information in approximately one-third less space.
- It improves comparisons between PK-8 and 9-12. For instance, it is clear in Figure 2 that the rate of PK-8 growth is increasing, whereas the rate of 9-12 growth is decreasing.


Figure 1: Alternative version of Figure A in Hussar and Bailey (2008) in the form of a horizontal bar chart.

On the other hand, the capability for direct graphical comparisons between totals is attenuated in Figure 2 as compared to Figure 1. For instance, it is apparent from the latter but not the former that the rate of growth of total enrollment is decreasing.

Graphics such as that in Figure 2 should not be employed in cases where the total of the "left" and "right" sides makes no sense, as exemplified by Figure K of Hussar and Bailey (2008).

Throughout, Hussar and Bailey (2008) deals poorly with disparate numerical values. The multi-part ${ }^{5}$ Figure $D$ is an example of the problem. No value in it exceeds 18 , but the scale runs from 0 to 30 . Graphical information about small values, notably in the fourth and sixth panels, is obliterated.

The underlying rationale is clear and sensible - preserving a common scale across the multiple panels of the figure. A high price is paid, however, which is avoided in the horizontal bar chart in Figure 3. While this alternative is problematic in other senses - it may contain too much information for some users, ${ }^{6}$ it makes small values much more visible. Moreover, it permits cross- comparisons (for example, males to 18-24 yearolds) that are impossible in Figure D of Hussar and Bailey (2008).

Abandoning the "preserve common scale" principle is, of course, possible.
In addition, and independent of the disparate values problem, Figure D of Hussar and Bailey (2008) is misleading. The four panels appearing on page 9 correspond to distinct categorizations, whereas the two panels on page 10 represent two components of a single categorization. Neither is it clear why the publicprivate categorization is presented separately, in Figure E of Hussar and Bailey (2008), from the others.


Figure 2: Alternative version of Figure A in Hussar and Bailey (2008) in the form of a bi-directional horizontal bar chart.

Hussar and Bailey (2008) is replete with low content figures. Figure J is a prime example: it consumes approximately $10 \%$ of a page in order to display only 3 values! The alternative in Figure 4 presents three times as much information: the coordinates of the endpoint of each line are the (Teacher, Pupil) numbers, and the slope of each line is the Pupil/Teacher ratio. The increasing rate of decline in the ratio is evident from the concavity in Figure 4, but hard to discern in Figure J of Hussar and Bailey (2008). Figure 4 has deficiencies, especially the skewed aspect ratio, but these do not interfere with its ability to communicate multiple pieces of information.

Figure 5, which is included to illustrate the range of possibilities, has strengths as well as significant weaknesses. In it, the number of teachers is encoded as the height of each rectangle and the Pupil/Teacher ratio as the width of each rectangle, so that the number of pupils is the area of the rectangle. This figure is very revealing about changes in the numbers of pupils and the ratio, but not - because humans are not adept at translating perceived areas to numerical values - the numbers of pupils. The weakness of this

[^2]figure is inconsistency: one numerical value (teachers) is encoded as a length, but the other numerical value (pupils) is encoded as an area. Figure 4 does not have this problem: both numerical values are encoded as lengths, and their ratio is encoded - mathematically consistently - as a slope.

### 1.1.2 Additional Items

The items discussed here are important, and fixing them is both straightforward and non-controversial.
First, the year-to-shade/color encoding should be consistent across all figures. The predominant encoding in Hussar and Bailey (2008) is

1992 light blue: RGB values $(127,179,210)$
2005 mid blue: RGB values $(0,85,165)$
2017 (projected) white,
which translates acceptably to gray-scale hard copy.


Figure 3: Alternative version of Figure D in Hussar and Bailey (2008).


Figure 4: Alternative version of Figure J in Hussar and Bailey (2008).


Figure 5: Another alternative version of Figure J in Hussar and Bailey (2008).

| Year | Pupils <br> (Figure A) | Students <br> (Figure H) | Calculated <br> Ratio | Reported <br> Ratio (Figure J) |
| :--- | :--- | :--- | :--- | :--- |
| 1992 | 48.5 | 2.8 | 17.321 | 17.2 |
| $2005 / 2006$ | 55.2 | 3.6 | 15.417 | 14.3 |
| 2017 | 60.4 | 4.2 | 14.381 | 14.5 |

Table 1:
Figures C, H, L and M of Hussar and Bailey (2008), among others, violate this scheme. Yet another shading is used in some of the reference figures, for instance, Figure 11. In graphs such as Figure 1 (page 23), the blue color is used (not very effectively in color displays or hard copy, and uselessly in gray-scale hard copy) for yet another purpose - to distinguish between actual and projected values. That the same colors are used in maps, where there is graphical shading as well, does not seem to cause problems.

Second, there are inconsistencies in the years appearing in the graphics. For example, the years in Figure A of Hussar and Bailey (2008) are 1992, 2005 and 2017, while those in Figure F are - under the convention that NNNN refers to academic year starting in calendar NNNN - 1992, 2004 and 2017. Figure G of Hussar and Bailey (2008) also illustrates the problem.

Third, some things that may have clear explanations are puzzling. The Pupil/Teacher ratios in Figure J of Hussar and Bailey (2008) seem to be derived from the numbers of pupils in Figure A and teachers in Figure H. ${ }^{7}$ However, as Table 1 shows, correct reproduction of the calculation is not possible. The values in Figure J are not ratios of those in Figures $A$ and $H$, presumably because the ratios in Figure $J$ were calculated from unrounded (or less severely rounded than in Figures $A$ and $H$ ) numbers of pupils and teachers. It would be useful to note and explain these kinds of anomalies.

Fourth, the Reference Figures present several problems:

1. As noted above, the use of color and a virtually indiscernible increase in line thickness to distinguish actual from projected values is ineffective in gray-scale hard copy. Figure 6 illustrates one alternative for Figure 1 of Hussar and Bailey (2008). Incidentally, it appears that projected values should start with the year labeled 2006, not 2005. This is done in Figure 6 but not in Figure 1 of Hussar and Bailey (2008).
2. Some Reference Figures (examples: Figures 1,8 and 9 of Hussar and Bailey (2008)) contain graphs that representing totals, while others (examples: Figures 3 and 4) do not. There is no evident reason for this inconsistency, especially given that there are exact parallels, for instance, between Figure 1 and Figures 8 and 9.

Figure 1. Actual and projected numbers for school-age populations, by age range: 1992 through 2017


Figure 6: Alternative version of Figure 1 of Hussar and Bailey (2008) in which actual and projected values are distinguished more clearly.
3. Although it may be of interest to only a small number of readers, some discussion of the smoothing used to convert discrete data to graphs such as Figure 1 would be useful.
4. Perhaps more important, the very need for "continuous graphs" is obscure. Figure 7 contains more information than either of Figures 2 and 3 in Hussar and Bailey (2008) - and in fact more information than the two together, and at the same time it conveys at least as much visual gestalt.

[^3]
### 1.2 Maps

Maps constitute a relatively minor part of Hussar and Bailey (2008), so the comments in this section are not extensive. Some of them are underlain by MacEachern (1995).

1. All maps display numerical values at the state level via generalized shading of states, but the shading scheme is linked only loosely to those values, in the sense that higher values correspond to darker/more complete shading. The yellow-brown heat scale in Pickle et al. (1997) is much more effective. ${ }^{8}$ Nor does the shading scheme differentiate effectively be- tween increases and decreases. Even though rudimentary, Figure 10 does so much more effectively.


Figure 7: Alternative version of Figures 2 and 3 in Hussar and Bailey (2008) that contains more information than those two figures combined.
2. The legends are flawed. For instance, how would a decrease of $4.95 \%$ be displayed?
3. Figures 5,6 and 7 in Hussar and Bailey (2008) display projections, yet it is not stated which projections.

### 1.3 Tables

The principal function of the tables in Hussar and Bailey (2008) appears to be completeness in support of access to individual values. Nevertheless, improvements are possible that convey higher-level information more effectively without compromising this basic purpose.

### 1.3.1 Principal Items

First, the dotted lines that appear in virtually every table are space-consuming, visually unattractive and less effective than alternatives such as that in Figure 8, which is a version of Table B-4 of Hussar and Bailey (2008). ${ }^{9}$ The shading for alternating years is unintrusive, yet distinguishes years perfectly. This table is physically smaller than Table B-4 of Hussar and Bailey (2008), and as well, the distance between labels and data is smaller.

[^4]Second, some tables would be more effective as graphics. Tables A and B of Hussar and Bailey (2008) are a clear example. Before proceeding, we note that the justification for placing states with increases in projected enrollment and those decreases in separate tables is elusive. A person trying to find a specific state of interest is forced to look at two tables rather than one. Sorting the tables by level of increase or decrease also inhibits finding specific states.

| Year (July 1) | 18-year-olds | 18-to 24-year-olds | 25-to 29-year-olds | 30-to 34-year-olds | 35-to 44-year-olds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Actual |  |  |  |  |  |
| 1992 | 3,354 | 26,282 | 20,591 | 22,564 | 40,046 |
| 1993 | 3,455 | 26,102 | 20,146 | 22,646 | 40,975 |
| 1994 | 3,428 | 25,821 | 19,809 | 22,648 | 41,877 |
| 1995 | 3,601 | 25,585 | 19,742 | 22,425 | 42,765 |
| 1996 | 3,650 | 25,376 | 19,927 | 21,996 | 43,605 |
| 1997 | 3,780 | 25,574 | 19,960 | 21,494 | 44,282 |
| 1998 | 3,984 | 26,155 | 19,863 | 20,999 | 44,802 |
| 1999 | 3,993 | 26,780 | 19,632 | 20,647 | 45,130 |
| 2000 | 4,076 | 27,393 | 19,357 | 20,579 | 45,235 |
| 2001 | 4,074 | 28,087 | 19,004 | 20,781 | 45,188 |
| 2002 | 4,033 | 28,601 | 18,997 | 20,878 | 44,869 |
| 2003 | 4,131 | 29,094 | 19,213 | 20,789 | 44,484 |
| 2004 | 4,128 | 29,408 | 19,625 | 20,528 | 44,178 |
| 2005 | 4,127 | 29,500 | 20,148 | 20,153 | 43,954 |
| 2006 | 4,190 | 29,610 | 20,800 | 19,764 | 43,748 |
| Projected |  |  |  |  |  |
| 2007 | 4,272 | 29,809 | 21,313 | 19,713 | 43.379 |
| 2008 | 4,401 | 30,173 | 21,672 | 19,865 | 42,782 |
| 2009 | 4,384 | 30,536 | 21,878 | 20,213 | 42,109 |
| 2010 | 4,312 | 30,762 | 21,944 | 20,657 | 41,600 |
| 2011 | 4,250 | 30,894 | 21,981 | 21,205 | 41,318 |
| 2012 | 4,170 | 30,947 | 22,057 | 21,652 | 41,217 |
| 2013 | 4,126 | 30,884 | 22,205 | 22,000 | 41,222 |
| 2014 | 4,080 | 30,693 | 22,459 | 22,202 | 41,258 |
| 2015 | 4,007 | 30,297 | 22,783 | 22,271 | 41,270 |
| 2016 | 3,990 | 29,901 | 23,059 | 22,313 | 41,421 |
| 2017 | 4,018 | 29,607 | 23,260 | 22,394 | 41,754 |

Figure 8: Alternative version of Table B-4 of Hussar and Bailey (2008) in which dotted lines are replaced by shading of alternating rows.

There are at least three alternatives. One is the bar chart in Figure 9. ${ }^{10}$ It contains the same detailed information as Tables A and B in Hussar and Bailey (2008), but has several advantages:

- Sorting by state name facilitates finding specific states.
- A visual sort by magnitude of increase or decrease is possible, at least for the largest magnitudes.
- The relative numbers of states with increases and those with decreases are clear.
- It is apparent that many projected increases exceed most projected decreases.

A map is another alternative, but if numerical values were to be included, they would need to be plotted within states, which can be problematic, especially for the New England states. Figure 10 is an extremely rudimentary, ${ }^{11}$ manually prepared ${ }^{12}$ map that conveys some of the power of this alternative:

- Accessibility of information for specific states is as high as in Figure 9, and higher than in Tables A and B of Hussar and Bailey (2008).
- The geographical structure of the decreases in projected enrollment "jumps out" of Figure 10.

[^5]WARNING: This is true only of the color version of this figure.
However, Figure 10 is weaker than Figure 9 with respect to visual comparison of the magnitudes of increases and decreases.

A final alternative is an interactively sortable version of Figure 9. See $\S 2.4$ for further discussion.
Third, some tables exhibit poor formatting. There are alternatives that not only are more usable but also allow detection of errors. Consider Table 10 (page 53) of Hussar and Bailey (2008). In this table, it is virtually impossible to compare middle, low and high alternative projections for a given year, given the middle-lowhigh order in which they appear. Table 2 is an alternative version of part of this table, in which projections are much more readily compared. This alternative form also shows that the two entries in boldface seem to be incorrect.

It is true that it would take three versions of Table 2 to replace Table 10 in Hussar and Bailey (2008). However, since the report is already large, the gain in clarity may offset the increase in length.

Fourth, totals in tables are conventionally at the bottom and right side, while in many tables in Hussar and Bailey (2008), totals are at the top and left. Totals appear at the right in Table 2.

The typographical conventions of placing totals in boldface is effective, but is employed only sporadically, for example, in Table 13. The use of indenting to distinguish totals from components, as in Table 11, is not effective. There, the grand total is at the same level of indentation as the age components.

Figure 11 is a version of Table 33 in Hussar and Bailey (2008) that incorporates several of the alterations proposed in this section:

- Dotted lines are replaced by shading alternate rows.
- All projections for a given year appear in one row.
- The most aggregated figure - representing public and private schools - appears at the right. (In Table 33 of Hussar and Bailey (2008), these combined values are inaccurately and mis- leadingly labeled "Total.")

This version reveals a question that seems to deserve comment in the report: why are projected pupi//teacher ratios highest under the high alternative projection?

### 1.3.2 Minor Items

Some additional comments:

1. Tables 8 and 9 of Hussar and Bailey (2008) exemplify another confusion. In the former, the regional values are sums of state values, but in the latter they are not. Nevertheless, both tables have exactly the same physical format.


Figure 9: Graphical version of Tables A and B in Hussar and Bailey (2008).

| Year | Men |  |  | Women |  |  | TOTAL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actual |  |  |  |  |  |  |  |  |  |
| 1992 |  | 6,524 |  |  | 7,963 |  |  | 14,486 |  |
| 1993 |  | 6,427 |  |  | 7,877 |  |  | 14,305 |  |
| 1994 |  | 6,372 |  |  | 7,907 |  |  | 14,279 |  |
| 1995 |  | 6,343 |  |  | 7,919 |  |  | 14,262 |  |
| 1996 |  | 6,353 |  |  | 8,015 |  |  | 14,368 |  |
| 1997 |  | 6,396 |  |  | 8,106 |  |  | 14,502 |  |
| 1998 |  | 6,369 |  |  | 8,138 |  |  | 14,507 |  |
| 1999 |  | 6,491 |  |  | 8,301 |  |  | 14,791 |  |
| 2000 |  | 6,722 |  |  | 8,591 |  |  | 15,312 |  |
| 2001 |  | 6,961 |  |  | 8,967 |  |  | 15,928 |  |
| 2002 |  | 7,202 |  |  | 9,410 |  |  | 16,612 |  |
| 2003 |  | 7,260 |  |  | 9,651 |  |  | 16,911 |  |
| 2004 |  | 7,387 |  |  | 9,885 |  |  | 17,272 |  |
| 2005 |  | 7,456 |  |  | 10,032 |  |  | 17,487 |  |
| 2006 |  | 7,575 |  |  | 10,184 |  |  | 17,759 |  |
| Projected | Low | Middle | High | Low | Middle | High | Low | Middle | High |
| 2007 | 7,709 | 7,704 | 7,719 | 10,265 | 10,271 | 10,314 | 17,974 | 17,976 | 18,033 |
| 2008 | 7,829 | 7,822 | 7,850 | 10,353 | 10,378 | 10,454 | 18,182 | 18,200 | 18,304 |
| 2009 | 7,898 | 7,929 | 7,965 | 10,372 | 10,487 | 10,580 | 18,271 | 18,416 | 18,544 |
| 2010 | 7,957 | 8,022 | 8,071 | 10,397 | 10,590 | 10,714 | 18,354 | 18,613 | 18,785 |
| 2011 | 8,018 | 8,118 | 8,183 | 10,433 | 10,704 | 10,866 | 18,452 | 18,822 | 19,049 |
| 2012 | 8,088 | 8,213 | 8,296 | 10,509 | 10,835 | 11,041 | 18,597 | 19,048 | 19,337 |
| 2013 | 8,161 | 8,306 | 8,407 | 10,623 | 10,993 | 11,243 | 18,784 | 19,299 | 19,650 |
| 2014 | 8,227 | 8,387 | 8,499 | 10,742 | 11,146 | 11,426 | 18,969 | 19,533 | 19,924 |
| 2015 | 8,271 | 8,443 | 8,654 | 10,840 | 11,273 | 11,580 | 19,111 | 19,716 | 20,145 |
| 2016 | 8,318 | 8,500 | 8,634 | 10,934 | 11,393 | 11,734 | 19,252 | 19,893 | 20,368 |
| 2017 | 8,366 | 8,568 | 8,717 | 11,028 | 11,512 | 11,889 | 19,404 | 20,080 | 20,606 |

Table 2: Alternative version of a portion of Table 10 in Hussar and Bailey (2008).
This alternative suggests that the entries in BOLDFACE may not be correct.


Figure 10: Prototype map version of Tables A and B in Hussar and Bailey (2008).
2. It is difficult to discern that Table 11 in Hussar and Bailey (2008) contains three distinct breakdowns of the same set of totals. Blank lines between the breakdowns are a simple but effective way of conveying this.
3. Some tables are broken across non-facing pages - that is, the first part of the table is on an oddnumbered page and the second on the following even numbered page. It is impossible to look at the entire table at once.
4. Table B-5 of Hussar and Bailey (2008) (page 130) contains some figures rounded/truncated to thousands and others rounded/truncated to millions. This imposes a gratuitous burden on readers: the populations could equally well be in thousands, as they are, for example, in Table B-4. In addition, the heading for the right-most column in Table B-5 is not correct: the value is fall enrollment as a percentage of the population.

### 1.4 Interactivity

The bulk of this paper presumes that NCES will continue to produce "hard copy" projection re- ports. These can be both distributed physically and, which is done now, as PDF files available from the NCES web site.

|  | Public |  |  | Private |  |  | Public and Private |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actual |  |  |  |  |  |  |  |  |  |
| 1992 |  | 17.4 |  |  | 15.4 |  |  | 17.2 |  |
| 1993 |  | 17.4 |  |  | 153 |  |  | 17.1 |  |
| 1994 |  | 173 |  |  | 15.5 |  |  | 17.1 |  |
| 1995 |  | 173 |  |  | 15.7 |  |  | 17.1 |  |
| 1996 |  | 17.1 |  |  | 15.5 |  |  | 16.9 |  |
| 1997 |  | 168 |  |  | 152 |  |  | 16.6 |  |
| 1998 |  | 16.4 |  |  | 15.0 |  |  | 16.3 |  |
| 1999 |  | 16.1 |  |  | 14.7 |  |  | 15.9 |  |
| 2000 |  | 160 |  |  | 14.5 |  |  | 15.9 |  |
| 2001 |  | 159 |  |  | 143 |  |  | 15.7 |  |
| 2002 |  | 159 |  |  | 14.1 |  |  | 15.7 |  |
| 2003 |  | 159 |  |  | 138 |  |  | 15.7 |  |
| 2004 |  | 158 |  |  | 13.7 |  |  | 15.5 |  |
| 2005 |  | 15.7 |  |  | 135 |  |  | 15.4 |  |
| Projected | Low | Middle | High | Low | Middle | High | Low | Middle | High |
| 2006 | 155 | 156 | 155 | 135 | 13.5 | 13.5 | 15.3 | 15.4 | 15.3 |
| 2007 | 15.4 | 155 | 15.4 | 13.4 | 132 | 13.4 | 15.1 | 15.2 | 15.2 |
| 2008 | 152 | 153 | 15.4 | 13.1 | 13.0 | 13.2 | 15.0 | 15.1 | 15.1 |
| 2009 | 15.1 | 152 | 153 | 129 | 12.8 | 13.1 | 14.9 | 15.0 | 15.1 |
| 2010 | 150 | 15.1 | 152 | 12.7 | 12.6 | 12.9 | 14.8 | 14.9 | 15.0 |
| 2011 | 148 | 15.1 | 15.1 | 12.5 | 12.4 | 12.8 | 14.7 | 14.9 | 14.9 |
| 2012 | 14.7 | 150 | 150 | 12.4 | 12.2 | 12.7 | 14.6 | 14.8 | 14.9 |
| 2013 | 146 | 149 | 150 | 123 | 12.1 | 12.6 | 14.5 | 14.8 | 14.8 |
| 2014 | 145 | 149 | 149 | 12.1 | 12.0 | 12.4 | 14.4 | 14.7 | 14.7 |
| 2015 | 14.4 | 148 | 148 | 120 | 119 | 12.4 | 14.3 | 14.6 | 14.7 |
| 2016 | 143 | 14.7 | 14.7 | 119 | 11.8 | 12.3 | 14.2 | 14.6 | 14.6 |
| 2017 | 142 | 146 | 146 | 118 | 11.8 | 12.2 | 14.1 | 14.5 | 14.5 |

Figure 11: Alternative version of Table 33 of Hussar and Bailey (2008) incorporating multiple improvements.

At some point, however, NCES may choose to provide an interactive web version, and here we note some functionalities that are inherently useful as well as address issues raised elsewhere in this white paper. These include:

Sorting: As noted in §2.3.1, the data in Tables A and B of Hussar and Bailey (2008) and Figure 9 can be sorted by either state of magnitude of change. Both sort orders make sense, and both are informative. Capabilities for interactive sorting are well-developed and easily applied. Figure 12 shows an example containing data from the Health Data for All Ages section of the National Center for Health Statistics (NCHS)' web site.

Linked views, where the linkage allows selections to propagate from one view to the others. This filtering functionality is a central strength of interactive displays. To illustrate, consider Figure D of Hussar and Bailey (2008), which contains six (year, age of student, sex of student, attendance status of student, degree level, and race/ethnicity of student) distinct categorizations of the set population - students enrolled in degree-granting postsecondary institutions. In effect, the components of that figure are five two-way marginals of the underlying 6-dimensional contingency table. ${ }^{13}$ Linked views are one means for exploring higher - dimensional structure of the data. For example, selection, using a mouse, of the 18-24 category in the first panel in Figure D would split each bar in every other panel into "18-24" and "other."

[^6]

Figure 12: Example of an interactively sortable table, taken from the web site of the NCHS.

Mosaic plots (Friendly, 1994), which need not be interactive but are especially effective when they are, also facilitate exploration of high-dimensional structure. Figure 13 illustrates for 8 -dimensional data taken from the Current Population Survey (CPS): the relationships among four categorical variables ${ }^{14}$ come across clearly.

Micromaps (Carr and Pickle, 2010) provide similar functionality for geographically indexed data.
User-set breakpoints for maps: Multiple technologies are available that allow users interactively to manipulate category boundaries for maps such as those in Figures 5-7 of Hussar and Bailey (2008), allowing more detailed understanding of the underlying data.

[^7]Mosaic Plot of Race x Sal x MS x Educ


Figure 13: Example of a mosaic plot containing four-dimensional data drawn from the CPS.

## II. PROJECTION METHODOLOGY

It is challenging to discuss the methodology underlying the projections in Hussar and Bailey (2008) constructively because the description of it in Appendix A is cryptic and incomplete. Some specific aspects of this description are discussed in $\S 3.2$. The methodology itself is discussed first, in $\S 3.1$.

### 2.1 Modeling Approach

Hussar and Bailey (2008) states explicitly and correctly on page 83 that "the equations in this appendix should be viewed as forecasting rather than structural equations." The ensuing justification that "limitations of time and available data precluded the building of large-scale, structural models" is not persuasive. The result is a hodgepodge of models underlain loosely by one principle:

The general methodological procedure for Projections of Education Statistics to 2017 [that is, Hussar and Bailey (2008)] was to express the variable to be projected as a percent of a "base" variable. These percents were then projected and applied to projections of the "base" variable. For example, the number of 18 -year-old college students was expressed as a percent of the 18 -yearold population for each year from 1972 through 2006. This enrollment rate was then projected through the year 2017 and applied to projections of the 18 -year-old population from the U.S. Census Bureau.

This principle is followed inconsistently at best.

Moreover, the failure to use structural models has multiple, negative implications, which include the following.

First, coherence is lacking, because the "project a base and proportions" approach is not followed consistently. If it were, the re-scaling to match totals that is mentioned, for instance, on pages 92 and 109 of Hussar and Bailey (2008) would be unnecessary.

Second, the current methodology cannot capture "regime changes" or other shocks to the system. In light of the current economic situation and other forces, this is a major shortcoming. It is simply not possible to believe that smooth statistical models are adequate to capture the effects of the economic downturn on state, family and personal finance, potential changes in the model of federal loans to postsecondary students, and systemic changes such as enrollment in high school via the internet. To place any credence in the financial projections in Figures $L$ and $M$ in future projection reports based on the current methodology seems foolish.

Third, the current methodology does not ${ }^{15}$ provide principled measures of uncertainty for projections. ${ }^{16}$ That the methodology is ambivalent about uncertainty is an understatement. Consider the following statements:

Page 1: "The low and high alternative projections are not statistical confidence limits."
Page 84: "These alternatives reveal the level of uncertainty [italics added] in making projections, was well as the sensitivity of projections to the assumptions on which they are based."
Page 85: "Therefore, alternative projections are shown for most statistical series to denote the uncertainty involved in making projections. These alternatives are not statistical confidence limits, but instead represent judgments made by the authors as to reasonable upper and lower bounds."

It is difficult for any reader, sophisticated or not, to reconcile these statements. The statement on page iii that "the first alternative set of projections (middle alternative projections) in each table is deemed to represent the most likely projections" does not seem justified, especially if "most likely" is interpreted as "mode."

The inability to quantify projection uncertainty is not academic. If uncertainties are of com- parable magnitude to the differences among low, middle and high alternative projections, then reporting alternatives is meaningless, and could be misleading. Indeed, as Table A-1 of Hussar and Bailey (2008), the demographic and economic differences among the three alternatives are subtle. ${ }^{17}$ In the absence of principled evidence to the contrary, it is hard to believe that uncertainties associated with projections 12 years into the future do not overwhelm differences among the alternatives.
It is a major shortcoming of the current methodology that it does not offer a path to address this issue. The current methodology is not amenable to uncertainty quantification and characterization. The multiplication involved in the "project a base and proportions" approach complicates calculations by requiring characterization of dependences for which there is limited data. Bayesian methods (West and Harrison, 1999), on the other hand, inherently provide principled information about uncertainties.

It is worth noting that the current national unemployment rate of $9.8 \%$ is "off-scale" relative to all three

[^8]alternatives. Therefore, even if the current methodology were sound, there may no reason to credit any of the projections.

Fourth, the current methodology yields little actionable insight into what is driving projections, and hence no path to inform policy or decisions. Of course, NCES may not intend or wish the projections to be used for such purposes.

Fifth, the reliance on multiplicative models, which are simply additive model for logarithms, seems tenuous. The assertion on page 84 that "Research has found that it [the multiplicative model] is a reasonable way to represent human behavior." is subject to multiple criticisms. Multiplicative models preclude prediction techniques that entail centering. That multiplicative models are used widely is true.

Finally, neither is it justifiable to argue that the seemingly good accuracy of past projections validates the methodology. Absent action by NCES, that quality may deteriorate dramatically.

Returning to the current methodology in general, there are numerous arbitrary and unjustified choices. Here is one of the most striking: page 83 of Hussar and Bailey (2008) contains the statement "Projections of enrollments and public high school graduates are based on a smoothing constant of $\alpha=0.4$." On what is this choice based? Does it make sense scientifically? How sensitive are the results to it?

There also appear to be technical flaws in some of the models. Specifically, consider the model for projection of postsecondary associated with Tables A-23 and A-24. ${ }^{18}$ That model, for associates degrees received by men, appears to be

$$
\begin{aligned}
\log \left(\frac{\text { Degrees }(t)}{\mathrm{P}(t)}\right)=5.0 & +0.4\left[0.67 \log \left(\frac{\mathrm{FTE}(t-1)}{\mathrm{P}(t-1)}\right)+0.33 \log \left(\frac{\mathrm{FTE}(t-2)}{\mathrm{P}(t-2)}\right)\right. \\
& \left.+0.67 \log \left(\frac{\mathrm{PTE}(t-1)}{\mathrm{P}(t-1)}\right)+0.33 \log \left(\frac{\mathrm{PTE}(t-2)}{\mathrm{P}(t-2)}\right)\right]
\end{aligned}
$$

Here, P is population, FTE is full-time enrollment, and PTE is part-time enrollment. It appears that the coefficients 5.0 and 0.4 are estimated from data, whereas 0.67 and 0.33 are simply arbitrary. In any event, the model in (1) is not identifiable.

We note in passing that the substitution of verbal descriptions for equations in Hussar and Bailey (2008) is problematic. Based on the footnotes in Table A-23, equation (1) could instead have been

$$
\begin{aligned}
\log \left(\frac{\operatorname{Degrees}(t)}{\mathrm{P}(t)}\right)=a+b & {\left[\log \left(0.67 \frac{\operatorname{FTE}(t-1)}{\mathrm{P}(t-1)}+0.33 \frac{\mathrm{FTE}(t-2)}{\mathrm{P}(t-2)}\right)\right.} \\
+ & \left.\log \left(0.67 \frac{\mathrm{PTE}(t-1)}{\mathrm{P}(t-1)}+0.33 \frac{\mathrm{PTE}(t-2)}{\mathrm{P}(t-2)}\right)\right] .
\end{aligned}
$$

The relative inability to predict numbers of postsecondary degrees awarded, as evidenced in Table A-2 of Hussar and Bailey (2008) demonstrates clearly the weakness of the current methodology as compared to a

[^9]structural modeling approach, whether Bayesian or not. Completion of degree requirements is an event with numerous precursors contained in institutional-level databases, so short-term prediction, which is dominated by imminence of completion of requirements, would be straightforward if based on such data. For long-term predictions, on the other hand, variability in time-to-complete might be thought to be a "smoothing" factor, which would mean that poor predictions are largely the result of inability to predict enrollment. However, Table A-2 of Hussar and Bailey (2008) shows that reality is more complex: 10-years-into-the-future projections of postsecondary enrollment have mean absolute percentage errors (MAPEs) on the order of $10 \%$, while errors for masters degrees awarded are more than $20 \%$. One explanation is failure-to-complete - students who enroll in masters degree programs but do not complete requirements for their degree.

Within the current methodology, there is no avenue to resolve these kinds of questions. Of course, however, processes of postsecondary access, choice and progression are under study by NCES and many other organizations and individuals, and an alternative approach based on structural modeling could be informed by this knowledge.

### 2.2 Description of the Methodology in Appendix A of Hussar and Bailey (2008)

The description of the projection methodology is incomplete in several important respects. The most glaring of these is that the equation

$$
\hat{X}_{t+1}=\alpha\left[X_{t}+(1-\alpha) X_{t-1}+(1-\alpha)^{2} X_{t-2}+\ldots\right]
$$

on page $83,{ }^{19}$ which is rewritten here in a way that makes clear what is being predicted, only specifies the projected value for next time period. Nothing in Hussar and Bailey (2008) describes projections further into the future, which can be done in several different ways.

On page 113, Hussar and Bailey (2008) presents one multiplicative model for pupil/teacher ratios in public elementary schools as a function of teacher salaries and per-student elementary education revenue from state sources, ${ }^{20}$ and another multiplicative model for pupil/teacher ratios in public secondary schools as a function of the fraction of the secondary school-age population enrolled in secondary school and perstudent education revenue from state sources.

In both cases, multiplying the inverses of projections of these values by projected numbers of students produces projected numbers of teachers.

This approach raises multiple issues:

1. 1.Why two different models? Is the justification scientific, statistical, or something else?
2. What is the unit of analysis at which the models are estimated? State? National? Because of

[^10]extreme state-to-state variations, fitting only at the national level appears inadequate.
3. (Hussar and Bailey, 2008) alludes in passing (page 114) to the fact that definitions of "elementary" and "secondary" in terms of grades are not uniform across public school systems. This seems important enough not to be relegated to a Technical Appendix that most readers will ignore.
4. The final equations then reveal the essentially ad hoc nature of the current methodology. Consider elementary school teachers. Using abbreviated notation ( $P=$ pupils, $T=$ teachers, $S=$ salary, $E=$ state-derived revenue per capita but not per student), the model in Table A-25 is, after exponentiation,
$$
\frac{P}{T}=3.8 S^{1}\left(\frac{E}{P}\right)^{-.2}
$$

This means that the project number of teachers is

$$
T=P\left(\frac{P}{T}\right)^{-1}=\frac{1}{3.8} S^{-.1} E^{.2} P^{.8}
$$

It does not seem possible to have confidence in this equation, especially since it predicts that the number of teachers falls as teacher salaries rise.

Some parts of the description are undecipherable. Consider the "Basic Methodology" material beginning on page 89 of Hussar and Bailey (2008):

1. The subscripting violates basic principles of notational clarity: enrollment in grade $j=1$ for year $t=$ 2009 is written as $G_{12009}$. Because of the importance to time to projections, it is much preferable to use $G_{j}(t)$, which is free of ambiguity. And why not just use 0 as a subscript for kindergarten?
2. The line " $\mathrm{G}_{1 t}=$ enrollment in grade 1 " is superfluous.
3. The expression " $\mathrm{EG}_{t}=K_{t}+E_{t}+\sum_{\mathrm{j}=1}^{8} G_{i t}$ " is a tautology presented as if it were the result of mathematical manipulation. The same is true of the expression for $\mathrm{SG}_{t}$.
4. The expression " $K_{t}=$ RK * $\left(P_{5 t}\right)$ " misleadingly makes $K_{t}$ appear to be a function of $\mathrm{P}_{5 t}$. Written as intended, that is,

$$
K_{t}=\mathrm{RK}_{t} \times P_{5 t},
$$

the expression makes sense, but it is completely unclear what is being defined in terms of what. By any reasonable interpretation, the definition of $\mathrm{RK}_{t}$ is

$$
\mathrm{RK}_{t}=\frac{K_{t}}{P_{5 t}},
$$

but this is not what (4) suggests.
5. Similarly, the equation

$$
G_{j t}=R_{j t} \times G_{j-1, t-1}
$$

really is a definition of $R_{j t}$, but is not written that way.
6. The equation

$$
E_{t}=\mathrm{RE}_{t} \times \sum_{i=5}^{13} P_{i t}
$$

imposes an arbitrary and unnecessary assumption that only 5-13-year olds can be enrolled in elementary special and ungraded programs.

The equation $S_{t}=\mathrm{RS}_{t} \times \sum_{i=14}^{17} P_{i t}$ has the same problem.
Continuing to the material on page 90 , which relates to enrollment in degree-granting postsecondary institutions,

1. The use of $i=25$ to represent ages $25-29, i=26$ to represent ages $30-34$ and $i=27$ to represent ages 35 and over in one case and 35-44 in another can only be described as torturing readers, especially given that for $i=16, \ldots, 24$ the subscript corresponds to true age.
2. The equation $T_{i j k t}=\sum_{i=16}^{27} E_{i j k t}$ is a tautology.
3. The equation $E_{i j k t}=R_{i j k t} \times P_{i j t}$ is actually the definition of $R_{i j k t}$.

### 2.3 Improving the Methodology

There is no question that an alternative projection methodology can be developed that addresses raised in §3.1. Because of the magnitude of the effort, this paper does not - indeed, cannot - lay out a complete path to improving such methodology. Incremental improvement does not seem feasible. A full-scale approach would rely on:

- Structural models.
- Bayesian methods (West and Harrison, 1999), in order to incorporate new information and to characterize uncertainties in a principled way.
- Modern forecasting methods, as exemplified by Alho and Spencer (2005).

The new methods would be very intensive computationally, since some uncertainty quantification would be by means of simulations.

Depending on how information in NCES projection reports is employed, the benefits of a complete revamping of the methodology may not justify the costs. A rough estimate of the effort would be a twoyear project involving senior researchers and a full-time postdoctoral fellow, with deep engagement of relevant NCES staff. An accompanying effort, for example, focus groups or an expert task force, to understand how the projections are used seems vital. Careful exploration of existing and alternative sources of data would also be necessary.

## III. OTHER ISSUES

The items listed here identify other improvements to NCES' projection reports.

1. There should be consistent and complete cross-referencing. For example, Figure 2 in Hussar and Bailey (2008) is a graphical presentation of the values in Table $2,{ }^{21}$, but there is no cross-reference. The projection reports should not require users to supply cross-referencing.

Proper attention to cross-referencing would have revealed that there appears to be no table containing the values underlying Figure 1 of Hussar and Bailey (2008). Why is this?
2. The interleaved numbering of tables and figures in the body of the report is unusual. Most style guides recommend that tables and figures be numbered separately. Using letters to label figures and tables in the body of the report and numbers to label Reference Figures and Reference Tables compounds the disorganization. Labeling Reference Figures as Figure $\mathrm{R}-1$, ...is as easy as it is effective.
3. Given the bulk of Hussar and Bailey (2008), there is reluctance to propose additions, yet there are multiple missed opportunities. To illustrate, consider Figures 1 and 2 of Hussar and Bailey (2008), which present actual and projected populations and PK-12 enrollments, respectively. It is true that students enrolled in PK-12 are not a subset of the 5-17 population, the report provided no way to understand the relationship between population and enrollment. For a significant segment of users, absolute declines in enrollment mean much less that declines in enrollment/population, but this information is not accessible in Hussar and Bailey (2008).

We also note the absence in NCES' projection reports of what might be termed "measures of performance" of the education system. Examples are completion rates (or dropout rates) for secondary and postsecondary students, measures of student performance such as scores on the National Assessment of Educational Progress (NAEP), and population-based measures such as the percentage of adults with varying levels of educational attainment. Inclusion of such measures would increase readership dramatically. In any event, Hussar and Bailey (2008) does not articulate a rationale for what it does and does not contain; readers would benefit from knowing it.
4. Hussar and Bailey (2008) does not state whether there is "hidden" disaggregation underlying some projections, even if results are reported in aggregate form. To illustrate, consider Figures $L$ and $M$ or Table B-6 of Hussar and Bailey (2008), which contain projected expenditures. Are these values projections of national aggregates or aggregates of state-level projections? Here and elsewhere, are CPI projections at the state or national level? Another instance is discussed in §3.2.

[^11]
## APPENDICES

## Appendix A: References

Appendix B: Figures from Hussar and Bailey (2008)
Appendix C: Author

## Appendix A: References

Alho, J. M. and Spencer, B. D. (2005). Statistical Demography and Forecasting. Springer-Verlag, New York.

Carr, D. B. and Pickle, L. W. (2010). Visualizing Data Patterns with Micromaps. Taylor \& Francis, London.
Friendly, M. (1994). Mosaic displays for multi-way contingency tables. J. Amer. Statist. Assoc., 89:190U" -200.

Hussar, W. J. and Bailey, T. M. (2008). Projections of education statistics to 2017. Technical report, National Center for Education Statistics. Available on-line at http://nces.ed.gov/programs/projections/projections2017/.

MacEachern, A. (1995). How Maps Work. The Guilford Press, New York.
National Center for Education Statistics (2004). Statistical Standards. Information available on- line at nces.ed.gov/statprog/stat_standards.asp.

Pickle, L. W., Mungiole, M., Jones, G. K., and White, A. A. (1997). Altas of United States Mortality. U. S. Department of Health and Human Services, Hyattsville, MD.

Tufte, E. (1983). The Visual Display of Quantitative Information. Graphics Press, Chesire, CT.
Tufte, E. (1990). Envisioning Information. Graphics Press, Chesire, CT.
Tufte, E. (1997). Visual Explanations. Graphics Press, Chesire, CT.
West, M. and Harrison, J. (1999). Bayesian Forecasting and Dynamic Models. Springer-Verlag, New York. 2nd. edition.

Wilkinson, L. (2005). The Grammar of Graphics. Springer-Verlag, New York. 2nd. edition.

Appendix B: Figures from Hussar and Bailey (2008)

Figure A. Actual and projected numbers for elementary and secondary enroliment, total and by grade level: Selected years, 1992-2017


NOTE: Detail may not sum to totals because of rounding.
SOURCE: U.S. Dept. of Education, NCES, Common Core of Datasurveys, various years; Private School Universe Survey, various years; and National Elementary and Secondary School Enrollment Model. (See reference table 1.)

Figure 14: Figure A of Hussar and Bailey (2008).


Figure D. Actual and middle alternative projected numbers for total enroliment in degree-granting institutions, by selected characteristics: Selected years, 1992-2017 -Continued
1
30

##  <br> 

NOTE Race categories exchude persons of Hispanic ethricicy. The raciaVetric backgrounds of nonresident alens ane not known.
SOUPCE U.S. Dept. of Educition. NCES, Integrated Poetsecondary Education Data System (PEEDS). "Foll Enrolliment Survey." vaious years: and Ereolment in Degree-Granting institutions Model and Erroliment in Degroe-Granting Institusions by Race/Elhrictiy Model. See retorence tables 10 and 22.)

Figure E. Actual and middie alternative projected numbers for total enrollment in degree-granting institutions, by control of institution: Selected years, 1992-2017

Milions


SOURCE: U.S. Dept of Education. NCES, Integrated Postepcondary Education Data System (IPEDS), "Fall Enrollment Survey," various years; and Enrolment in Degree-Granting Insttutions Model. (See reference table 10)

Figure 15: Figure D of Hussar and Bailey (2008).

Figure J. Actual and middle alternative projected numbers for the pupil/teacher ratio in elementary and secondary schools: Selected years, 1992-2017

Ratio


SOURCE: U.S. Dept of Education. NCES, Common Core of Data surveys, various yoars; Private School Universe Survey, various yoars; and Elementary and Secondary Teacher Model. (See reference table 33.)

Figure 16: Figure J of Hussar and Bailey (2008).

Figure 2. Actual and projected numbers for enrollment in elementary and secondary schools, by grade level: Fall 1992 through fall 2017


Figure 17: Figure 2 of Hussar and Bailey (2008).

Figure 3. Actual and projected numbers for enrollment in elementary and secondary schools, by control of school: Fall 1992 through fall 2017


Figure 18: Figure 3 of Hussar and Bailey (2008).

| Table A. Projected percentage increases in public elementary and |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State Percent | hange | State | Percent change |  |  |  |  |
| Arizona | 44.8 | Washington | 7.4 |  |  |  |  |
| Nevada | 43.2 | Oklahoma | 7.4 |  |  |  |  |
| Texas | 32.9 | Alaska | 6.1 |  |  |  |  |
| Florida | 28.9 | Maryland | 5.3 |  |  |  |  |
| Utah | 27.5 | Nebraska | 4.6 |  |  |  |  |
| Georgia | 27.1 | Minnesota | 4.2 |  |  |  |  |
| North Carolina | 23.1 | Missouri | 3.5 | Table B. Projected percentage decreases in public elementary |  |  |  |
| Idaho | 22.9 | Illinois | 3.2 |  |  |  |  |
| Colorado | 18.9 | Indiana | 3.0 |  |  |  | $2005$ |
| District of Columbia | 14.3 | Kentucky | 2.7 | through 2017 |  |  |  |
| Delaware | 13.1 | Alabama | 2.6 |  |  |  |  |
| Virginia | 13.0 | Wyoming | 1.8 | State | Percent change | State Per | ange |
| Hawail | 13.0 | New Jersey | 1.7 | Louisiana | -12.4 | New York | -5.2 |
| Oregon | 11.2 | Kansas | 1.5 | Vermont | -11.7 | Massachusetts | -4.0 |
| New Mexico | 11.1 | Wisconsin | 0.9 | Rhode Island | -11.4 | New Hampshire | -3.8 |
| Tennessee | 10.4 | Mississippi | 0.4 | Maine | -8.0 |  | -3.5 |
| Arkansas | 9.9 | Montana | 0.4 | North Dakota | -8.0 | Ohio | -3.5 -3.2 |
| Califormia | 8.7 7.8 | South Dakota | 0.4 | Connecticut | $-6.3$ | Pennsylvania |  |
| South Carolina | 7.8 | lowa | 0.2 | Michigan | $-6.2$ | Pennsylvania |  |
| SOURCE U.S. Dept. of and State Public Bemen table 5.) | ucation and Se | CES, Common Co dary Enrollment Mo | re of Data surveys odel. (See reference | SOURCE: U.S. Dept. of Education, NCES, Common Core of Data surveys and State Public Elomentary and Secondary Enrollment Model. (See reforence table 5.) |  |  |  |

Figure 19: Tables A and B of Hussar and Bailey (2008).

Figure 5. Projected percentage change in grades PK-12 enrollment in public schools, by state: Fall 2005 through fall 2017


Figure 20: Figure 5 of Hussar and Bailey (2008).

Table 10. Actual and alternative projected numbers for total enrollment in all degree-grantiag postsecondary
institutions, by sex, attendance status, and control of institution: Fall 1992 through fall 2017

| [In theusands] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Total | Sex |  | Attendance status |  | Centrel |  |
|  |  | Men | Women | Full-time | Part-time | Public | Private |
| Actual |  |  |  |  |  |  |  |
| 1992. | 14,496 | 6524 | 7.963 | 8,161 | 6.325 | 11.385 | 3.102 |
| 1993. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14.305 | 6.427 | 7.877 | 8,128 | 6,177 | 11.189 | 3.116 |
| 1994. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14.279 | 6.372 | 7.907 | 8,138 | 6,141 | 11,134 | 3,165 |
| 1995. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14.26 | 6.363 | 7919 | 8,129 | 6.133 | 11.092 | 3.169 |
| 1996. ................. . . . . . . . . . . . . . . . . . . . . . . . . | 14.368 | 6353 | 8.015 | 8.303 | 6,065 | 11.121 | 3.237 |
| 1997. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14.502 | 6.396 | 8.106 | 8,438 | 6,004 | 11.196 | 3306 |
| 1998. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14.507 | 6.369 | 8,198 | 8,563 | 5.944 | 11.138 | 3.369 |
| 1999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14.791 | 6.491 | 8.301 | 8.786 | 6,005 | 11.309 | 3,482 |
| 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 15.312 | 6.722 | 8,591 | 9.010 | 6.303 | 11.753 | 3.560 |
| 2001..................... . . . . . . . . . . . . . . . . . . . . . | 15928 | 6.951 | 8.967 | 9.488 | 6,450 | 12.233 | 3.695 |
| 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 16.612 | 7,202 | 9.410 | 9.946 | 6,665 | 12.752 | \$860 |
| 2003. ........ . . . . . . . . . . . . . . . . . . . . . . . . . . | 16911 | 7,260 | 9.651 | 10,326 | 6.585 | 12.859 | 4.053 |
| 2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 17,272 | 7.387 | 9.885 | 10,610 | 6,662 | 12.980 | 4.292 |
| 2005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 17.487 | 7.456 | 10.032 | 10,797 | 6,690 | 13.022 | 4.466 |
| 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 17.759 | 7.575 | 10,184 | 10.957 | 6,802 | 13.180 | 4.579 |
| Middle altemative projections |  |  |  |  |  |  |  |
| 2007. ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 17976 | 7.304 | 10.271 | 11.104 | 6,872 | 13.373 | 4.003 |
| 2008. ............................................ | 18,200 | 7.822 | 10.378 | 11.263 | 6.937 | 13.562 | 4.638 |
| 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 18,415 | 7.929 | 10.487 | 11.413 | 7,003 | 13.748 | 4,668 |
| 2010.................... . . . . . . . . . . . . . . . . . . . | 18.613 | 8.022 | 10.590 | 11.546 | 7,067 | 13.890 | 4.722 |
| 2011................................................ | 18,822 | 8.118 | 10.704 | 11.678 | 7,144 | 14.041 | 4.781 |
| 2012............................................ | 19.048 | 8.213 | 10.335 | 11.817 | 7.231 | 14.201 | 4847 |
| 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 19.299 | 8.906 | 10.993 | 11.973 | 7,526 | 14.300 | 4.919 |
|  | 19.539 | 8.387 | 11.146 | 12.114 | 7,419 | 14.547 | 4.986 |
| 2015. ................... ................ . . . . . . . . | 19.716 | 8.443 | 11.273 | 12,223 | 7,993 | 14.677 | 5.039 |
| 2016 | 19,193 |  | $11.393$ | 12.326 | 7,567 | 14804 | 5.089 |
| 2017.................... ........... . . . . . . . . . . . . | 20,080 | 8.565 | 11.512 | 12.630 | 7,650 | 14962 | 5.138 |
| Low alternative prajectioas |  |  |  |  |  |  |  |
| $2007$ | 17974 | 7.709 | 10.265 | 11.113 | 6,800 | 13.370 | 4.604 |
| 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 18,182 | 7,829 | 10.353 | 11,277 | 6.905 | 13.545 | 4.617 |
| 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 18,271 | 7,898 | 10.372 | 11.320 | 6.951 | 13.641 | 4.690 |
| 2010......... ........... . . . . . . . . . . . . . . . . . . . . | 18.354 | 7.957 | 10.397 | 11.399 | 6.995 | 13704 | 4.650 |
| 2011. ........................................... | 18.452 | 8.018 | 10.433 | 11.358 | 7.054 | 13.776 | 4.876 |
| 2012. ........ .......................... . . . . . . . . . | 18.597 | 2088 | 10509 | 11.469 | 7.128 | 13 ¢80 | 4.717 |
| 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 18,794 | 8.161 | 10,23 | 11.572 | 7,212 | 14.013 | 4.771 |
| 2014. ................ ... . . . . . . . . . . . . . . . . . . . . | 18.569 | 8.227 | 10.742 | 11,674 | 7,295 | 14.147 | 4.822 |
| 2018. .......................................... | 19.111 | 8.271 | 10.840 | 11.750 | 7,361 | 14.268 | 4.863 |
| 2016............................................. | 19.252 | 8.318 | 10.934 | 12.825 | 7,427 | 14.349 | 4.903 |
| 2017. ................... . . . . . . . . . . . . . . . . . . . . . | 19.404 | 8.376 | 11.028 | 11.501 | 7.503 | 14.462 | 4.941 |
| High altwrasiw proje tions |  |  |  |  |  |  |  |
| 2007. ... . . . . . . . . . . . . . | 18.093 | 7.719 | 10.314 | 1t,148 | 6,585 | 13.414 | 4619 |
| 2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 18.304 | 7.350 | 10.454 | 11.34 | 6.960 | 13.696 | 4.668 |
| 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 15.544 | 7965 | 10.580 | 11.513 | 7,031 | 13.839 | 4.705 |
| 2010.............................. . . . . . . . . . . . . | 18.785 | 8.871 | 10.714 | 11.681 | 7,104 | 14.013 | 4.772 |
| 2011................. . . . . . . . . . . . . . . . . . . . . . . . | 1904) | 8.183 | 10.366 | 11.857 | 7.192 | 14.202 | 4.347 |
| 2012................................................. | 19.397 | 8.296 | 11.041 | 12,046 | 7,291 | 14.406 | 4.931 |
| 2019. ......... ....... ... ................ . . . . . . . . . . | 19,690 | 8,407 | 11.249 | 12,292 | 7,508 | 14.28 | 5.022 |
| 2014................................................. | 19824 | 8.499 | 11.426 | 12,426 | 7,608 | 14.324 | 5,100 |
| 2015. ..... ........... . . . . . . . . . . . . . . . . . . . . . . . . | 20.145 | 8.564 | 11.580 | 12.565 | 7,580 | 14.990 | 5.164 |
| 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 20.301 | 8.6.4 | 11.734 | 12.705 | 7,463 | 15.140 | 5.228 |
| 2017........................................... | 20/a6 | 8.717 | 11.8月9 | 12.850 | 7.756 | 15.314 | 5.293 |

Figure 21: Table 10 of Hussar and Bailey (2008)

| Year (July 1) | 18.ywa-old | 18. se 26-grarelds | 25- to 29-yuarelds | 30. wo 34-ymer-alde | 35- to 44-ywas-elds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Astual |  |  |  |  |  |
| 1992. | 3354 | 36.282 | 20.591 | 22.564 | 40.046 |
| 1993. | 3 l 55 | 3 k .102 | 20.146 | 22.646 | 40,975 |
| 1994. | 928 | 24821 | 19.809 | 22,668 | 41.877 |
| 1995.... | 3 Cet | 25.38 | 19.742 | 22,425 | 42.765 |
| 1996. | 3650 | 25,376 | 19.92 | 21.996 | 43.605 |
| 1997. | 370 | 25374 | 19.960 | 21.494 | 44.282 |
| 1998. | 3934 | 36.15 | 19.863 | 20.909 | 44.802 |
| 1999 | 3993 | 36780 | 19.682 | 20.647 | 45.130 |
| 2000 | 4.976 | 27.393 | 19357 | 20.579 | 45.235 |
| $2601 .$. | 4.074 | 28.087 | 19.004 | 20,781 | 45.188 |
| 2002. | 4.833 | 28.601 | 18.997 | 20.878 | 44.869 |
| 2008 | 4,131 | 29.94 | 19.213 | 20,789 | 44.484 |
| 2004. | 4.128 | 29,405 | 19.625 | 20.528 | 44.178 |
| 2005. | 4,127 | 29.500 | 20.148 | 20.153 | 43.954 |
| 2006.... | 4.190 | 29.610 | 20.800 | 19.764 | 43.748 |
| Projectal |  |  |  |  |  |
| 2007. | 4.272 | 29890 | 21.313 | 19.713 | 43.379 |
| 2008 | 4.401 | 30.173 | 21.672 | 19865 | 42,782 |
| 2009. | 4.354 | 30.536 | 21.878 | 20.213 | 42.109 |
| 2010. | 4.312 | 90.762 | 21.94 | 20,657 | 41,600 |
| 2011. | 4.250 | 30.304 | 21.981 | 21.205 | 41.318 |
| 2012. | 4,170 | 30.947 | 22.057 | 21.652 | 41.217 |
| 2013. | 4.126 | 30.534 | 22.205 | 22.000 | 41.222 |
| 2014. | 4080 | 30.093 | 22.459 | 22.202 | 41.258 |
| 2015.... | 4.007 | 30.297 | 22.783 | 22.271 | 41.270 |
| 2016.... | 3990 | 29.901 | 23.059 | 22.313 | 41,421 |
| 2017........ | 4.918 | 29.507 | 23.260 | 22.394 | 41.754 |

Figure 22: Table B-4 of Hussar and Bailey (2008).

Projections of Education Statistics: Presentation and Methodology

Table 33. Actual and alternative projected numbers for the pupil/teacher ratios in elementary and secondary schools, by control of schoolt Fall 1992 through fall 2017

| Year | Total | Public | Private |
| :---: | :---: | :---: | :---: |
| Actas |  |  |  |
| 1992'. | 17.2 | 174 | 15.4 |
| 1993. | 17.1 | 17.4 | 15.3 |
| $1994{ }^{\circ}$ | 17.1 | 17.3 | 15.5 |
| 1995. | 17.1 | 17.3 | 15.7 |
| $1996{ }^{\circ}$ | 16.9 | 17.1 | 15.5 |
| 1997. | 16.6 | 16.8 | 15.2 |
| 1998. | 16.3 | 16.4 | 15.0 |
| $1999 .$ | 15.9 | 16.1 | 14.7 |
| $2000^{\prime} \text {. }$ | 15.9 | 16.0 | 14.5 |
| 2001. | 15.7 | 15.9 | 14.3 |
| $2002{ }^{\prime}$. | 15.7 | 15.9 | 14.1 |
| 2003. | $15.7$ | $15.9$ | 13.8 |
| $2004{ }^{\prime}$ | 15.5 | 15.8 | 13.7 |
| 2005.. | 15.4 | 15.7 | 13.5 |
| Middle alternative projections |  |  |  |
| 2006. | 15.4 | 15.6 | 13.5 |
| 2007. | 15.2 | 15.5 | 13.2 |
| 2008. | 15.1 | 15.3 | 13.0 |
| 2009. | 15.0 | 15.2 | 12.8 |
| 2010.. | 14.9 | 15.1 | 12.6 |
| 2011. | 14.9 | 15.1 | 12.4 |
| 2012.. | 14.8 | 15.0 | 12.2 |
| 2013.. | 14.8 | 14.9 | 12.1 |
|  | 14.7 | 14.9 | 12.0 |
| $2015 .$ | 14.6 | 14.8 | 11.9 |
| 2016. | 14.6 | 14.7 | 11.8 |
| 2017.. | 14.5 | 14.6 | 11.8 |
| Low alternative projections |  |  |  |
| 2006. | 15.3 | 15.5 | 13.5 |
| 2007. | 15.1 | 15.4 | 13.4 |
|  | $15.0$ |  |  |
| $2009 .$ | 14.9 | 15.1 | 12.9 |
| 2010. | 14.8 | 15.0 | 12.7 |
|  |  | $14.8$ | 12.5 |
| 2012. | 14.6 | 14.7 | 12.4 |
| 2013. | 14.5 | 14.6 | 12.3 |
| 2014. | 14.4 | 14.5 | 12.1 |
| 2015. | 14.3 | $14.4$ | 12.0 |
| 2016. | 14.2 | 14.3 | 11.9 |
| 2017. | 14.1 | 14.2 | 11.8 |
| High alternative projections |  |  |  |
| 2006. | 15.3 | 15.5 | 13.5 |
| 2007. | 15.2 | 15.4 | 13.4 |
| $2008 .$ | $15.1$ | $15.4$ | $13.2$ |
| 2009. | 15.1 | 15.3 | 13.1 |
| 2010. | 15.0 | 15.2 | 12.9 |
| 2011. | 14.9 | 15.1 | 12.8 |
| 2012.. | 14.9 | 15.0 | 12.7 |
| 2013. | 14.8 | 15.0 | 12.6 |
| 2014.. | 14.7 | 14.9 | 12.4 |
| 2015.. | 14.7 | 14.8 | 12.4 |
| 2016. | 14.6 | 14.7 | 12.3 |
| 2017.. | 14.5 | 14.6 | 12.2 |

Figure 23: Table 33 of Hussar and Bailey (2008).

## Appendix C: Author

Alan F. Karr, PhD
Director, National Institute of Statistical Sciences


[^0]:    ${ }^{1}$ For expediency, virtually all of these were produced using some combination of Microsoft Excel, Microsoft Visio and Adobe Photoshop. Versions produced by professional graphics software would be even better.
    ${ }^{2}$ It is not clear, for instance, whether data in Hussar and Bailey (2008) include schools operated by the US Department of Defense.

[^1]:    ${ }^{3}$ But, see discussion in §2.3.1.
    ${ }^{4}$ Throughout this section, we illustrate each problem, as well as potential solutions, using only one figure in Hussar and Bailey (2008). It is straightforward to determine which other figures share the same problem and are amenable to the same solutions.

[^2]:    ${ }^{5}$ Which some would already consider to be a violation of the principles of good graphics.
    ${ }^{6}$ In addition, the labeling is poor, year is not coded into the shading of the bars and there are extraneous tick marks on the vertical scale. These result from its having been produced using Microsoft Excel, and could easily be remedied.

[^3]:    7 Something that would be helpful to readers of Hussar and Bailey (2008) to know, but is never stated.

[^4]:    ${ }^{8}$ Although there seems to be no need for county-level information in NCES' projection reports, the maps in Pickle et al. (1997) display county-level information easily, whereas the cross-hatching in Hussar and Bailey (2008) fails badly at higher geographical resolution.
    ${ }^{9}$ Produced manually using Adobe Photoshop; Microsoft Excel would have done essentially the same thing.

[^5]:    ${ }^{10}$ Produced by Microsoft Excel.
    ${ }^{11}$ For instance, no values are shown for Alaska, Hawaii or the District of Columbia.
    ${ }^{12}$ Using Adobe Photoshop.

[^6]:    ${ }^{13}$ year $\times$ age, year $\times$ sex, year $\times$ attendance status, year $\times$ degree level and year $\times$ race/ethnicity.

[^7]:    ${ }^{14}$ Race (2 categories), salary (2 categories), marital status (2 categories) and educational attainment (5 categories).

[^8]:    ${ }^{15}$ And possibly cannot.
    ${ }^{16}$ All past values in Hussar and Bailey (2008) are treated as if there were no associated uncertainty, which is incorrect, but is not likely to have major consequences.
    ${ }^{17}$ Indeed, for some variables, there is no difference between alternatives.

[^9]:    ${ }^{18}$ Which are not consistent with each other in their description of the model. Moreover, the former seems to state that coefficients are estimated to only one decimal place, which seems indefensible.

[^10]:    ${ }^{19}$ Which, incidentally does not make proper use of the ellipsis...
    ${ }^{20}$ As an indicator of the level of opaqueness of Hussar and Bailey (2008), on page 113, in what might be considered running text, the latter is stated to be "the level of education revenue from state sources deflated by the consumer prices chained-price index in constant 2000 dollars per public elementary student," while-two pages later-in a footnote to Table A-25, that variable is stated to be "the ratio of education revenue from state sources per capita [italics added] to public elementary school enrollment." The inclusion of logs in the definitions of the variables in the notes to Table A-25 is taken to be erroneous.

[^11]:    ${ }^{21}$ At least, it appears to be that.

