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Imputation in Government Surveys

NATIONAL INSTITUTE OF STATISTICAL SCIENCES ROUNDTABLE REPORT

PROJECT GOAL

At the request of the National Center for Education Statistics (NCES) the National Institute of Statistical
Sciences organized an Experts’ Roundtable focused on the use of imputation procedures in government
surveys.

On January 26, 2018, the roundtable was held in person at the NCES. Presentations showcased the practice
of imputation procedures in other federal agencies such as U.S. Census Bureau, Bureau of Labor Statistics,
National Agricultural Statistical Services, and National Center for Health Statistics.

Advances on imputation procedures in academic research were highlighted, with specific attention given to
the potential impact of adoption of multiple imputation procedure on NCES surveys and results of a pilot
study.



Imputation at the BLS

Imputation at the BLS

Moonlung Cho
Office of Survey Methods Research
U.S. Bureau of Labor Statistics
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m International Price Program
Various situations and rules
Unified methods
m Consumer Price Index
Workable documentation
m Consumer Expenditure (CE) Survey
m CE Income
» Multiple imputation of income data at 2004
P Ave of MI values for each missing unit
» Classification and Regression Trees and Forests

3 == 1.5, BUREAL OF LaBOFE STATISTICS « bisgev fﬂs

Capturing Imputation Variability
m |[PP

» Bootstrap

» Each replicate data set should be imputed in the
same way as the original data set

m CE Income
> BRR with 44 replicates
» BRR five times

4 = L5, BUREAU OF LABDR STATISTAZS + bisgev fﬂs



Hitting Calibration Targets + INCA Calibration

Hitting Calibration Targets + INCA
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Census of Agriculture

« National Agricultural Statistics Service (NASS)
conducts a Census of Agriculture every 5 years.

* The Census provides a detailed picture of U.S.
farms, ranches and the people who operate
them.

* It is the only source of uniform, comprehensive

agricultural data for every state and county in the
United States.
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Census of Agriculture

* NASS also obtains information on most
commodities from administrative sources or
from NASS surveys of non-farm populations,
such as
= USDA Farm Service Agency program data,

— Agricultural Marketing Services market orders,
— livestock slaughter data, and
— cotton ginning data.

USDA
L
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Census Mail List

« Definition of farm: an agricultural operation that
produced or would produced and sold agricultural
products of at least 51000 during the year of the

Census

* Every effort is made to make the Census Mail List
(CML) as complete as possible, but it does not contain
all u.5. farms, resulting in list undercoverage.

= Some farms on the CML do not respond to the census,
nonresponse is present.

USDA
USDA
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Dual System Estimation (DSE)

+ To adjust for undercoverage, nonresponse and
misclassification, NASS uses capture-recapture
methodology where two independent surveys are
required.

* Calibration is conducted ta ensure that the census

estimates are consistent with the available information

on commodity production.

* This DSE method produces adjusted weights that are
used as the starting values for the calibration process.

USDA
1'--""_'-
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Calibration

* Forces weighted estimates of calibration
variables to match known totals

* Ildea was introduced by Lemel and developed
by Deville and Sarndal.

i




Calibration

We want T = Aw, where

T Is vector partitioned into y known and ¥ unknown
population totals,
A is the matrix of collected data from population, and
w is a vector of o unknown welghts.
Find the solution of the linear system vy = A™w,
where

y is a vector of n known point targets (benchmarks), and
A s an x p submatrix of collected data.

* Often produces non-integer weights

USDA
oS

[+

Improving Calibration Results
* Approaches previously tested

— Code changes

+ Stemwise variable addition {rasditional} v allvarables inapaeoach (new}
* Mew code treats soft targets as soft targets (et targets within the
allowabde range)
= Allowing DSE welght input to calibration with relaxed

truncation (0.9-6)

* Tradtional code trncates the FSE weights input to calibeation to
between 1 and 3

— Allow B and X case records to be handled similarly to
regular records

= Allowing calibration output welghts in the range of 9to 6
+ Traditional code outpans weights in range of 110 &

— Allowing use of submitted, unedited data

USDA
=
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Integerization

* Current integerization methodology uses “linked”
integerization
— DSE weight decimal and calibration welght decimal
are used to determine how calibration weight will be
rounded
* Current integerization methodology cannot
handle calibration weights less than 1 (some will
be rounded to 0)

* Therefore, calibration research will focus on
weights between 1 and 6

USDA T
g =
Michigan
Taigets Missed out of 175
DSE Input Limited |  Output After -
Restriction Weights ta Data Waights Calibration P
Calibration Changes| of Calibe ation| Tatal
i P . |
Partiall d
R & X-Case ? *M}'E] No (16| 8 2| 126 (11,164
Fully Adjusted
R & X-Case b J';l | Mo (16| s 3| 111 (313)
Nane (16| Mo {16i] & o| =6 (7,12
R & ¥-Case 1-6)| Mo [16)] & ol 75 (611)
F-Case & EO {(16) [ Mo (16| & o] 9.6 (713)
None 18] ves 16| 4 1| %8 (3,14}
R & ¥-Case 1-6)|  es (16| & 1] 75 {6.10
R-Case & EO i1-8)| ¥es {1-5) 4 1 g4 (712§

US Dﬁ\ Mete: Highlighted rows we old code {integerization condwected 10 tmes|
E Orther rows use new code (Integerization conducted 100 tenes)
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North Carolina

DSE Input | Limited|  Output Targets Missad out of 184
Restriction Weightsto Data Waights Afwer | Adver Integerization
Calibration Changes| of Calibration] Calibration|  Avg (Min,Max)
Partially Adjusted
R & X-Case J | N {16} 4 6.1 (3.8
Fully Sdjusted
R & X-Case ':1 3| Mo {1-6) 4 52 (4,6)
Maorie {1-6}| No {1-6} 1] 3.0 (1,5
R & X-Case {1-6)[ Mo {1-6) 3 39 (3,6
R-Cate & FO {1-6)| Mo {1-B} 1 25 [15])
NO EDITS NEEDED

- Hig el s use integerization cen mies
USDA  note: Highlghed el code {i ion conducted 10 imes)
_:;" Other rows we new code (ntegerization conducted 100 temes}

Texas
T.arge‘ls Missed out of 346
DSE hnput Limited Dutput After B
Restriction Weights to Data Weights Calibration
Calibration Changes| of Calibration Total Imqen.u.nﬂnn
Thiid Possible g (P ian]
iy Adjisted
k& X-Case it 1{1_3] Mo 1-6y| = o] 24.7 (Z132)
Fully Adjusted
R & X-Case (1-3] Mo (16| 14 5|18.1 {15, 26)
MNone {1-6) Mo {1-6) Error
k& ¥-Case (1-6) ] Mo 1-6)| 12 3| 254 (16,32
R-Case & EO (1-6)] Mo i1-6)| 5 1| 229 {16,35)
MNone {1-6] Yes i1-6) Ermor
B & X-Case (1-8) ) Yes i1-60] 11 25.5 (20,320
R-Cate & FO (1-6) ) Wes -6)| 4 22.0 (13,34

USDA.  tote: Highlighted rews use eld code (integerization cenducted 10 times|
Chver roees wse newy code (Integerization conducted 100 trees)

————
SRR
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Findings

* Mast targets that cannot be hit, are unable to
be hit because the data do not support the
targets

| [
:
p 4

e

Recommendations

* Targets need to be evaluated

* Integerization process needs more research

— Do other integerization methods allow for more
targets to be hit?

— Other integerization methods allow calibration
weights to be less than 1.

USDA
USDA

o
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QOutline

-

Calibration

-

Rounding

-

Integer calibration

-

Results
Conclusion

-

503

[

NASS Census 2012 Calibration

* The targets used in calibration are the

commodity products {commodity targets), and

the 65 farm targets.

* Each targetis calibrated within a pre-specified

tolerance range, which is generally less than
2% of the target.

LTy
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NASS Census 2012 Calibration

* NASS has a need for integer weights for its
final totals in the census publication. It uses a
two part process.

1. Linear truncated calibration to produce non-
integer weights.

2. Rounding the weights from step 1.

USDA
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Integerization

* Current integerization (KR) methodology uses
“linked” integerization
— DSE weight decimal and calibration weight

decimal are used to determine how calibration
weight will be rounded

* Current integerization methodology cannot
handle calibration weights less than 1 (some
will be rounded to 0)

USDA
__,d_.—-——-
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Problems with old approach

+ Too many missed targets

* Final weights are very different than initial
(DSE) weights

* Computationally intensive and time
consuming

G5DA

LTy

SimCa code (first attempt)

» Get target within its interval. The old method
tried to hit each target’s point value instead of
target’s interval.

* The second feature was that targets are
calibrated simultaneously instead of the
sequential approach presentin the old code.

USDA ",
—— =
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Preliminary results

Ml Oid o 11.1 {213}
SimCa b 7.2 16,11}

i ald 4 52 {46
SimCa 3 3.9 {3.6]

™ old 14 1%.1 {15, 26)
SimCa 12 75,4 {16,37]

Wethad Missod Aftar ald rounding

New rounding Method

* INCA (rounded)
— Explicit gradient
— Starts with real calibrated weights

e
k:
p

i
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Preliminary Results with new rounding

Ml Current Rounding 7.5 (6-11)

1A, rouded [
MC Current rounding 3.2143-6}
INCA reamadied E|
TX Current roundling 25.4{16-32]
INEA, roumned el G
USDA n

Alternative proposal

* Old approach

Rrounding to
- |

Inputs # (Calbration + Dutput
_“_J o integer pu

» New approach

.. Reursding to Inbeger v ' 5N
| — [ S— [ S—
POLL integer calibration SR

USDA
EEET
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Description of the problem

* The following objective function is minimized:

n

ST Dty (7 = AT W) + AP(W)
i=1

#; is the lower bound for a/ w,

u; is the upper bound for ar-TwJ

p{-) is a generic loss function,

A is 3@ non negative scalar,

P(-) is a distance from the ariginal weights

USDA
——

Description of the algorithm

1. All unfeasible weights are truncated to their
closest boundary, and in order to minimize
the objective function, non-integer weights
are then rounded sequentially according to
an importance index based on the gradient.

2. Each weight, according to the magnitude of
the gradient, is allowed to move unit-shifts
which decreases the objective function.

USDA
i

19



Integer Calibration (INCA)

* Based on gradient

* Using C programming languages with SAS
wrapper

* Qutput weights are in the set {1, 2, 3, 4, 5, 6}

* Dutput weights are close to the input weights

USDA S
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reamber of Missectarpats
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Current VS INCA
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INCA Missed Targets

Miumnber of meissed faapgets ol & hkyabde Sageis

RN R R F A R E I I R R TR T R -

INCA DSE Correlation

Correlation with D5E weights

Ly
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INCA
Mean Average deviation (MAD)

.-'IE.‘.'_ ---------------

I

INCA Computational Speed

........

= Average time per state using old code is 30 mans
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Findings

* Integer Calibration decreases the number of
missed targets in 48 of the 49 states

* Integer Calibration decreases calibration time

e
|
4
Ty

Recommendations

Move to incorporate the INCA program into 2017
Census of Agriculture

s

\
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Thank you!

Luca Sartore, PhD - Luca. Sartore @nass . usda.goy
Eelly Toppin, PhD - KellyToppin@nass. usda.goy
Clifford Splegelman, PhD « Cliff@stat tarmuedu

USDA
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Three Statistical Issues on Multiple Imputation in Complex Survey Sampling

Three statistical issues on multiple imputation in
complex survey sampling

Jae-kwang Kim

lowea State University

January 26th, 2018

Three Issues on multiple imputation (MI)

@ Informative sampling design: We cannct simply ignore the sampling
design features

@ Congeniality and Self-efficiency (Meng, 1084): Statistical validity of
M| is imited to a certain class of estimators

@ Statistical power in hypothasis testing

[ asheang Kim (IS0 i kighe imgutation lanwar 224 2016 2/ 30
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Issue One: Informative sampling design

Let f{y | x) be the canditional distribution of ¥ given x.
% ts always cbserved but y is subject to missingnass,

A sampling design is called noninformative (w.r.t £} if it satishes

Fly | x, 0 =1) = f(y | x)

where | = 1 if i/ = sample and I; = 0 otherwise

If {1) doss not hold, then the sampling design is infermative

[ asheang Kim (IS0 ma kige imeutation lanvary 22th. 20L&

|
Missing At Random

Twio versions of Missing At Random (MAR)
@ FPMAR [Fopulation Missing At Random)

Y 1LR|X

@ SMAR (Sample Missing At Random)
Y LR|(X.])

R: response indicator function
Under noninformative sampling design, PMAR=SMAR

[ as b Kim (IS0 i kighe imgutation lanuary 28tk 2016

(1)

370

4/
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I
Imputation under informative sampling

Two approaches under informative sampling whan PMAR holds.

@ Weighting approach: Use weighted score equation to estimate # in
fly | x:#). The imputed values are generated from f(y | x,#)

@ Augmented medel appreach: Inelude wints model covariates s gat
the augmented model fiy | x,w;4). The augmented model makes the
sampling design nomnformative in the sense that
fly| = w)=Ffly| }-:.f.-'..l' = 1}. The imputed values are generated from
fily | x, w; r:‘:j_ where & is computed from urweighted score equation

[ asheang Kim (IS0 ma kige imeutation lanwary 22tk 2016 5/ 30

Imputation under informative sampling

o Weighting approach generates imputed values from fiy | x, R = 1). It
is justitied under PMAR.

@ The augmented madel approach generates imputed values fram

F[}r | %, w,l = 1, R =1} and it is justified uncer SMAR

@ Under informative sampling, PMAR does not necessarily imply SMAR
(see the next page)

@ The classical multiple imputation approach is basad on SMAR
assumption.

[ as b Kim (IS0 i kighe imgutation lanuary 28tk 20L& &/ 30
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Berg, Kim, and Skinner (2016; JSSAM)

Figure: A Directed Acychic Graph (DAG) for a setup where PMAR haolds but
SMAR does not hald. Yanable U is latent in the sense that it 15 never observed

i (W——0

O

fy | x, R) = fly | x) holds but f{y | x, w, R} # fy | x, w).

mu Kipk mputatns lanary 3tk J0LE Ty

M| under informative sampling

@ Under informative sampling, the sample distribution is different from
the population distribution which follows fram the marginal sample
distribution,

P(fi = Llx;, yi)Flyi i)
f 1 ;r,-:_.l',; =1)= .
(v ) Pli; = 1x)
® Recall that the posterior distribution for multiple imputation is

_ J Lb{i}lxﬂ: ﬁr]ﬁ{ﬂ}ﬂ'ﬁ..,h
T [ La(81Xn, Yo (8)dY s d®’

P{ II-:Ill XI’J! lﬂ.‘-Llh.]'

@ So, it is difhcult to obtain the likelihood function L (8| X, Y, directly
from the population distribution.

[ as b Kim (IS0 i kighe imgutation lanuary 28tk 20L& @/ 30
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|
New method (Kim and Yang, 2017; Biometrika)

@ Under complete response, an approximate Bayesian inferance can be

based on
g(6)6)x(8)
1 &)@y (8)d8’
where g is the density for the sampling distribution of maximum

pseudo likeliheod estimator (PMLE) 6 = &{X., Y,), and =(8) is a
prior distribution of &.

@ I'he PMLE is obtained by

P8 Xn, Ya) = (2)

4 = arg max E wilog F{y; | xi, 8).
=

@ The sampling distribution of FMLE is asymptotically normal.
— mu Kipk mputatns lanary 3tk J0LE R

]
New method of Kim and Yang (2017) (Cont'd)

@ Under the existence of missing data, we generate parameters from

{ &(618)m(#) Yimis
I [ elbl8)r(8)dYmdt

Pl P Xy Yobe) (3)

@ To generate samples from (3), the following data augmentation can
be used:
o |-Step: Given #51) draw Y58 o F[ Vis| Xo, Yops; #1010
o P-step: Given 1"{;15:?- draw

giﬁ*“]w.m{ﬁ'}

glek .-.-;I}{]_",rl-{r]]_ Sl ]
Pt e T T g (84910) x(8)d

where 841t} = #(x, . y! , 15 PMLE calculated using the imputed
values YU and ¥iY — (Y., ¥IUh

s mig J-

[ ashwang Kim (IS0 ] i kigk: imgutation lanuary Bch. 2018 10/ 30
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I
Simulation Study

@ Superpopulation models {=models for the finite populations)

@ Continuous outcome following a linear regression superpopulation
model,

¥i = Ho + B + &

where x; A Maormal(2,1], € ~ Normal(D, 7%}, and
(Fa.F1,0%) =(—1.5,05,1.04),

@ Binary outcome following a logistic regression superpopulation model,
¥ ~ Bernoulli{ gy},
where o = exp{5g + B}/ 1 4+ ep(Fs + Fx),
% ~ Normal(2,1), and {#, %) = (-15,0.5)

@ Finite populations of size N = 50, 000 are independently generated
from each superpopulation medal.

[ asheang Kim (IS0 ma kige imeutation lanuary 2ch. 3018 11/ 30

|
Simulation Study

Faor each population,

e Missingness mechanism;
8; ~ Bernoulli(@;) with logit(#;) = —1 + 0.5x; + 0.5,
where u; ~ Normal(2,1), and u is independent of x; and «;

e Sampling mechanisim:
Paisson sampling with [, ~ Bernoulli{7;), whers
@ nor-informative sampling:
@ both comes ; logit(l — =) = 3+ 0.6x
@ informative sampling:

@ continuows ocutcome: logit{l — m ) = 34 éu — 0.1y
® binary cutcome - logit{l — m) = 2+ fw — 05w

Bl ashwang Kim 5L i Righe rputation lanuary 26h. 012 12/ 30
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I
Simulation Study

@ Estimators for 5 = N1 311 .
o Hajek estimator, assuming all observations are available,
¢ Traditional M| estimator using augmented model F(v|x, w) with
imputation size 50
o Kim & Yang's (KY) methad for Ml with imputation size 50

o Pasterior approach with the number of each MCMC simulation = 500

@ Assume flat prior distribution for both multiple imputation.

o w=1/m.

[ asheang Kim (IS0 ma kige imeutation lanuary 2ch. 3018 13/ 30

|
Simulation Study : Results

Tahle: Simulation result under non-informative sampling design - bias, variance of
the point estimater, and coverage of 95% confidence intervals based on 1,000
Monte Carlo samples.

Mon-informative sampling design

Mathod i Var  Coverage

(10°°) (%)

T — Hajeck (3,0 167 a5
j:tmme Traditional Ml 0.00 213 a5
KY M| 0.00 212 a5

T Hajeck .00 33 04
-:uutcu::r;'le Traditional M1 0.00 43 a4
KY MI .00 43 04

[ ashwang Kim (IS0 ] i kigk: imgutation lanuary Bch. 2012 14/ 30



I
Simulation Study : Results

Takle: Simulation result under informative sampling design - bias, vanance of the
point estimator, and coverage of 95% confidence intervals based on 1,000 Monte
Caro samples.

Informative sampling design
Var  Coverage

Method Bias (10 5} (%)
Conti Hajeck 000 114 g5
g::;‘;:f Traditional MI 0,04 138 84
KY MI 0.00 152 a5
Binarv Hajeck 0.00 146 G5
—— Traditional M1 0,03 20 42
K M 00 22 O
[ Jacbwany Kim (500 m kipk imputatien lanuary Beth, 5015 15/ 3
|

lssue Two: Class of estimators that M| works

Some history

@ Rubin [1978, 1987) proposed MI as an imputation tool for general
purpose estimation.

e Fay (1991, 1992) found that MI variance estimator is positively biased
for domain estimation if the imputed values are abtained from a
reduced model. It is essentially due to borrowing strength
phenomenaon

o Meng (1994) gave a theory for the validity of MI. He showed that Ml
works only for a certain class of estimatars and the class is called
self-afficient estimator. Also, he argue that M| is still OK faor other
classes because the M| inference will be conservative

e Kim, Brick, Fuller, and Kalton [2006) and Yang and Kim {2018}

provide further insights on the self-efhicient estimation.

[ ashwang Kim (5L ] i kigk imgutation lanuary Bch. 2018 15/ 30
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Mumencal illustration

A pseudo finite population constructed from a single month data in
Manthly Retail Trade Survey (MRTS) at US Bureau of Census

N = 7,260 retail business units in five strata

Three variables in the data
e h; stratum
@ Xy inventory values

@ Yo sales
[ acheang Kim (150 me ik imputation lanuary 2éch. 3015 17/ 30

Box plot of log sales and log inventory values by strata

B plot of sades data ny sbraia Blou plat of rnemiony data by straba
| - I a
i i + &
- | | 1 -
# 4 44w 1 il e
H e E = e S + J_ -I_
£ 7 === | : '
% | T Bowd g == :|
E o + 15| §
n g : = l I == |
o 1B : | el
E g - ]
e | H i
T T T T 1 L T
1 1 4 2 3 4 g
L) B
[ ackwarg Kim (1500 ] ma kigk imputation lanuary 2eh 208 19/ 30
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Imputation model

w here

log(yni) =

Son + 81 loglxy:) + ew

e ~ N[0, %)

me Eipk Iroutacks

|
Residual plot and residual QQ plot
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Stratified random sampling

Table: The sample allocation in stratified simple random sampling

Strata 1 Z 3 4 5
Strata size Nj 352 566 1963 2181 2198
Sample size ny, 28 32 46 46 48

Sampling weight 1257 17.6% 4267 4741 4570

[ asheang Kim (IS0 ma kige imeutation lanuary 2ch. 3018 21/ 30

Response mechanism: PMAR

Variable xj; is always observed and only yy s subject to missingness.

PMAR
Ry ~ Bernoulli{mp), mn = 1/[1 + exp{d — 0.3 bog () }]

The overall response rate is about 0.6.

[ as b Kim (IS0 i kigh imeutation lanuary B 018 20/ 30
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|
Simulation Study (Yang and Kim, 2017, Statistical

Science)

Table I Monte Carlo bias and variance of the point estimators,

Parameter Estimator Bias | Variance | Std Var
Complete sample | 0.00 0.42 100
# = E(Y) il 0.00 0.5% 134
Fl 0.00 0.58 133

Table 2 Monte Carlo relative bias of the variance estimator,

January Dch. 201

FParameter | Imputation | Relative bias (%)
Vidh) M 15.4
Fl 27
[ lachwang Kim (150 ] ma kipke imgutation
]

Discussion

@ Rubin's formula is based on the following decomposition:

Visia) = VIiia) + Vi — fin)

where fj, is the com plete-sample estimator of &, Basically, U, term

estimates V{fja) and (1 + m™ 1By, term estimates V{fipy — fia).

» For general case, we have

Visiaar) = V{dia) + Vs — fin) + 2Cov{fint — Tins in)

23/ =

and Rubin's variance astimator ignores the covariance term. Thus, a
sufficient condition for the validity of unbiased variance estimator is

C'Dl""{f]'an - ﬁnl ﬁn]l = 0.

o Meng (1994) called the condition congeniality of 7,
@ Congeniality hclds when i, is the MLE of v (self-efficient estimator).

i Eipk routates

lanuary Bth, 2012

o4 /30
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]
Discussion (Cont'd)

o For example, there are two estimators of = E(Y') when log(¥)
follows from N{F; + fyx, o).

@ Maxirmum likelihood method:

e =Y eplfo+ x4 0587
=1

@ MWeathod of moments )

- —=1 h
e = R L ¥i

i=1
e Asymptotically, Viimne) = V(fame).

[ asheang Kim (IS0 ma kige imeutation lanuary 2éch. 2015 25/ 30

]
Discussion (Cont'd)

@ When MI is applied to fupe, we have

fingr =0ty { Rivi + (L — R)E(y: | xi: Oaans }}
|:_l
where ¢ = (fy, 51,07°). Thus, M| estimator is a convex combination
of MME and MLE.

@ The MME of n does not satisfy the self-efficiency and Rubin's
variance estimator applied to MME is upwardly biased.

@ Rubin’s variance astimator is essentially unbiased for MLE of n but
MLE is rarely used in practice.

Reference: 5. Yang and J.K. Kim (2016). "A Note on Multiple Imputation
for Method of Moments Estimation”, Biometrika, 103, 244 — 251

[ ashwang Kim (5L ] i kigk imgutation lanuary Bch. 2018 26/ 30
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lssue Three: Statistical Power

@ Some supporters of M| says that M| is still OK because it will provide
conservative inference in most cases.

@ How about statistical power in hypothesis testing?

[ asheang Kim (IS0 ma kige imeutation lanuary 2ch. 3018 27 /30

]
Simulation Study (Kim and Yang 2014, SMJ)

@ Bivariate data (x;, ¥;) of size n = 100 with
Y: = Bo+ Six; + A2 Z:,r.’l? — 1: + g {4)

where (dg, A1, 82) = (0,0.9,0.06), x ~ N{0,1). & ~ N(0,0.16), and
x; and e; are independent. The variable x; is always observed but the
probability that y; responds is 0.5

@ The imputation model is
¥: = 8 + ,31#.’,; -+ &

That is, imputer's model uses extra information of g2 = 0.

@ From the imputed data, we fit model (4) and computed power of a
test Hp @ G2 = 0 with 0.05 significant lavel

@ |n addition, we also cansidered the Complete-Case (CC) method that
simply uses the complete cases anly for the regression analysis

[ ashwang Kim (5L ] i kigk imgutation lanuary Bh. 2018 29/ 30
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I
Simulation Study

Table & Simulation results for the Monte Carlo experiment based on
10,000 Maonte Carlo samples.

Methad | E(f) [ V{#) [RE. (V) | Power
MI | 0.028 | 0.00056 | 181 | 0.044
CC |0060| 000234 | -D01 | 0.285

Table & shows that Ml provides efhicient point estimator than CC method
but variance estimation is very conservative {more than 100%
overastimation). Because of the sericus positive bias of M| vanance

estimator, the statistical power of the test based on M is actually lower
than the CC methad

[ Jacbwany Kim (500 m kipk imputatien lanuary Beth, 5015 =0
|
Conclusion

@ We should understand the risks when M| s usad in the praduction,
@ M| has threa main risks. Such risks should be -:Ie.;url:,r stated if we still
want to use M| officially.

@ Other aptions (such as fractional imputation) can alse be considerad

[ ashwang Kim (5L ] i kigk imgutation lanuary Bch. 2018 304 30
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Assessing Imputation Uncertainty NHES 2012

Assessing imputation uncertainty NHES 2012

Recai M. Yucel

Mathanigl Schenker
Trivellore Raghunathan

January 25, 20138

Work in progress!

@ 2012 Naticnal Household Education Survey
@ Missing data due to item nonrasponsa

o Rates of missingness
e What impacts missingness?

@ Summary of NHES imputation routines

@ Assessing the imputation uncertainty using M| (with some
empirical findings)
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National Household Education Survey (NHES)

o The NHES consists of two topical surveys = the Early
Childhood Program Participation [ECFP) Survey and the
Parent and Family Involvement in Education [PFl) Survey

@ [he ECPP survey has a target population of children age 6 or
younger who are not yet in kindergartan

o [he PFl survey has a target population of children and vouth
age 20 or younger who are enrolled in kindergarten through
12th grade in a public or private school or who are being
homeschooled for the equivalent grades

@ NHES:2012 used an addressad-basad sample covering the 50

states and DO, and procesded as a two-stage, stratifiad
sample The first stage sampled the addresses, and the second

stage salacted the eligible child
@ Arcund 73% unit respanse rates

Missing data

@ Similar to most surveys, NHES 2012 also has
ingempletely-observed survay items

@ Median item response rates for both PFI {114 items for
enrolled students, and 92 items for homeschooled) and ECPP
{140 items) surveys were 96 4% and 97.9%, respectively
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Missing data: example

@ For this presentation, consider an analysis invalving six
variahles: Age (783 out of 17563 respondents in PFI),
Education (256 parent 1, 344 parent 2), Total Housshald
Income [846 missing out of 17563) and indicator for receiving
spacial health sarvices

@ 15663 cases from PRl module have complete data (1900 cases
have at least ons itam missing] in this subset of variables

Example missing data pattern

Histogram of misaing dots
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Speculating factors causing missing data

@ Some of the key factors influencing “"missingness” -

e For missingness on income, parents’ education level, grade
lesvel are kay factors

@ For some other items subject to missingness, race and
soCio-ecanomic factors also play a role

o All estimated using design-based logistic regression on the
relevant missingness indicator (R survey package by Lumley)

Mational Household Education Su rvey |rﬂ|'.1|_Jt;_'1t.i|:j:-r"| Foutines

For varicus practical and operational reasons, missing values across
the survey items weare imputed using four successive imputation
methods:

@ Logic-based imputaticn

o Weighted random imputation
@ Sequential hot deck imputation
@ Manual imputation (mean/mode imputation if hot deck can
not performed)
Thesa routines were implementad in STATA for 2012 NHES, then
SAS routines were developed for 2016 NHES. All imputation

procedures are followed with a comprehensive post-imputation
edits and imputation flags are added in the public datasets.
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NHES Imputation Routines: Logic-based imputation

@ In logic-based imputation, items for which a respondent is
missing data are imputed using other data available for the
saime respandeant

@ o impute a value to missing gate questions based on the
presence of “yes” or valid data in fellow-up items. Gate
quastions are defined as survey questions whose answers
determine the subsequent routing of the respondent through
the survey instrument.

NHES Imputation Routines: Weighted random imputation

@ Imputation proceeds based on the empirical probability
distribution of the variable

@ For example, if 15% of the respondents report "high scheal
diploma” on the itam for highest education level attained,
then “high school diploma” s imputed for a randomly
solactad 15% of the item nonrespondents
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NHES Imputation Routines: Hot deck imputation (ctd.}

@ Cress of boundary variables [which must be observed for all, missing
ones are typically imputed wsing randem imputation) are used to
define imputation cells

@ The algonthm samples from a pool of donor observations in these
cells (same observation can not be used as imputation more than 5
times)

@ The purpose of dividing the sample into imputation cells 15 to
ensure that values are imputed from donor respondents that are
sufficiently similar to each recipient respondent in terms of key
“boundary” characteristics

@ The variables were chosen because they are characteristics of
hausehaolds, respondents, or children that are likely to be associated
with differences in item response propensities, such as parent(s)
educational attainment; or are key variables in guestionnaire paths
and skip patterns, such as the child’s grade and enrallment status

MNHES Imputation Routines: Hot deck imputation (ctd.}

Donor rules are enforced to reduce the potential bias

e an individual case may be used a maximum of five timas as a
danor for a particular variable. This is designed to reduce the
likalihaod that 2 single danar has 2 disproportionate affact an
ovarall estimates

@ Second, donors may have boundary variables that are imputed
using weighted random imputation

@ Donors are not eligible to impute a value for a specitic variable
if that variable was imputed, including logic-based imputation
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NHES Imputation Routines: Manual imputation

Applied when no donors are available in hot deck imputation {not
implemented for more than 10 cases per variable, on average)

@ Collapsing boundary variables to produce mora donors for
imputation cells

@ Reduced number of boundary variablas

e Maan /mode imputation
“Mean/mode imputation” refers to using the prée-imputation distribution
of the item to assign an imputed value. For categorical variables, the
maodal valug will be imputed. For continucus variables, the mean wvalue
will ba imputed. This will aither be the overall mean/mode, ar that of a

subgroup, depending on the variable

Imputation Uncertainty

@ Key problem with a single imputation (regardless of the
underlying imputation methodology) is the underestimation of
the uncertainty in the post imputation analyses unlass care is
taken to reflect the variation underlying the distribution of
missing data (or uncertainty implied by the imputation
procass )

@ As the surveys put forward by the federal agencies used by
many entities, this is an important problem which has been
extansively discussed in the missing-data literature
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Incorporating imputation uncertainty

@ Resampling-based approaches (Rzo and Shao, 1992, Efran,
19%4; Rao and Sitter, 1995, Kim and Fuller, 2004; Fuller and
Kim, 2005)

@ Linearization approach {Clayton et al. 1998 Shao and
Steel, 1999, Robins and Wang, 200, Kim and Rao, 2009)

@ Multiple imputation (MI) (Rubin, 1976, 1987 coined the
term M| inference, initially he named it as repeated -
imputation inference)

Incorporating imputation uncertainty using M

o The key idea of Ml is to generate multiple {say M) plausible
versions of missing data, analvze each data by standard
camplate-data mathads and then combine the results

@ Consider for example, one wants to make inferences about 2
regression coefficient 4

o We would obtain estimates of 5 across the imputed datassets;
81, --.,8m along with its standard errors: 5,5;,...,5m

@ To obtain an overall point estimate, we then simply average
over the estimates from the separate imputed datasets:
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Incorporating imputation uncertainty using Ml (ctd.)

@ A final variance estimate 'L-‘.ar[.':ij raflacts variation within and
betwesn imputations

Var() = W+ {14

where W = 2 %M 2 andp = LM (5, - 412

m—1 =1
@ B is essentially a key factor guantifying the variation in the
missing data distribution, and ignored under single imputation
procaduras

o Kim et al. (2000) showed that for certain estimates, this
variance can be biased and coffered bias-adjustment

Multiple imputation under a hot deck algorithm

@ Une idea is to repeatedly execute the current hotdeck
algorithm (hot deck MI)

@ Missing values in income, education, age and indicator for
receiving special haalth sarvices were replaced by five donors
selected randomly from plausible pool

@ Not much differenca is observad betwsan 5| and M in terms
of means (in fact, complate-case only analysis is also quite
similar):

Table: Means and SEs of selected tems from PFI

Total Income  Special Health services P2 Education

hotdeck S 5.96 (0.022) 0.20 (0.0062) 3.61 (0.0261)
| hotdeck MI 595 {0.0223) 0.20 (0.0066) 3.50 (0.0266) |
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Multiple imputation under a hot deck algorithm

Now consider some simple multivariate analyses;
o Model 1

legit{ P(special health service)) = fo+ F1/nc+ S Edu + 33 Age
o Model 2;

ncome = G431 Special health.serv+ 32 Educationt Z:Age+«

Mawve comparison: M| versus S| (Model 1)

Table: Model 1 estimates— S| versus M| hotdeck

| ol SE) Bi(SE) S2{5E) S(sE) |
[ hotdeck S| -1857 {0.102) 0.064 (0.016) 0028 (0.0197) -0.004 (0.0DZB) |
hotdeck M1 -1800 {0.103) 0076 (0.017) 0.029 (0.0205) -0.004 (0.0030)
r 0.0101 0.0089 0.0465 0.0408

‘estimated ralative increase in the variances due te mizsing data (or due to
impLtation )
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Mave comparison: M| versus S| (Model 2)

Table: Maodel 2 estimates— S| versus M| hotdeck

[ BASE) ERES) T.(SE) EISE) |
[ hotdeck S| 4450 [0.034) -0.087 (0.019) 052 (0008} -0.003 (0.001)
hotceck M1 3620 (0.131)  0.424 (D.085) 0548 (0018) =001 (0.00%)

r 0.02 0.02 0.06 0.07

Multiple imputation under parametric imputation model

@ Assume a multivariate normal madel 25 a rough
approximation to the data-generation mechanism
{variable-by-variable approach is better for surveys similar to
this) (Schafer, 2016 : norm2 R package; Raghunathan et al
(2016): IVEware; VanBuuren et al (2016): R package mice,
White et al STATA package ice)

@ More complex data structures: R packages pan [Schafer and
Yucel, 2002); jomo (Carpenter et al 2011}, shrimp (Yucal,
Schenker and Raghunathan, 2017)

@ Higher imputation-to-imputation variation leads ta a bit larger

SEs
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MI under MVN

Table: Maodel 2 estimates— 5| versus M| MWVN

[ Fo(SE F.(SE Z.5E) A5EY |
[ hotdeck 51 4 450 (0.034) -0.087 (0.018) 052 (0.008) -0.013 (0.001) |
MVN Ml 3630 {0.142) 0422 {0.101) 0551 (D.023)  -0.02 (0.003)

r 0.03 0.02 0.07 0.08

Notes

@ This comparison is naive in the sense that one can use a
single imputation and still correct for the imputation
uncertainty (ses Kim's papers)

@ However, public-use data hiles that include imputation need to
make note of this; or M| versions should also be released as
dane in NHIS {(Nat and Raghu's work) and NHANES
{Schafer) with cautionary notes on cambining inferences
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Outline for Discussion at NCES Roundtable on Imputation

Outline for Discussion
at NCES Roundtable

on Impuvutation

Nathaniel Schenker
January 26, 2018

» Types of Applications for Multiple Imputations
= Traditional (will types of combining information)

= Note uncongeniality issues come back to NHANES DXA imputation later)

] Brief = Bridging (and other types of combining information)

Discussion of

lelgglelcife
(20 ] ] ) # Topics for Future Research

= Note congeniality issues reported in Rubin & Schenker (1987, J0S)

= Measurement error

= Flexible models and methods

presentation

= Diagnostics for imputation models
= “Portability” of bridging models when the two surveys have different contexts

= “Uncongeniality” between imputation model and analysis model

= Methods for reflecting complex sample designs in imputation models
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2. Hot-Deck
Imputation vs
Multiple
Imputation

2. Hot-Deck
Imputation vs
Multiple
Imputation

» Not Really the Issue, because Multiple Hot-Deck
Imputation Possible

= To reflect variability more fully, draw bootstrap sample from complete
data before creating each set of imputations

= Rubin & Schenker (198, JASA; 1991, Statistics in Medicing)

» Two Big Issues

= Single imputation vs multiple imputation

= Hot-Deck vs Explicit-Model-Based imputation

» Hot-Deck vs Explicit-Model-Based imputation
Hot-Deck
= |[mputes values that have actually occurred
= | ess parametric flavor +> possible robustness

= See Schenker & Taylor (1996, Computational Statistics & Data Analysis)

» Explicit-Model-Based
= Easier fo explain model
= Handles general patterns of missing data better

= Can include more variables as predictors (e.g., by omitting high-order
interactions)

= Can improve prediction and make missingness at random more plausible
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3. Some Issues
of Interest for

NHES
Imputation

3. Some Issues
of Interest for

NHES
Imputation

» Single Imputation vs Multiple Imputation

= So far, differences in variance estimates not major (note low item
nonresponse rates)

= See if there are classes of analyses for which differences are larger

» Possible Advantages of Explicit-Model-Based Imputation
Over Hot-Deck Imputation

Handles general patterns of missing data better
= Predictors (analogous to “boundary variables™) can have missingness

= Note that “random imputation” (used for “boundary variables”) probably ok for
marginal distributions, but may attenuate multivariate analyses

» And Include More Variables as Predictors
= Could reduce bias and decrease variance
= No need to worry about number of donors in cells

= Note that there is a bias variance trade-off associated with number of

donors, collapsing cells, etc. (see Schenker & Taylor 1996 for some
relevant work)

» Effects of Manual Imputation and Post-Imputation Edits

= Any attenuation of the positive effects of the prior imputation?
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Match Bias or Nonignorable Nonresponse? Improved Imputation &
Administrative Data in the CPS ASEC

Match Bias or Nonignorable Nonresponse?
Improved Imputation and Administrative
Data in the CPS ASEC

Charles Hokayem Trivellore Raghunathan lonathan Rothbaum
LL.5. Census Bureau University of Michigan .5, Census Bureau

APPAM Fall Research Conference
Movember 4 2017

Neciakmer, This presentation & released to inform Interested parties of research and o encourage discusssan. The
wieyys oy pressad e those of the authars ard nol pecessarily those of the U5 Census Bureaw

Issues Facing Income Surveys

= |ncreasing nonresponse
*  Unit (no information at all)

* [tem (no information for a particular question)

= Measurement Error/Misreporting

Lirdhied Bvalis

Census | iz 2
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Increasing Item/Supplement Nonresponse in the CPS ASEC

Share of All Income Imputed

A%

LE 1955 Hom 30373 r. ) IO F.o o) r.uk Pk} Fi L |
TP

Souroe: Auther's cakzulaton from the CPS ASEC

Uiied Siaies

I:EHS.IL.IE spumtct e 5

Motivation

" Non-response is a growing problem in surveys,
including the CPS ASEC

» Hot deck procedure for imputing non-response
in CPS ASEC has been in place with few changes
since 1989

" Explore two possible biases in current
imputation

1. Match Bias = compare hot deck to model-based
method that permits more covariates

2. Nonignorable nonresponse — add administrative
data to model to evaluate impact of nonignorable
nonresponse on data

Ui Blaled

l:EI'iS.IL.I.E it e .
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Missing at Random and Match Bias

= Missing at Random — assumed by nearly all
imputation models

* Given Observables (1, Unobservables [/, and R as

response indicator
p(R =1]0,U) = p(R = 1]0)

= For a given statistic (J:
E(Qlo.u) =E(Qlo) =@
= Match bias — only a subset of variables are in the
model (M) and:
E(Q]0) = E(Q|M)
® Exclusion of 0,y biases results (0 = {M, ﬂw}

Censtis | &= .

 —— s

Match Bias - Examples

*  Union status (Hirsch and Schumaker, 2004) — not in CPS

imputation model

= Estimates of wage differences between unionfnan-union worker attenuated by
imputation models assumption that there is no relationship conditional on M

* Earmnings and Experience (Bollinger and Hirsch, 2008) - in CP5 model, but
grouped

= Alenuates estimates of retums to experiencs

bl AR TR C R PR AP ET SO AR O AR Pl iR Rl T B

JE

= =

E s P s s o= gt
Source: Bolinger and Hirsch {2006} on mosthly CF% impotation.

Ui Blabed | | IS | ——
Census . .
 —— s
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MNonignorable Nonresponse

= Data not missing at random

E(0]0,v) # £(0]0)
=  Exclusion of IJ biases results

* Example - Trouble in the Tails (Bollinger et al., 2015)

* Nonresponse is a function of the missing variable,
earnings
“1
ol ¥
L . i

-"I L) ™ . . =
it R T W

Wi i B M

EA daqn Fasaeaia

n ks TS
Toraree: Mellinger o sl HILE) b CFS ASTL nkad & D records

Censiis -

Existing Approach: Hot Deck

=  Match non-respondents to “similar” respondents along a
set of characteristics in the model

» Donate response as imputation from respondent to non-
respondent

= Example: 2 variables, 2 categories each — 4 cells
1. Race: White/non-White
2. Gender: male/female

Two non-respondents (A and B)

Person A: white, female — randomly select a white,
female respondent and use her response as
the imputed value

Person B: non-white, male — randomly select a non-

White, male respondent and use his response
as the imputed value

Ui Blabed | | IS | ——
Census . .
 —— s
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Hot Deck Limitations

Dimensionality

= |imited number of variables can be included

»  Suppose there are 20 variables you believe are correlated with your
outceme of interest

®  [ivide each into only 3 categories

* 3?9 % 3.5 hillion possible cells for each individual

=  Must exclude predictors from the model
Implied model places emphasizes all possible interaction

terms of a small set of variables over the inclusion of more

predictors

= Eguivalent to imputation by a regression model with dummies for

each variable/category + all possible interactions with random
draws from errors (within vanable/category strata)
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Sequential Regression Multivariate Imputation (SRMI| using Regression Models

= SRMI

* Flexible imputation technigue
* Fixes issue of sequential imputation

= Another source of match bias — cannot condition on Y5 in
model for ¥, with current approach

= Regression Models

» Allow inclusion of additional variables in model

Uiied Siaies

Census | i 11

Data

= 2011 Current Population Survey Annual Social and
Economic Supplement (CPS ASEC)

»  Survey of ~100,000 addresses
*  About 200,000 individuals

= (Official source of US poverty estimates
* |ncome from 2010 calendar year

= Social Security Administration Detailed Earnings
Records (DER)

= W-2 data linked to CPS ASEC using Protected
Identification Key (PIK)

» Includes W-2 earnings, deferred contributions (i.e.

401k), and reported S5A covered self-employment
earnings

Ui Blaled

Census | i 12
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Nonresponse by Income Type

Variable Mon-response rate (%)  Share of Income Imputed (%)
Earmings Recipiency 0.1

Wage Earnings (Primary Job) 12.7 207

Social Security 4.4 23149

Interest Income 16.5 59.7
Supplement Mon-response 1249 1249

Total Non-response

Ary Recipiency 227

Any Value 44,2 34.7

Mole: Share of income impuled is for ncome in e given calegary. For Sugpleman non-respanse and lolal
nan-response, the share is of all incomsa in the CPS ASEC.
Soeurca: Suthars' calculalions rom lhe 2011 CPE ASEC,

cé‘hﬂdsmuﬂg 11 % [t of Canmet

us 13

Modeling — Throw in the Kitchen Sink!

s Any imputation model assumes some Y0, U, &)

*  Regression models (f)
= DL for continuous variables
= Logit for binary and categorical (separated Into binary traes)
&  Variables imputed (¥
L Recipiency and value for all income types {45 variables), weeks worked in previous year,
hours worked per week, occupation {11 separate categorias)
*  Explanatory variables
= Dbearvables () Amaong others, includes gender, relationshig te householder, education,
marital/cohabiting status, spouse/partner earnings, number of children, urban/rural
status, small or large metropolitan area, Census region, means-tested banefits, health

insurance status and type, renterfhomeowner, unemploymeant status, school enrmllment,
citizenship, race, age

= Unobsarvables (U] DER - number of separate W-2 jobs, total wages, total self-
amployment earnings
. Interaction tarms for all possible combinations of a subset of ¥ and O variables

. Chver 3000 potential predictors in DER SAMI |given recoding of categorical variables as
sats of dummies]

Unibed Siaied” | 1% Degarimeni of Commen
Census - »



Modeling Challenges

1. Handling non-normal distributions
=  Highly skewed
=  Bunching

2. Selecting variables to include in the regression models

*  Too many possible variables and interactions to pick from
= Want to avoid imposing too many modeling assumptions

3. Accounting for model uncertainty

Uk Siaies | | I | e —
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SRMI Steps

1.

Empirical normal transformation to all continuous variables in y and IV (Mon-
Mormality}

Create all interaction terms

First model-selection stage for each ¥, (Too many variables)

Reverse empirical normal transformation (Mon-MNormmality)

SRMI sieps af each iteration
Mermal transformation again (Mon-Moermaliby)

k». Caleulate derived vanables used as pl'ﬁtl':ltlfﬁ iﬁpﬂuﬁﬂ. HH wvarables for EIJ':&‘T'IF)IE]
and interaction tarms

Q Siratify sampla by raca and gandar
Impute each ¥, saquantially, whada far aach ¥
i. Select regression sample by Bayes' Baoisirap for each race-gender siraturnm (Mode|

L o

o

=i amnt
i Within each straturm, run second stage model selectan o seled predictors {Tao many
warables)
ili. Ey stratum, impuie the missng value using logistic or QLS regression end samplng from
emar destribuban

& Reversa transformation [Mon-Maormaliby |

Ui Blabed | | IS | ——
Census . .
 —— s
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Household Income by Percentile Relative to Official Estimates

Model-Based Imputation [with and without Tax Data)
Compared to Existing Hot Deck
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Maote: Figure inmcated a1 9% parcentia for scale
SRMI: addresses match bias
DER SRMI. addresses nonignorable nonresponsa for eamings

.'.Ii!lhj SHHlEd [IL marament o LT
Census 17

Poverty Rate
DER SR
SEMI {Correction for
{Correction for Monignorable
Characteristic Hot Deck Match Bias) Nonresponse)
Toital 15.1 s Loy 16,0%*=
Race and Hispanic Origin
White alone, Mon-Hispanic o0 i 5e== 10,5%%*
Black alane 274 FQErEE 0.4
Hispanic [of any raca) 265 .0 272
Children (< 18] 221 I e bl T R
niE’d 551, 00 ' | 40000

. e Match Bias — children dropped from imputation for
:,ffff,:‘ Eﬁrf;:.,gm,::ﬁ;;ﬂifl 93% of eamers and marital status for 80%

and DER SRMI stardard ermoes incorporade mulipss imputation uncertaindy, Howenes, hat deck
standard samors do nol

CENSLE | =i 18



Characteristic Hat Dtk SRAI DER SAMI

All Households 49,445 47,144+** 46,981%**
Farily Housaholds B1.544 58,2404 %= £9,153*=
Race and Hispanic Origin
White alone, Non-Hispanic L. 620 51,8544 L1.875%*
Black abone 12,068 30,292* 29,898"
Hispanic [of any race] 37,755 37485 36,864

Aglerisks are for statistical signiSzance compared o he Hod Deck *** at 0.01 kewel, ** al 005 level,
and * a 0.1 level). Mo diferences belvween SREM and DER SRMI are slatstically significant. 2RI
and DER SRMI standard errors inGorporale mulipke imputation uncestainly, Howeawer, hal deck
andard erars do nal.

célhﬂdsﬁlullg [IL Mesartment of Lommseir
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Inequality

Hot Deck SR DER SEMI
Share of Income (3} in
1% Quintile 23 3.0 39
2™ Quinkile 85 8.0 &
3 Quintile 14.6 13.7 13.1
4 Quintile 234 2149 2.1
S Quintile 50.3 534 55.2
Top 5 Parcent 21.3 26.1 .5
Top 1 Parcent 7.8 12.9 149
NI .40 0503 0.521

Al differences between SRMIs and Hot Deck ane significant at the 1 percant level. All
differences between SEM| and DER SREMI significant at tha § percent laval excapt 1
quintile (not significant) and the top 1 percant (10 percent level).
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Returns to Experience (Mincer Earnings Regression)

Difference in Log Earnings at 20 Years
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Future Research

1. Add more sources of administrative records
= 1040 information
+  1099Rs
*  55A Records — OASDI and 551 payments
= State-provided means-tested program benefits

2. Add more years to understand if/how nonresponse bias has
changed over time

3. Include more summary information by geography to better

capture associations between state and local area
characteristics

Usibed Stales | | e
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Contact Information

Jonathan Rothbaum
Chief, Income Statistics Branch
Social, Economic, and Housing Statistics Division

jonathan.l.rothbaum@census.gov
(301) 763-9681

Unifed States
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Appendix A: Research Technical Experts

Research Technical Experts
Moon Jung Cho, PhD

Office of Survey Methods Research, US Bureau of Labor Statistics

Jae Kwang Kim, PhD

Professor, Department of Statistics & Center for Survey Statistics & Methodology (CSSM), lowa State
University

Trivellore Raghunathan, PhD
Professor of Biostatistics, Director & Research Professor, Survey Research Center, Institute for Social
Research, University of Michigan-Ann Arbor

Nathaniel Schenker, PhD
Consultant

Clifford Spiegelman, PhD
Distinguished Professor, Department of Statistics, Texas A&M University

Yves Thibaudeau, PhD
Principal Researcher, Center for Statistical Research & Methodology, US Census

Recai Yucel, PhD
Chair & Associate Professor of Biostatistics, Department of Epidemiology & Biostatistics, School of
Public Health, SUNY-Albany

Panel convened by National Institute of Statistical Sciences

Nell Sedransk, PhD
Director-DC, NISS

Ya Mo, PhD
Research Associate, NISS-DC

Funding Sponsor

National Center for Education Statistics
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